Searching on/Testing Encrypted Data

Lecture 23

- \odot A test key T_w that allows one to test if $Dec_{SK}(C) = w$
 - No other information about the message should be leaked

- \odot A test key T_w that allows one to test if $Dec_{SK}(C) = w$
 - No other information about the message should be leaked
 - w from a small dictionary of "keywords"

- \odot A test key T_w that allows one to test if $Dec_{SK}(C) = w$
 - No other information about the message should be leaked
 - w from a small dictionary of "keywords"
- Public-Key Encryption with Keyword Search (PEKS)

- \odot A test key T_w that allows one to test if $Dec_{SK}(C) = w$
 - No other information about the message should be leaked
 - w from a small dictionary of "keywords"
- Public-Key Encryption with Keyword Search (PEKS)
- e.g. Application: delegating e-mail filtering

- \odot A test key T_w that allows one to test if $Dec_{SK}(C) = w$
 - No other information about the message should be leaked
 - w from a small dictionary of "keywords"
- Public-Key Encryption with Keyword Search (PEKS)
- e.g. Application: delegating e-mail filtering
 - Sender attaches a list of (searchably) encrypted keywords to the (normally encrypted) mail. Receiver hands the mail-server test keys for keywords of its choice. Mail-server filters mails by checking for keywords and can forward them appropriately.

© Components: (PK,SK) ← KeyGen, T_w ← TestKeyGen(SK,w), $Enc_{PK}(w)$, $Dec_{SK}(C)$ and $Test_{Tw}(C)$

- © Components: (PK,SK)←KeyGen, T_w←TestKeyGen(SK,w), Enc_{PK}(w), Dec_{SK}(C) and Test_{Tw}(C)
- © Correctness: For all (possibly adversarially chosen) words w, for $C \leftarrow Enc_{PK}(w)$, we have $Dec_{SK}(C) = w$ and $Test_{Tw}(C)=1$. For any other (adversarially chosen) word w', $Test_{Tw'}(C)=0$.

- © Components: (PK,SK)←KeyGen, T_w←TestKeyGen(SK,w), Enc_{PK}(w), Dec_{SK}(C) and Test_{Tw}(C)
- © Correctness: For all (possibly adversarially chosen) words w, for $C \leftarrow Enc_{PK}(w)$, we have $Dec_{SK}(C) = w$ and $Test_{Tw}(C)=1$. For any other (adversarially chosen) word w', $Test_{Tw'}(C)=0$.
 - May require perfect or statistical correctness. Or, should hold w.h.p against computationally bounded environments choosing w, w' (after seeing PK, and for w', possibly after seeing C, Tw also).

- © Components: (PK,SK)←KeyGen, T_w ←TestKeyGen(SK,w), $Enc_{PK}(w)$, $Dec_{SK}(C)$ and $Test_{Tw}(C)$
- © Correctness: For all (possibly adversarially chosen) words w, for $C \leftarrow Enc_{PK}(w)$, we have $Dec_{SK}(C) = w$ and $Test_{Tw}(C)=1$. For any other (adversarially chosen) word w', $Test_{Tw'}(C)=0$.
 - May require perfect or statistical correctness. Or, should hold w.h.p against computationally bounded environments choosing w, w' (after seeing PK, and for w', possibly after seeing C, Tw also).
- Secrecy: CPA or CCA security against adversary with oracle access to TestKeyGen(SK, .), as long as adversary doesn't query w_0, w_1

If the dictionary is small, (PK,SK) = { (PKw,SKw) | w in dictionary}

- If the dictionary is small, (PK,SK) = { (PK_w,SK_w) | w in dictionary}
- To encrypt a keyword (or, in fact, a list of keywords), Enc_{PK}(w)= ⟨Enc_{PK1}(0), ..., Enc_{PKw}(1), ..., Enc_{PKn}(0)⟩

- If the dictionary is small, (PK,SK) = (PK_w,SK_w) | w in dictionary
- To encrypt a keyword (or, in fact, a list of keywords), Enc_{PK}(w)= <Enc_{PK1}(0), ..., Enc_{PKw}(1), ..., Enc_{PKn}(0)>
 - TestKeyGen(SK,w) = SKw

