Hash Functions in Action

Hash Functions in Action

Lecture 11

Main syntactic feature: Variable input length to fixed length output

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow #: Combinatorial Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow \mathcal{H} : Combinatorial Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow \mathcal{H} : Combinatorial Hash Functions
 - \bullet A \rightarrow x; h \leftarrow £; A(h) \rightarrow y: Universal One-Way Hash Functions
 - \bullet h $\leftarrow \mathcal{H}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow \mathcal{H} : Combinatorial Hash Functions

 - \bullet h $\leftarrow \mathcal{H}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions
 - \bullet h $\leftarrow \mathcal{H}$; Ah \rightarrow (x,y): Weak Collision-Resistant Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow \mathcal{H} : Combinatorial Hash Functions
 - \bullet A \rightarrow x; h \leftarrow £; A(h) \rightarrow y: Universal One-Way Hash Functions
 - \bullet h $\leftarrow \mathcal{U}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions
 - \bullet h $\leftarrow \mathcal{H}$; Ah \rightarrow (x,y): Weak Collision-Resistant Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow \mathcal{H} : Combinatorial Hash Functions
- $A \rightarrow X$; $A \leftarrow \mathcal{H}$; $A(h) \rightarrow Y$: Universal One-Way Hash Functions
 - \bullet h $\leftarrow \mathcal{U}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions
 - \bullet h $\leftarrow \mathcal{H}$; Ah \rightarrow (x,y): Weak Collision-Resistant Hash Functions
 - Also often required: "unpredictability"

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow \mathcal{H} : Combinatorial Hash Functions
- $A \rightarrow X$; $A \leftarrow \mathcal{H}$; $A(h) \rightarrow Y$: Universal One-Way Hash Functions
 - \bullet h $\leftarrow \mathcal{U}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions
- Also often required: "unpredictability"
- So far: 2-UHF (chop(ax+b)) and UOWHF (from OWP & 2-UHF)

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow \mathcal{H} : Combinatorial Hash Functions
- $A \rightarrow X$; $A \leftarrow \mathcal{H}$; $A(h) \rightarrow Y$: Universal One-Way Hash Functions
 - \bullet h $\leftarrow \mathcal{U}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions
 - \bullet h $\leftarrow \mathcal{H}$; Ah \rightarrow (x,y): Weak Collision-Resistant Hash Functions
- Also often required: "unpredictability"
- So far: 2-UHF (chop(ax+b)) and UOWHF (from OWP & 2-UHF)
- Today: CRHF construction. Domain Extension. Applications of hash functions

Collision-Resistant HF: h← \mathcal{H} ; A(h)→(x,y). h(x)=h(y) w.n.p

- Collision-Resistant HF: h← \mathcal{H} ; A(h)→(x,y). h(x)=h(y) w.n.p
- Not known to be possible from OWF/OWP alone

- Collision-Resistant HF: h←#; A(h)→(x,y). h(x)=h(y) w.n.p
- Not known to be possible from OWF/OWP alone
 - "Impossibility" (blackbox-separation) known

- Collision-Resistant HF: h←#; A(h)→(x,y). h(x)=h(y) w.n.p
- Not known to be possible from OWF/OWP alone
 - "Impossibility" (blackbox-separation) known
- Possible from "claw-free pair of permutations"

- Collision-Resistant HF: h← \mathcal{H} ; A(h)→(x,y). h(x)=h(y) w.n.p
- Not known to be possible from OWF/OWP alone
 - "Impossibility" (blackbox-separation) known
- Possible from "claw-free pair of permutations"
 - In turn from hardness of discrete-log, factoring, and from lattice-based assumptions

- Collision-Resistant HF: h←#; A(h)→(x,y). h(x)=h(y) w.n.p
- Not known to be possible from OWF/OWP alone
 - "Impossibility" (blackbox-separation) known
- Possible from "claw-free pair of permutations"
 - In turn from hardness of discrete-log, factoring, and from lattice-based assumptions
- Also from "homomorphic one-way permutations", and from homomorphic encryptions

- Collision-Resistant HF: h←#; A(h)→(x,y). h(x)=h(y) w.n.p
- Not known to be possible from OWF/OWP alone
 - "Impossibility" (blackbox-separation) known
- Possible from "claw-free pair of permutations"
 - In turn from hardness of discrete-log, factoring, and from lattice-based assumptions
- Also from "homomorphic one-way permutations", and from homomorphic encryptions
 - All candidates use mathematical structures that are considered computationally expensive

CRHF from discrete log assumption:

- CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime)

- © CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime)

- CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime)

- CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime)

 - - Then $(x_1,x_2) \neq (y_1,y_2) \Rightarrow x_1 \neq y_1 \text{ and } x_2 \neq y_2 \text{ [Why?]}$

- CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime)

 - - Then $(x_1,x_2) \neq (y_1,y_2) \Rightarrow x_1 \neq y_1$ and $x_2 \neq y_2$ [Why?]
 - Then $g_2 = g_1^{(x_1-y_1)/(x_2-y_2)}$ (exponents in \mathbb{Z}_q^*)

- CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime)

 - - Then $(x_1,x_2) \neq (y_1,y_2) \Rightarrow x_1 \neq y_1$ and $x_2 \neq y_2$ [Why?]
 - Then $g_2 = g_1^{(x_1-y_1)/(x_2-y_2)}$ (exponents in \mathbb{Z}_q^*)
 - i.e., for some base g₁, can compute DL of g₂ (a random non-unit element). Breaks DL!

- CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime)

 - - Then $(x_1,x_2) \neq (y_1,y_2) \Rightarrow x_1 \neq y_1 \text{ and } x_2 \neq y_2 \text{ [Why?]}$
 - Then $g_2 = g_1^{(x_1-y_1)/(x_2-y_2)}$ (exponents in \mathbb{Z}_q^*)
 - i.e., for some base g₁, can compute DL of g₂ (a random non-unit element). Breaks DL!
 - Hash halves the size of the input

Full-domain hash: hash arbitrarily long strings to a single hash value

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain

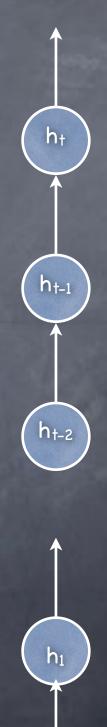
- Full-domain hash: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain
- Idea 1: by repeated application

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain
- Idea 1: by repeated application
 - If one-bit compression, to hash n-bit string, O(n) (independent) invocations of the basic hash function

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain
- Idea 1: by repeated application
 - If one-bit compression, to hash n-bit string, O(n) (independent) invocations of the basic hash function

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain
- Idea 1: by repeated application
 - If one-bit compression, to hash n-bit string, O(n) (independent) invocations of the basic hash function
 - Independent invocations: hash description depends on n (linearly)

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain
- Idea 1: by repeated application
 - If one-bit compression, to hash n-bit string, O(n) (independent) invocations of the basic hash function
 - Independent invocations: hash description depends on n (linearly)

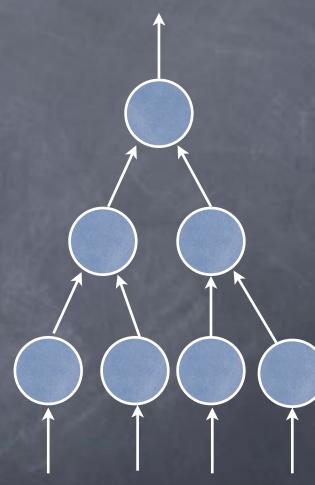


© Can compose hash functions more efficiently, using a "Merkle tree"

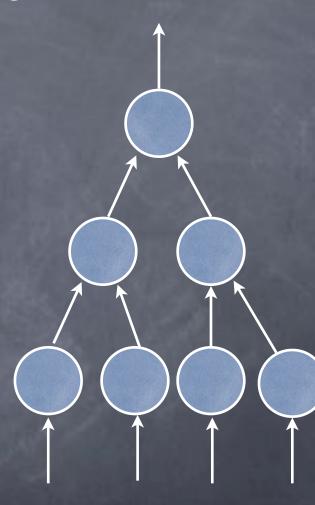
- Can compose hash functions more efficiently, using a "Merkle tree"
 - Suppose basic hash from {0,1}^k to {0,1}^{k/2}.
 A hash function from {0,1}^{4k} to {0,1}^{k/2}
 using a tree of depth 3

- Can compose hash functions more efficiently, using a "Merkle tree"
 - Suppose basic hash from $\{0,1\}^k$ to $\{0,1\}^{k/2}$.

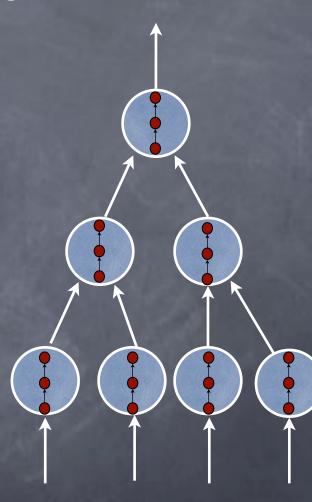
 A hash function from $\{0,1\}^{4k}$ to $\{0,1\}^{k/2}$ using a tree of depth 3



- © Can compose hash functions more efficiently, using a "Merkle tree"
 - Suppose basic hash from {0,1}^k to {0,1}^{k/2}.
 A hash function from {0,1}^{4k} to {0,1}^{k/2}
 using a tree of depth 3
 - If basic hash from {0,1}^k to {0,1}^{k-1}, first construct new basic hash from {0,1}^k to {0,1}^{k/2}, by repeated hashing



- © Can compose hash functions more efficiently, using a "Merkle tree"
 - Suppose basic hash from {0,1}^k to {0,1}^{k/2}.
 A hash function from {0,1}^{4k} to {0,1}^{k/2}
 using a tree of depth 3
 - If basic hash from {0,1}^k to {0,1}^{k-1}, first construct new basic hash from {0,1}^k to {0,1}^{k/2}, by repeated hashing