- If the dictionary is small, (PK,SK) = (PK_w,SK_w) | w in dictionary
- To encrypt a keyword (or, in fact, a list of keywords), Enc_{PK}(w)= ⟨Enc_{PK1}(0), ..., Enc_{PKw}(1), ..., Enc_{PKn}(0)⟩
 - TestKeyGen(SK,w) = SKw
 - Keys and ciphertexts proportional to the dictionary size

Derive (PKw, SKw) as keys in an IBE scheme for identity w

- Derive (PKw, SKw) as keys in an IBE scheme for identity w
 - (PK,SK) = (MPK,MSK) (master keys) for the IBE

- Derive (PKw,SKw) as keys in an IBE scheme for identity w
 - (PK,SK) = (MPK,MSK) (master keys) for the IBE
- To encrypt a keyword (or, in fact, a list of keywords), Enc_{PK}(w)= <IBEnc_{PK}(0;id=0), ..., IBEnc_{PK}(1;id=w), ..., IBEnc_{PK}(0;id=n)>

- Derive (PKw,SKw) as keys in an IBE scheme for identity w
 - (PK,SK) = (MPK,MSK) (master keys) for the IBE
- To encrypt a keyword (or, in fact, a list of keywords), Enc_{PK}(w)= <IBEnc_{PK}(0;id=0), ..., IBEnc_{PK}(1;id=w), ..., IBEnc_{PK}(0;id=n)>
 - TestKeyGen(SK,w) = SKw, the secret-key for id=w

- Derive (PKw, SKw) as keys in an IBE scheme for identity w
 - (PK,SK) = (MPK,MSK) (master keys) for the IBE
- To encrypt a keyword (or, in fact, a list of keywords), Enc_{PK}(w)= <IBEnc_{PK}(0;id=0), ..., IBEnc_{PK}(1;id=w), ..., IBEnc_{PK}(0;id=n)>
 - TestKeyGen(SK,w) = SKw, the secret-key for id=w
- Compact keys, but ciphertext is still long

Suppose, to encrypt a keyword Encpk(w)= IBEncpk(1;id=w)

- Suppose, to encrypt a keyword Encpk(w)= IBEncpk(1;id=w)
 - Secure?

- Suppose, to encrypt a keyword Encpk(w)= IBEncpk(1;id=w)
 - Secure?
- IBE ciphertexts may reveal id (can have the id in the clear)

- Suppose, to encrypt a keyword Encpk(w)= IBEncpk(1;id=w)
 - Secure?
- IBE ciphertexts may reveal id (can have the id in the clear)
- Anonymous IBE

- Suppose, to encrypt a keyword Encpk(w)= IBEncpk(1;id=w)
 - Secure?
- IBE ciphertexts may reveal id (can have the id in the clear)
- Anonymous IBE
 - @ Ciphertext does not reveal id used, unless has key for that id

- Suppose, to encrypt a keyword Encpk(w)= IBEncpk(1;id=w)
 - Secure?
- IBE ciphertexts may reveal id (can have the id in the clear)
- Anonymous IBE
 - Ciphertext does not reveal id used, unless has key for that id
 - cf. Anonymous (or key-private) encryption: ciphertext does not reveal the PK used for encryption (unless SK known)

- Suppose, to encrypt a keyword Encpk(w)= IBEncpk(1;id=w)
 - Secure?
- IBE ciphertexts may reveal id (can have the id in the clear)
- Anonymous IBE
 - Ciphertext does not reveal id used, unless has key for that id
 - cf. Anonymous (or key-private) encryption: ciphertext does not reveal the PK used for encryption (unless SK known)
- Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id's key (except that it reveals nothing about the correct plaintext)

© Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id's key (except that it reveals nothing about the correct plaintext)

- Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id's key (except that it reveals nothing about the correct plaintext)
- To encrypt a keyword, Enc_{PK}(w)= (IBEnc_{PK}(r;id=w),r) for a random message r (|r|=k)

- Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id's key (except that it reveals nothing about the correct plaintext)
- To encrypt a keyword, Enc_{PK}(w)= (IBEnc_{PK}(r;id=w),r) for a random message r (|r|=k)
 - If decrypting IBEnc_{PK}(r;id=w), for a <u>random</u> r, using a wrong id's key gives r with significant probability, then breaks IBE security

PEKS from Anonymous IBE

- Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id's key (except that it reveals nothing about the correct plaintext)
- To encrypt a keyword, Enc_{PK}(w)= (IBEnc_{PK}(r;id=w),r) for a random message r (|r|=k)
 - If decrypting IBEnc_{PK}(r;id=w), for a <u>random</u> r, using a wrong id's key gives r with significant probability, then breaks IBE security
 - @ Breaking IBE's security: give out r_0, r_1 ; decrypt challenge using the wrong id's key; probability of getting r_0 when encryption is of r_1 is 2^{-k} , but is significant when it is of r_0

PEKS from Anonymous IBE

- Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id's key (except that it reveals nothing about the correct plaintext)
- To encrypt a keyword, Enc_{PK}(w)= (IBEnc_{PK}(r;id=w),r) for a random message r (|r|=k)
 - If decrypting IBEnc_{PK}(r;id=w), for a <u>random</u> r, using a wrong id's key gives r with significant probability, then breaks IBE security
 - @ Breaking IBE's security: give out r_0, r_1 ; decrypt challenge using the wrong id's key; probability of getting r_0 when encryption is of r_1 is 2^{-k} , but is significant when it is of r_0
 - Or add such "decryption recognition" directly to Anonymous IBE

Test for properties of encrypted attributes

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1
 - Test_{Tp}(C) = P(a), for a function P (e.g. P(a,m)=m if P'(a)=1, else \perp)

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1
 - Test_{Tp}(C) = P(a), for a function P (e.g. P(a,m)=m if P'(a)=1, else \perp)
- P from a certain predicate family will be supported

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1
 - Test_{Tp}(C) = P(a), for a function P (e.g. P(a,m)=m if P'(a)=1, else \perp)
- P from a certain predicate family will be supported
 - e.g. P that checks for equality (a=w?) (i.e., PEKS), or for range (a∈[r,s]?) or membership in a list (a∈S?)

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1
 - Test_{Tp}(C) = P(a), for a function P (e.g. P(a,m)=m if P'(a)=1, else \perp)
- P from a certain predicate family will be supported
 - e.g. P that checks for equality (a=w?) (i.e., PEKS), or for range (a∈[r,s]?) or membership in a list (a∈S?)
- Trivial solution, when the predicate family is small

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1
 - Test_{Tp}(C) = P(a), for a function P (e.g. P(a,m)=m if P'(a)=1, else \perp)
- P from a certain predicate family will be supported
 - e.g. P that checks for equality (a=w?) (i.e., PEKS), or for range (a∈[r,s]?) or membership in a list (a∈S?)
- Trivial solution, when the predicate family is small
 - @ $(PK,SK)=\{(PK_P,SK_P) \mid P \text{ in the predicate family}\}$. Ciphertext has $Enc_{PK_P}(P(a))$ for each P.

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1
 - Test_{Tp}(C) = P(a), for a function P (e.g. P(a,m)=m if P'(a)=1, else \perp)
- P from a certain predicate family will be supported
 - e.g. P that checks for equality (a=w?) (i.e., PEKS), or for range (a∈[r,s]?) or membership in a list (a∈S?)
- Trivial solution, when the predicate family is small
 - @ $(PK,SK)=\{(PK_P,SK_P) \mid P \text{ in the predicate family}\}$. Ciphertext has $Enc_{PK_P}(P(a))$ for each P.
 - Can support functions instead of predicates

- Test for properties of encrypted attributes
 - For C←Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1
 - Test_{Tp}(C) = P(a), for a function P (e.g. P(a,m)=m if P'(a)=1, else \perp)
- P from a certain predicate family will be supported
 - e.g. P that checks for equality (a=w?) (i.e., PEKS), or for range (a∈[r,s]?) or membership in a list (a∈S?)
- Trivial solution, when the predicate family is small
 - @ $(PK,SK)=\{(PK_P,SK_P) \mid P \text{ in the predicate family}\}$. Ciphertext has $Enc_{PK_P}(P(a))$ for each P.
 - Can support functions instead of predicates
 - e.g. Can attach a message to be revealed if Test positive