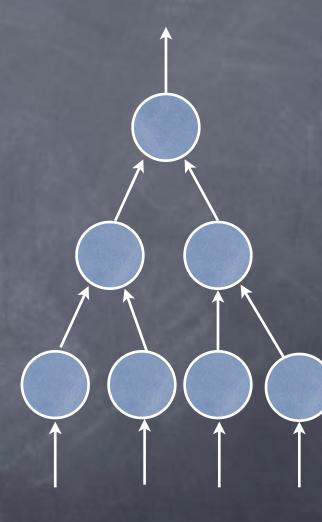


- © Can compose hash functions more efficiently, using a "Merkle tree"
 - Suppose basic hash from {0,1}^k to {0,1}^{k/2}.
 A hash function from {0,1}^{4k} to {0,1}^{k/2}
 using a tree of depth 3
 - If basic hash from {0,1}^k to {0,1}^{k-1}, first construct new basic hash from {0,1}^k to {0,1}^{k/2}, by repeated hashing
 - n ng I/O sizes

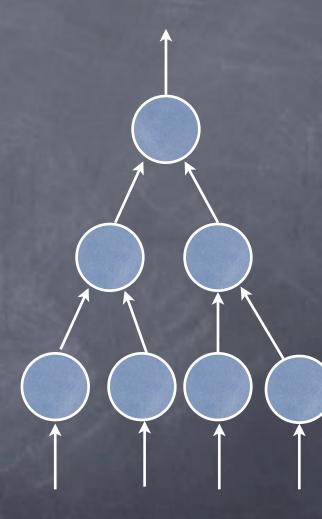
Any tree can be used, with consistent I/O sizes

- © Can compose hash functions more efficiently, using a "Merkle tree"
 - Suppose basic hash from {0,1}^k to {0,1}^{k/2}.
 A hash function from {0,1}^{4k} to {0,1}^{k/2}
 using a tree of depth 3
 - If basic hash from {0,1}^k to {0,1}^{k-1}, first construct new basic hash from {0,1}^k to {0,1}^{k/2}, by repeated hashing
- Any tree can be used, with consistent I/O sizes
- Independent hashes or same hash?

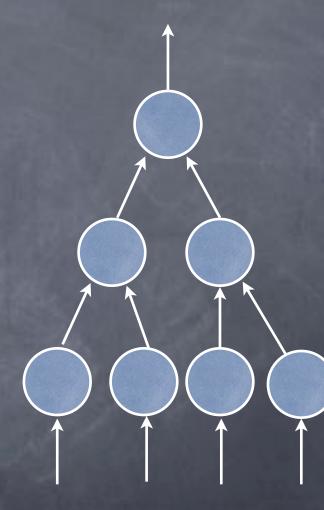
- © Can compose hash functions more efficiently, using a "Merkle tree"
 - Suppose basic hash from {0,1}^k to {0,1}^{k/2}.
 A hash function from {0,1}^{4k} to {0,1}^{k/2}
 using a tree of depth 3
 - If basic hash from {0,1}^k to {0,1}^{k-1}, first construct new basic hash from {0,1}^k to {0,1}^{k/2}, by repeated hashing
- Any tree can be used, with consistent I/O sizes
- Independent hashes or same hash?
 - Depends!



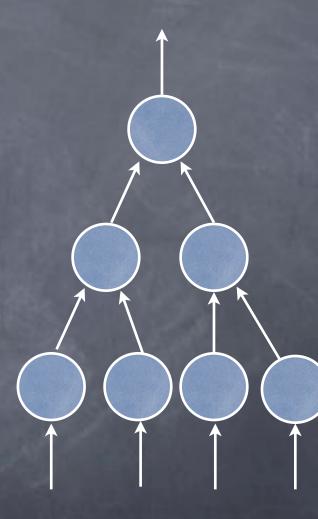
For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash



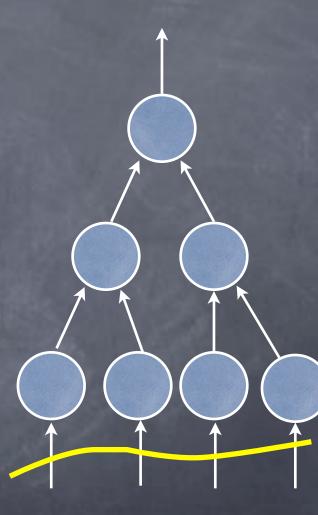
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- If a collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash



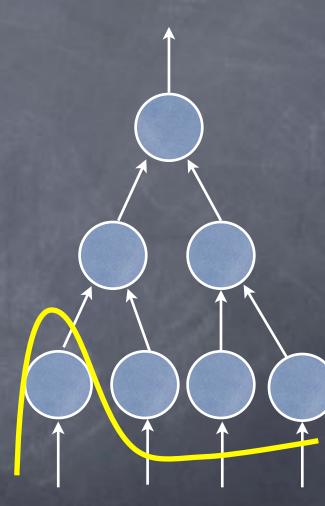
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



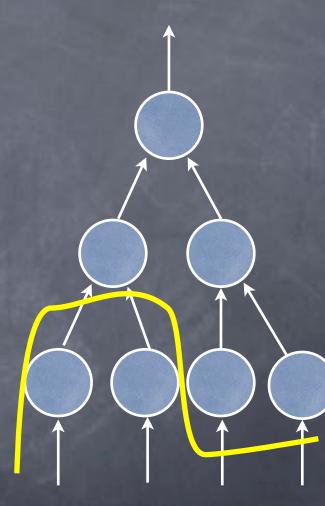
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



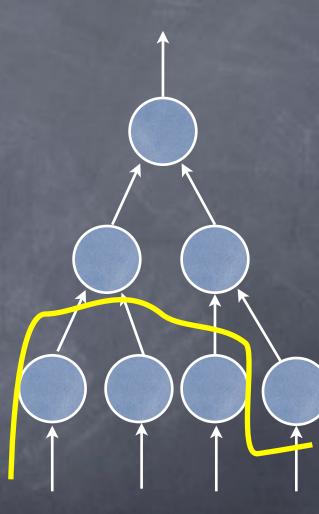
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



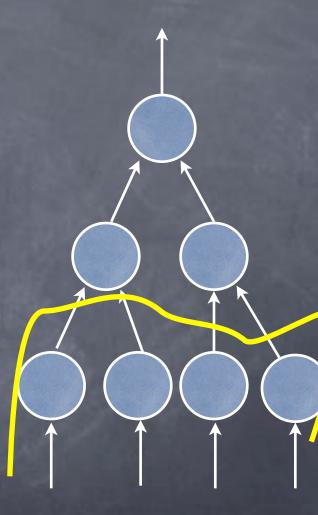
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



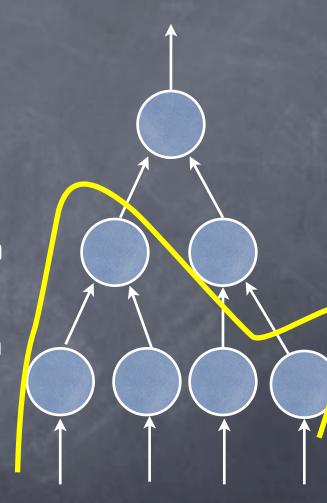
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



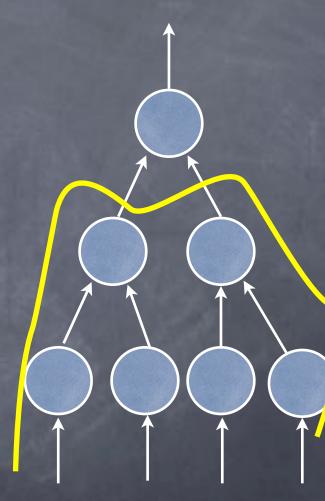
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



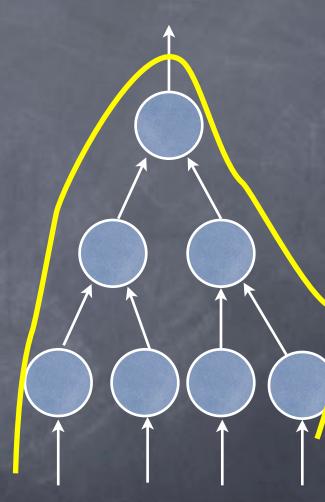
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- If a collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



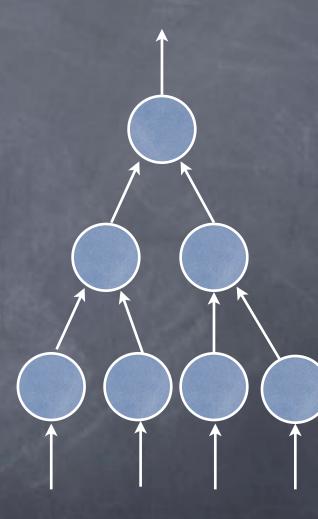
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- If a collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



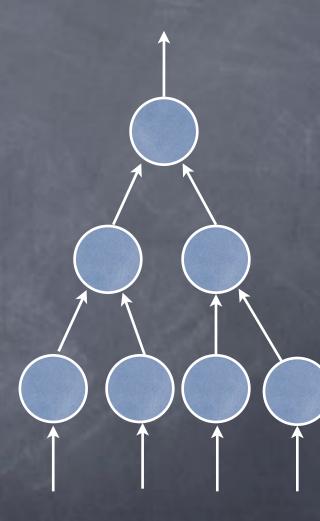
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The same collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



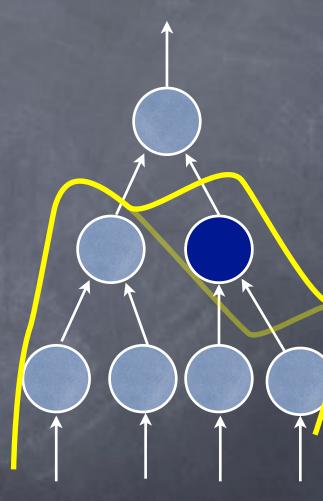
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top



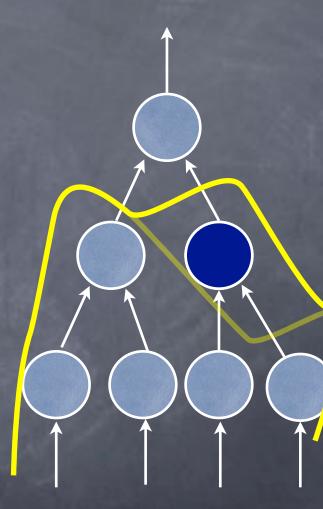
- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top
 - Collision at some step (different values on ith front, same on i+1st); gives a collision for basic hash