- Test for properties of encrypted attributes
 - The For C ← Enc_{PK}(a), we require that boolean Test_{Tp}(C)=1 iff P(a)=1
 - Test_{Tp}(C) = P(a), for a function P (e.g. P(a,m)=m if P'(a)=1, else ⊥)
- P from a certain predicate family will be supported
 - e.g. P that checks for equality (a=w?) (i.e., PEKS), or for range (a∈[r,s]?) or membership in a list (a∈S?)
- Trivial solution, when the predicate family is small
 - @ $(PK,SK)=\{(PK_P,SK_P) \mid P \text{ in the predicate family}\}$. Ciphertext has $Enc_{PK_P}(P(a))$ for each P.
 - Can support functions instead of predicates
 - e.g. Can attach a message to be revealed if Test positive
 - Can use IBE to shorten keys. Ciphertext still too long.

© Comparison predicates (given Enc(a), for a∈[1,n], check if a ≥ q)

- © Comparison predicates (given Enc(a), for a∈[1,n], check if a ≥ q)
- Can use a "set-hiding" broadcast encryption for intervals

- © Comparison predicates (given Enc(a), for a∈[1,n], check if a ≥ q)
- Can use a "set-hiding" broadcast encryption for intervals
 - Will see in next lecture

- © Comparison predicates (given Enc(a), for a∈[1,n], check if a ≥ q)
- Can use a "set-hiding" broadcast encryption for intervals
 - Will see in next lecture
 - Idea: create ciphertexts that can be decrypted by keys in a range. To encrypt a, encrypt a random message addressed to the range [a,n]. Test key is the key for index q.

- © Comparison predicates (given Enc(a), for a∈[1,n], check if a ≥ q)
- Can use a "set-hiding" broadcast encryption for intervals
 - Will see in next lecture
 - Idea: create ciphertexts that can be decrypted by keys in a range. To encrypt a, encrypt a random message addressed to the range [a,n]. Test key is the key for index q.
 - Extends to range checking

 \circ Predicates of the form $(\phi_1(a_1) \text{ AND AND } \phi_n(a_m))$

- \circ Predicates of the form $(\phi_1(a_1) \text{ AND AND } \phi_n(a_m))$
 - Should not reveal which clauses were not satisfied, if any

- \odot Predicates of the form $(\phi_1(a_1) \text{ AND } \text{ AND } \phi_n(a_m))$
 - Should not reveal which clauses were not satisfied, if any
 - e.g. in [BW07] ϕ_i can be equality check (a=w?), comparison (a ≥ q?), range check (a∈[r,s]?) or membership in a list (a∈S?)

- Predicates of the form $(\phi_1(a_1) \text{ AND } \text{ AND } \phi_n(a_m))$
 - Should not reveal which clauses were not satisfied, if any
 - e.g. in [BW07] φ_i can be equality check (a=w?), comparison
 (a ≥ q?), range check (a∈[r,s]?) or membership in a list (a∈S?)
 - Tool: Hidden Vector matching, in which each ϕ_i is an equality check or a don't care

- \odot Predicates of the form $(\phi_1(a_1) \text{ AND } \text{ AND } \phi_n(a_m))$
 - Should not reveal which clauses were not satisfied, if any
 - e.g. in [BW07] φ_i can be equality check (a=w?), comparison
 (a ≥ q?), range check (a∈[r,s]?) or membership in a list (a∈S?)
 - Tool: Hidden Vector matching, in which each ϕ_i is an equality check or a don't care
 - @ e.g. Using hidden vector matching to implement a conjunctive comparison predicate: for all i, $a_i \ge r_i$

- \odot Predicates of the form $(\phi_1(a_1) \text{ AND } \text{ AND } \phi_n(a_m))$
 - Should not reveal which clauses were not satisfied, if any
 - e.g. in [BW07] φ_i can be equality check (a=w?), comparison
 (a ≥ q?), range check (a∈[r,s]?) or membership in a list (a∈S?)
 - Tool: Hidden Vector matching, in which each ϕ_i is an equality check or a don't care
 - @ e.g. Using hidden vector matching to implement a conjunctive comparison predicate: for all i, $a_i \ge r_i$
 - The Check if binary [X^a_{ij}] defined as X^a_{ij} = 1 iff j ≤ a_i, matches with [T^r_{ij}] defined as T^r_{ij} = 1 if j ≤ r_i, and * otherwise

Using hidden vector matching for set membership: a ∈ S ⊆ [1,n]?

- Using hidden vector matching for set membership: a∈S⊆[1,n]?
 - Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities

- Using hidden vector matching for set membership: $a \in S \subseteq [1,n]$?
 - Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities
 - The Check if binary vector X^a defined as $X^a_i = 1$ iff a=i, matches with T^S defined as $T^S_i = 0$ if $i \notin S$, and * otherwise

- Using hidden vector matching for set membership: $a \in S \subseteq [1,n]$?
 - Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities
 - The Check if binary vector X^a defined as $X^a_i = 1$ iff a=i, matches with T^S defined as $T^S_i = 0$ if $i \notin S$, and * otherwise
 - Key and ciphertext proportional to size of universe [1,n]

- Using hidden vector matching for set membership: $a \in S \subseteq [1,n]$?
 - Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities
 - The Check if binary vector X^a defined as $X^a_i = 1$ iff a=i, matches with T^S defined as $T^S_i = 0$ if i∉S, and * otherwise
 - Key and ciphertext proportional to size of universe [1,n]
 - Can extend to conjunction with other predicates

- Using hidden vector matching for set membership: a ∈ S ⊆ [1,n]?
 - Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities
 - The Check if binary vector X^a defined as $X^a_i = 1$ iff a=i, matches with T^S defined as $T^S_i = 0$ if i∉S, and * otherwise
 - Key and ciphertext proportional to size of universe [1,n]
 - Can extend to conjunction with other predicates
- More efficient set membership?

Bloom Filters

Bloom Filters

Elements x in the universe mapped to n-bit binary vectors h(x)

- Elements x in the universe mapped to n-bit binary vectors h(x)
- \circ A subset S is represented by H(S) = $\vee_{x \in S} h(x)$ (i.e., bit-wise OR)

- Elements x in the universe mapped to n-bit binary vectors h(x)
- A subset S is represented by H(S) = $\forall_{x∈S}$ h(x) (i.e., bit-wise OR)
- Given H(S), to check if x∈S, for each coordinate i s.t h(x)_i = 1, check that H(S)_i = 1

- Elements x in the universe mapped to n-bit binary vectors h(x)
- A subset S is represented by H(S) = $\forall_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given H(S), to check if $x \in S$, for each coordinate i s.t h(x)_i = 1, check that H(S)_i = 1
 - No false negatives

- Elements x in the universe mapped to n-bit binary vectors h(x)
- A subset S is represented by H(S) = $\forall_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given H(S), to check if $x \in S$, for each coordinate i s.t $h(x)_i = 1$, check that H(S)_i = 1
 - No false negatives
 - False positive if all i s.t. $h(x)_i = 1$ are covered by h(x') for a set of other values x'

- Elements x in the universe mapped to n-bit binary vectors h(x)
- A subset S is represented by H(S) = $\forall_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given H(S), to check if x∈S, for each coordinate i s.t h(x)_i = 1, check that H(S)_i = 1
 - No false negatives
 - False positive if all i s.t. $h(x)_i = 1$ are covered by h(x') for a set of other values x'
 - If h is a <u>random</u> function with outputs of <u>weight</u> d, can bound the false positive rate in terms of n, d and |S|

- Elements x in the universe mapped to n-bit binary vectors h(x)
- A subset S is represented by H(S) = $\forall_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given H(S), to check if x∈S, for each coordinate i s.t h(x)_i = 1, check that H(S)_i = 1
 - No false negatives
 - False positive if all i s.t. $h(x)_i = 1$ are covered by h(x') for a set of other values x'
 - If h is a <u>random</u> function with outputs of <u>weight</u> d, can bound the false positive rate in terms of n, d and |S|
 - Or h a <u>CRHF</u> with range being indices of a "<u>cover free set</u> system"