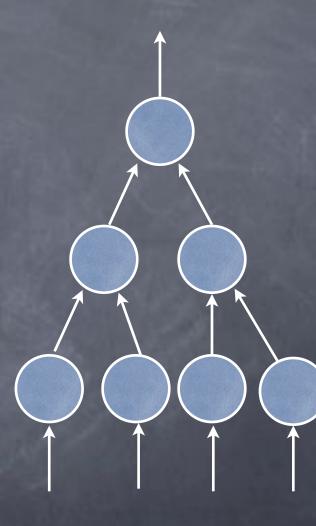


- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top
 - Collision at some step (different values on ith front, same on i+1st); gives a collision for basic hash

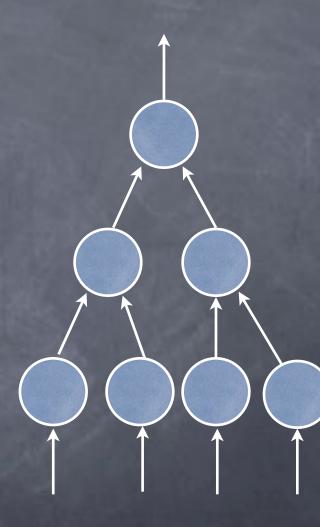


- For CRHF, same basic hash used through out the Merkle tree. Hash description same as for a single basic hash
- The some collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision ((x',y')) for basic hash
 - Consider moving a "frontline" from bottom to top
 - Collision at some step (different values on ith front, same on i+1st); gives a collision for basic hash
- \bullet A*(h): run A(h) to get (x₁...x_n), (y₁...y_n). Move frontline to find (x',y')

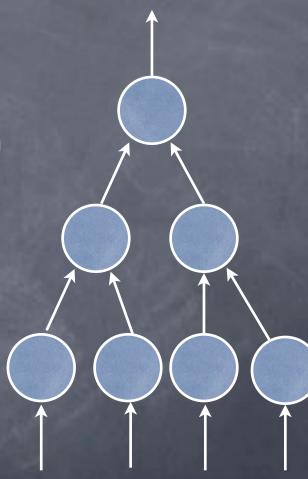




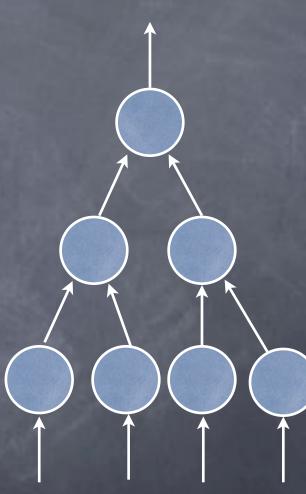
For UOWHF, can't use same basic hash throughout!



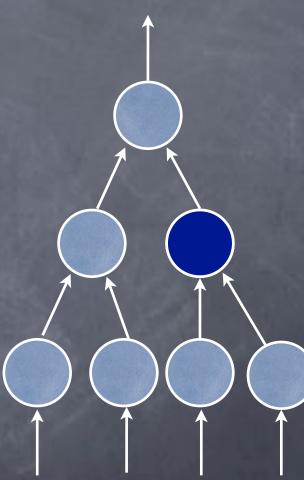
- For UOWHF, can't use same basic hash throughout!
- \bullet A* has to output an x' on getting (x₁...x_n) from A, before getting h



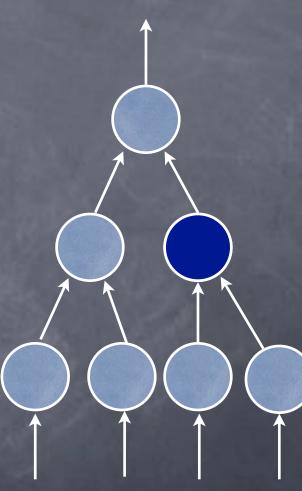
- For UOWHF, can't use same basic hash throughout!
- \bullet A* has to output an x' on getting (x₁...x_n) from A, before getting h
 - © Can guess a random node (i.e., random pair of frontlines) where collision occurs, but can't compute x' until h is fixed!



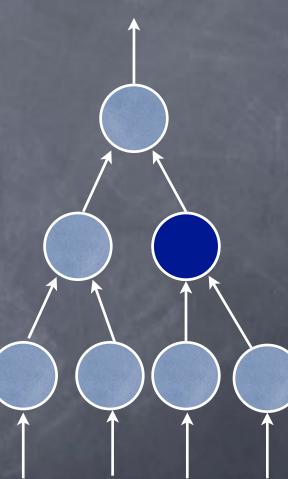
- For UOWHF, can't use same basic hash throughout!
- \bullet A* has to output an x' on getting (x₁...x_n) from A, before getting h
 - © Can guess a random node (i.e., random pair of frontlines) where collision occurs, but can't compute x' until h is fixed!