 \odot To check $a \in S \subseteq U$, where the universe U can be large

- \odot To check $a \in S \subseteq U$, where the universe U can be large
 - © Checking if $a \in S$ amounts to checking if the vector h(a) is covered by H(S)

- \odot To check $a \in S \subseteq U$, where the universe U can be large
 - © Checking if a ∈ S amounts to checking if the vector h(a) is covered by H(S)
 - Implemented using hidden vector matching

- \odot To check $a \in S \subseteq U$, where the universe U can be large
 - Checking if $a \in S$ amounts to checking if the vector h(a) is covered by H(S)
 - Implemented using hidden vector matching
 - \odot S encrypted: T^a defined as: $T^a_i = 1$ if $h(a)_i = 1$, else *

- \odot To check $a \in S \subseteq U$, where the universe U can be large
 - © Checking if $a \in S$ amounts to checking if the vector h(a) is covered by H(S)
 - Implemented using hidden vector matching
 - \odot S encrypted: T^a defined as: $T^a_i = 1$ if $h(a)_i = 1$, else *
 - a encrypted: T^S defined as: T^S_i= 0 if H(S)=0, else *

Attribute a is a vector. Predicate P_v is also specified by a vector $v: P_v(a) = 1$ iff $\langle v, a \rangle = 0$

- Attribute a is a vector. Predicate P_v is also specified by a vector $v: P_v(a) = 1$ iff $\langle v, a \rangle = 0$
 - \circ Or function $P_v: P_v(a,m)=m$ iff $\langle v,a \rangle =0$, else \perp

- Attribute a is a vector. Predicate P_v is also specified by a vector $v: P_v(a) = 1$ iff $\langle v, a \rangle = 0$
 - Or function $P_v: P_v(a,m)=m$ iff $\langle v,a \rangle =0$, else \perp
- General enough to capture several applications

- Attribute a is a vector. Predicate P_v is also specified by a vector $v: P_v(a) = 1$ iff $\langle v, a \rangle = 0$
 - Or function $P_v: P_v(a,m)=m$ iff $\langle v,a \rangle =0$, else \perp
- General enough to capture several applications
 - @ e.g. Anonymous IBE from Inner-Product PE (with attached messages) over attributes in \mathbb{Z}_N x \mathbb{Z}_N

- Attribute a is a vector. Predicate P_v is also specified by a vector $v: P_v(a) = 1$ iff $\langle v, a \rangle = 0$
 - \odot Or function $P_v: P_v(a,m)=m$ iff $\langle v,a \rangle =0$, else \perp
- General enough to capture several applications
 - e.g. Anonymous IBE from Inner-Product PE (with attached messages) over attributes in $\mathbb{Z}_N \times \mathbb{Z}_N$
 - For encrypting to identity id use attribute $a_{id} = (1,id)$. SK_{id} is the test key for predicate with $v_{id} = (-id,1)$. Anonymity: attribute remains hidden if no matching SK given

Can be used to get Hidden Vector matching predicate

- Can be used to get Hidden Vector matching predicate
 - Map a given pattern vector of length m to a vector v in (ℤ_N)^{2m} by mapping * to (0,0) and a to (1,a).

- Can be used to get Hidden Vector matching predicate
 - Map a given pattern vector of length m to a vector v in (ℤ_N)^{2m} by mapping * to (0,0) and a to (1,a).
 - Map the hidden attribute vector u to a vector a by mapping each co-ordinate u_i to (-r_i.u_i, r_i), for random r_i

- Can be used to get Hidden Vector matching predicate
 - Map a given pattern vector of length m to a vector v in (ℤ_N)^{2m} by mapping * to (0,0) and a to (1,a).
 - Map the hidden attribute vector u to a vector a by mapping each co-ordinate u_i to (-r_i.u_i, r_i), for random r_i
 - If pattern matches u, then <v,a>=0