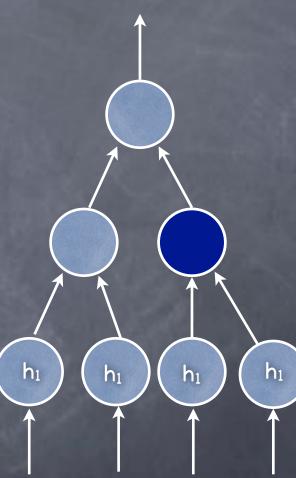
- For UOWHF, can't use same basic hash throughout!
- \bullet A* has to output an x' on getting (x₁...x_n) from A, before getting h
 - © Can guess a random node (i.e., random pair of frontlines) where collision occurs, but can't compute x' until h is fixed!
- Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)



- For UOWHF, can't use same basic hash throughout!
- \bullet A* has to output an x' on getting (x₁...x_n) from A, before getting h
 - Can guess a random node (i.e., random pair of frontlines) where collision occurs, but can't compute x' until h is fixed!
- Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)
 - To compute x': pick a random node (say at level i) pick h_j for levels below i, and from (x₁...x_n) compute input to the node; this be x'

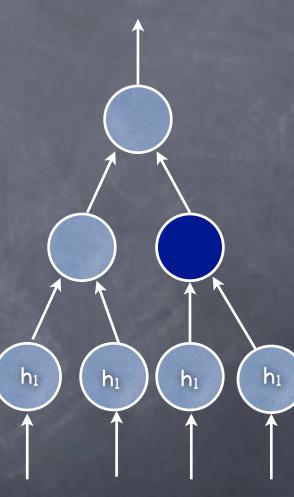


- For UOWHF, can't use same basic hash throughout!
- \bullet A* has to output an x' on getting (x₁...x_n) from A, before getting h
 - © Can guess a random node (i.e., random pair of frontlines) where collision occurs, but can't compute x' until h is fixed!
- Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)
 - To compute x': pick a random node (say at level i) pick h_j for levels below i, and from (x₁...x_n) compute input to the node; this be x'



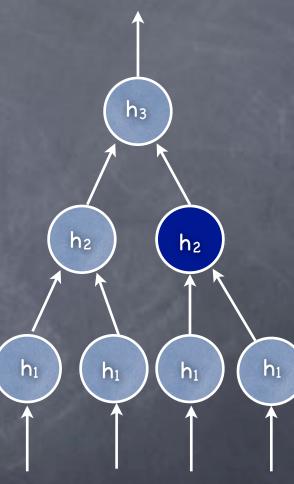
Domain Extension for UOWHF

- For UOWHF, can't use same basic hash throughout!
- \bullet A* has to output an x' on getting (x₁...x_n) from A, before getting h
 - Can guess a random node (i.e., random pair of frontlines) where collision occurs, but can't compute x' until h is fixed!
- Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)
 - To compute x': pick a random node (say at level i) pick h_j for levels below i, and from (x₁...x_n) compute input to the node; this be x'
 - On getting h, plug it in as h_i, pick h_j for remaining levels; get (y₁...y_n) and compute y'



Domain Extension for UOWHF

- For UOWHF, can't use same basic hash throughout!
- \bullet A* has to output an x' on getting (x₁...x_n) from A, before getting h
 - Can guess a random node (i.e., random pair of frontlines) where collision occurs, but can't compute x' until h is fixed!
- Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)
 - To compute x': pick a random node (say at level i) pick h_j for levels below i, and from (x₁...x_n) compute input to the node; this be x'
 - On getting h, plug it in as h_i, pick h_j for remaining levels; get (y₁...y_n) and compute y'



UOWHF has a weaker guarantee than CRHF

- UOWHF has a weaker guarantee than CRHF
- OWHF can be built based on OWF (we saw based on OWP), where as CRHF "needs stronger assumptions"

- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), where as CRHF "needs stronger assumptions"
 - But "usual" OWF candidates suffice for CRHF too (we saw construction based on discrete-log)

- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), where as CRHF "needs stronger assumptions"
 - But "usual" OWF candidates suffice for CRHF too (we saw construction based on discrete-log)
- Domain extension of CRHF is simpler, with no blow-up in the description size. For UOWHF description increases logarithmically in the input size

- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), where as CRHF "needs stronger assumptions"
 - But "usual" OWF candidates suffice for CRHF too (we saw construction based on discrete-log)
- Domain extension of CRHF is simpler, with no blow-up in the description size. For UOWHF description increases logarithmically in the input size
- OWHF theoretically important (based on simpler assumptions, good if paranoid), but CRHF can substitute for it

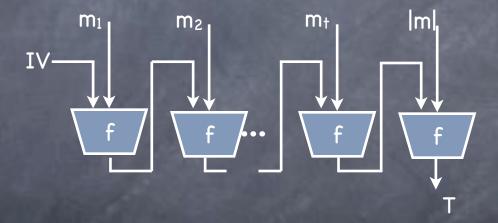
- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), where as CRHF "needs stronger assumptions"
 - But "usual" OWF candidates suffice for CRHF too (we saw construction based on discrete-log)
- Domain extension of CRHF is simpler, with no blow-up in the description size. For UOWHF description increases logarithmically in the input size
- UOWHF theoretically important (based on simpler assumptions, good if paranoid), but CRHF can substitute for it
- Current practice: much less paranoid; faith on efficient, ad hoc (and unkeyed) constructions (though increasingly under attack)

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

- A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)
- From a fixed input-length compression function

- A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)
- From a fixed input-length compression function
- Merkle-Damgård iterated hash function:

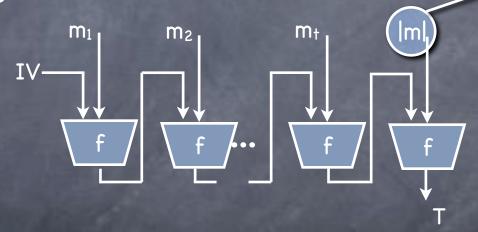
- A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)
- From a fixed input-length compression function
- Merkle-Damgård iterated hash function:



A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

From a fixed input-length compression function

Merkle-Damgård iterated hash function:



Collision resistance

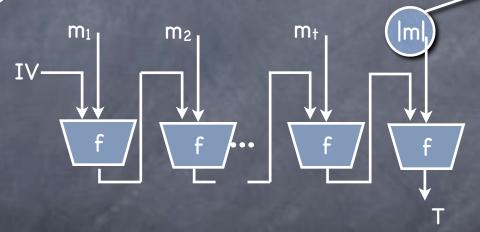
input-len

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Collision resistance

From a fixed input-length compression function

Merkle-Damgård iterated hash function:



If f collision resistant (not as "keyed" hash, but "concretely"), then so is the Merkle-Damgård iterated hash-function (for any IV)

Trivial (very inefficient) solution (to sign a single n bit message):

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri1)i=1..n

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1...n

r¹o	r ² 0	r ³ 0
r^{1}_{1}	r²1	r^3 1

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1..n
 - Signature for m₁...m_n be (rⁱ_{mi})_{i=1..n}

r¹o	r ² 0	r ³ 0
r^{l}_{1}	r²1	r^{3}_{1}

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1..n
 - Signature for m₁...m_n be (rⁱmi)_{i=1..n}

r¹o	r ² 0	r ³ 0
r¹1	r²1	r^{3}

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1...r

1	r¹o	r² ₀	r ³ 0
	r^{l}_{1}	r²1	r^{3}_{1}

- Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1...r

า	r¹o	r ² 0	r ³ 0
	r^{l}_{1}	r²1	r ³ 1

- Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m
- A much better solution, using 2-UHF:

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1...r

1	r¹o	r² ₀	r ³ 0
	r^{l}_{1}	r²1	r^3 1

- Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m
- A much better solution, using 2-UHF:
 - Onetime-MAC_h(M) = h(M), where h←½, and ½ is a 2-UHF

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1...n

1	r¹o	r² ₀	r ³ 0
	r^{l}_{1}	r²1	r^3 1

- Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m
- A much better solution, using 2-UHF:
 - Onetime-MAC_h(M) = h(M), where h←\$\mathfrak{H}\$, and \$\mathfrak{H}\$ is a 2-UHF
 - Seeing hash of one input gives no information on hash of another value

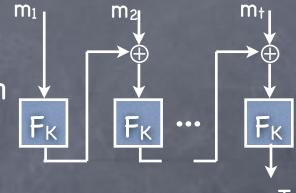
With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

CBC-MAC: Extends to any fixed length domain

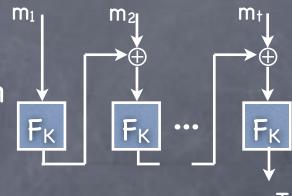


With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

CBC-MAC: Extends to any fixed length domain

Alternate approach:



With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

© CBC-MAC: Extends to any fixed length domain

Alternate approach:

MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF

- Recall: PRF is a MAC (on one-block messages)
- © CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length

- Recall: PRF is a MAC (on one-block messages)
- © CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):

- Recall: PRF is a MAC (on one-block messages)
- © CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks

- Recall: PRF is a MAC (on one-block messages)
- © CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks

MAC

With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- © CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks
 - Or, output not the last tag T, but $F_{K'}(T)$, where K' is an independent key (EMAC)

MAC

With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks
 - Or, output not the last tag T, but $F_{K'}(T)$, where K' is an independent key (EMAC)
 - Or, XOR last message block with another key K' (CMAC)

MAC

With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks
 - Or, output not the last tag T, but $F_{K'}(T)$, where K' is an independent key (EMAC)
 - Or, XOR last message block with another key K' (CMAC)
- Leave variable input-lengths to the hash?

Previous extension solutions required pseudorandomness of MAC

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?

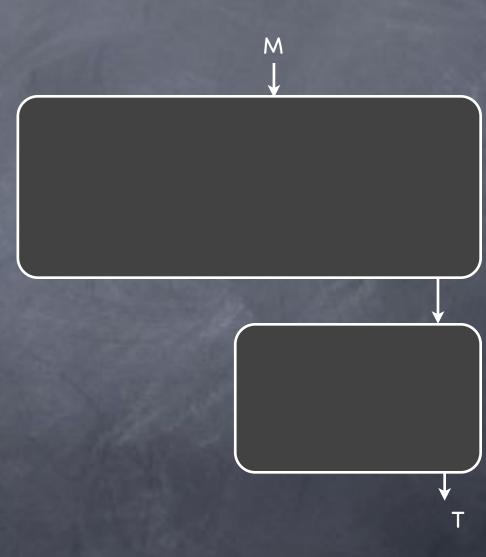
- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy
 - MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF

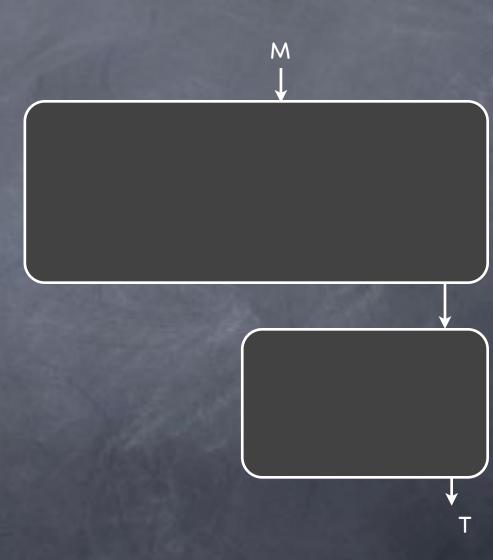
- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy
 - MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF
 - Weak-CRHFs can be based on OWF. Can be efficiently constructed from fixed input-length MACs.