- Can be used to get Hidden Vector matching predicate
 - Map a given pattern vector of length m to a vector v in (ℤ_N)^{2m} by mapping * to (0,0) and a to (1,a).
 - Map the hidden attribute vector u to a vector a by mapping each co-ordinate u_i to (-r_i.u_i, r_i), for random r_i
 - If pattern matches u, then <v,a>=0
 - Random r_i to avoid cancelations while summing, so that if pattern does not match, w.h.p <v,a>≠0

- Can be used to get Hidden Vector matching predicate
 - Map a given pattern vector of length m to a vector v in (ℤ_N)^{2m} by mapping * to (0,0) and a to (1,a).
 - Map the hidden attribute vector u to a vector a by mapping each co-ordinate u_i to (-r_i.u_i, r_i), for random r_i
 - If pattern matches u, then <v,a>=0
 - Random r_i to avoid cancelations while summing, so that if pattern does not match, w.h.p <v,a>≠0
 - Can support * in both the pattern and the hidden vector

Other predicates implied:

- Other predicates implied:
 - Polynomials: P_v can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector <1,a,a²,...,a^d>) at which P_v is evaluated, or vice versa

- Other predicates implied:
 - Polynomials: P_v can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector <1,a,a²,...,a^d>) at which P_v is evaluated, or vice versa
 - \odot Disjunction ($a_1=v_1$) OR ($a_2=v_2$): polynomial (a_1-v_1) (a_2-v_2)

- Other predicates implied:
 - Polynomials: P_v can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector <1,a,a²,...,a^d>) at which P_v is evaluated, or vice versa
 - \odot Disjunction ($a_1=v_1$) OR ($a_2=v_2$): polynomial (a_1-v_1) (a_2-v_2)
 - © Conjunction $(a_1=v_1)$ AND $(a_2=v_2)$: $r_1(a_1-v_1) + r_2(a_2-v_2)$

- Other predicates implied:
 - Polynomials: P_v can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector <1,a,a²,...,a^d>) at which P_v is evaluated, or vice versa
 - \odot Disjunction ($a_1=v_1$) OR ($a_2=v_2$): polynomial (a_1-v_1) (a_2-v_2)
 - © Conjunction $(a_1=v_1)$ AND $(a_2=v_2)$: $r_1(a_1-v_1) + r_2(a_2-v_2)$

- Other predicates implied:
 - Polynomials: P_v can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector <1,a,a²,...,a^d>) at which P_v is evaluated, or vice versa
 - \odot Disjunction ($a_1=v_1$) OR ($a_2=v_2$): polynomial (a_1-v_1) (a_2-v_2)
 - © Conjunction $(a_1=v_1)$ AND $(a_2=v_2)$: $r_1(a_1-v_1) + r_2(a_2-v_2)$
 - © Exact threshold: for A, $V \subseteq [1,n]$, $P_{V,t}(A) = 1$ iff $|A \cap V| = t$
 - Map V to v as v₀=1 and for i=1 to n, v_i = 1 iff i∈V. Map A to a vector a where a₀ = −t, for i=1 to n, a_i = 1 iff i∈A.

Constructions using bilinear pairings known [KSW08,LOSTW10,OT10]

- Constructions using bilinear pairings known [KSW08,LOSTW10,OT10]
 - Supports inner product predicates (and more)

- Constructions using bilinear pairings known [KSW08,LOSTW10,OT10]
 - Supports inner product predicates (and more)
 - Can base security on Decision Linear assumption

- Constructions using bilinear pairings known [KSW08,LOSTW10,OT10]
 - Supports inner product predicates (and more)
 - Can base security on Decision Linear assumption
 - Can get CCA security

Searching on Encrypted Data

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
 - From anonymous IBE

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
 - From anonymous IBE
- Predicate/Functional encryption

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
 - From anonymous IBE
- Predicate/Functional encryption
 - To check if encrypted attributes satisfy a given predicate

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
 - From anonymous IBE
- Predicate/Functional encryption
 - To check if encrypted attributes satisfy a given predicate
 - Hidden vector matching, inner-product predicate, ...