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy
 - MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF
 - Weak-CRHFs can be based on OWF. Can be efficiently constructed from fixed input-length MACs.
- What are candidate fixed input-length MACs in practice that do not use a block-cipher?

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy
 - MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF
 - Weak-CRHFs can be based on OWF. Can be efficiently constructed from fixed input-length MACs.
- What are candidate fixed input-length MACs in practice that do not use a block-cipher?
 - Compression functions (with key as IV)

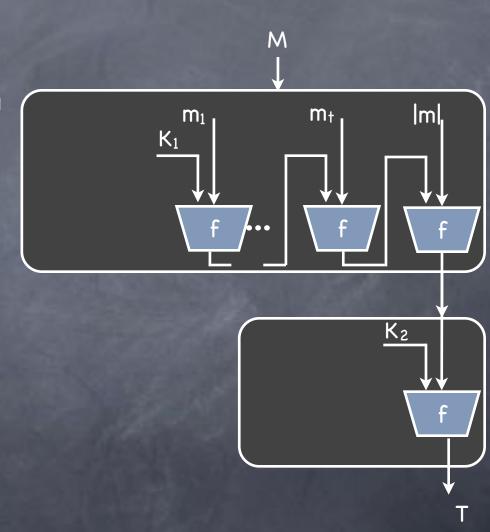


HMAC: Hash-based MAC



HMAC: Hash-based MAC

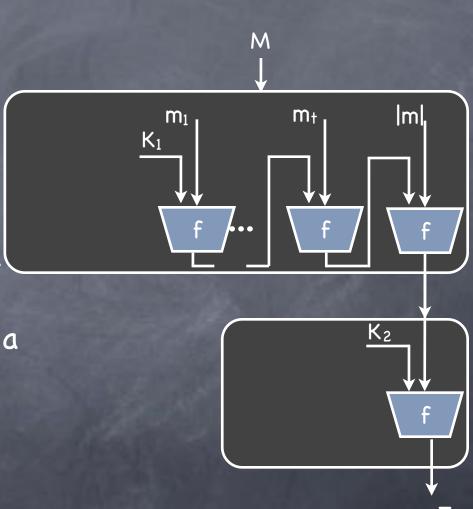
Essentially built from a compression function f



HMAC: Hash-based MAC

Essentially built from a compression function f

If keys K₁, K₂ independent (called NMAC), then secure MAC if f is a fixed input-length MAC, and the Merkle-Damgård iterated-hash is a weak-CRHF

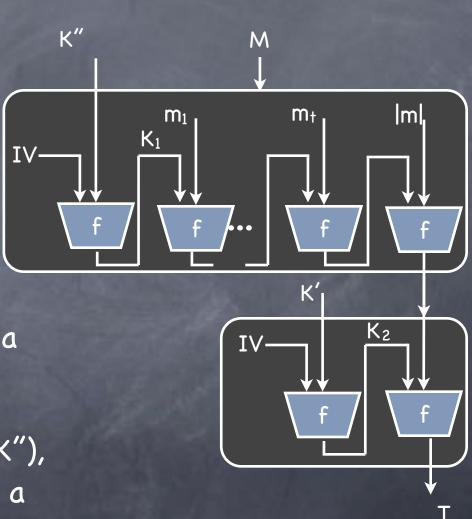


HMAC: Hash-based MAC

Essentially built from a compression function f

If keys K₁, K₂ independent (called NMAC), then secure MAC if f is a fixed input-length MAC, and the Merkle-Damgård iterated-hash is a weak-CRHF

In HMAC (K₁,K₂) derived from (K',K"), in turn heuristically derived from a single key K. If f is a (weak kind of) PRF K₁, K₂ can be considered independent



Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- If H is a Random Oracle, then just H(K||M) will be a MAC
 - But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- If H is a Random Oracle, then just H(K||M) will be a MAC
 - But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery
 - (That attack can be fixed by preventing extension: prefix-free encoding)

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- If H is a Random Oracle, then just H(K||M) will be a MAC
 - But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery
 - (That attack can be fixed by preventing extension: prefix-free encoding)
 - Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned out to be flawed too

A CRHF candidate from DDH

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
 - Hash-then-MAC

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
 - Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
 - Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF
 - Underlying HMAC/NMAC: compression function in an iterated-hash function assumed to be both a weak CRHF and a fixed input-length MAC

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
 - Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF
 - Underlying HMAC/NMAC: compression function in an iterated-hash function assumed to be both a weak CRHF and a fixed input-length MAC
- Next: Digital Signatures