Lecture 10

Lecture 10 Before we talk about digital signatures...

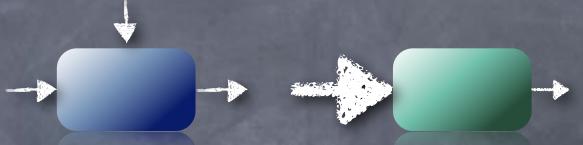
Much of today's applied cryptography works with two magic boxes

- Much of today's applied cryptography works with two magic boxes
 - Block Ciphers

Much of today's applied cryptography works with two magic boxes

Block Ciphers

- Much of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions



- Much of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions
- Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors

- Much of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions
- Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors
 - Often more than needed (e.g. SKE needs only PRF)

- Much of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions
- Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors
 - Often more than needed (e.g. SKE needs only PRF)
- Hash Functions:

- Much of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions
- Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors
 - Often more than needed (e.g. SKE needs only PRF)
- Hash Functions:
 - Some times modeled as Random Oracles!

- Much of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions
- Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors
 - Often more than needed (e.g. SKE needs only PRF)
- Hash Functions:
 - Some times modeled as Random Oracles!
 - Schemes relying on this can often be broken

- Much of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions
- Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors
 - Often more than needed (e.g. SKE needs only PRF)
- Hash Functions:
 - Some times modeled as Random Oracles!
 - Schemes relying on this can often be broken
 - Today: understanding security requirements on hash functions

"Randomized" mapping of inputs to shorter hash-values

- "Randomized" mapping of inputs to shorter hash-values
- Hash functions are useful in various places
 - In data-structures: for efficiency
 - Intuition: hashing removes worst-case effects

- "Randomized" mapping of inputs to shorter hash-values
- Hash functions are useful in various places
 - In data-structures: for efficiency
 - Intuition: hashing removes worst-case effects
 - In cryptography: for "integrity"

- "Randomized" mapping of inputs to shorter hash-values
- Hash functions are useful in various places
 - In data-structures: for efficiency
 - Intuition: hashing removes worst-case effects
 - In cryptography: for "integrity"
- Primary use: Domain extension (compress long inputs, and feed them into boxes that can take only short inputs)

- "Randomized" mapping of inputs to shorter hash-values
- Hash functions are useful in various places
 - In data-structures: for efficiency
 - Intuition: hashing removes worst-case effects
 - In cryptography: for "integrity"
- Primary use: Domain extension (compress long inputs, and feed them into boxes that can take only short inputs)
 - Typical security requirement: "collision resistance"

- "Randomized" mapping of inputs to shorter hash-values
- Hash functions are useful in various places
 - In data-structures: for efficiency
 - Intuition: hashing removes worst-case effects
 - In cryptography: for "integrity"
- Primary use: Domain extension (compress long inputs, and feed them into boxes that can take only short inputs)
 - Typical security requirement: "collision resistance"
 - Also sometimes: some kind of unpredictability

Hash function h: $\{0,1\}^k \rightarrow \{0,1\}^{t(k)}$

- - Compresses

- - Compresses

X	h ₁ (x)
000	0
001	0
010	0
011	0
100	1
101	1
110	1
111	1

- Hash function h: $\{0,1\}^k \rightarrow \{0,1\}^{\dagger(k)}$
 - Compresses
- A family

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
000	0	0	0	1
001	0	0	1	1
010	0	1	0	1
011	0	1	1	0
100	1	0	0	1
101	1	0	1	0
110	1	1	0	1
111	1	1	1	0

- Hash function h: $\{0,1\}^k \rightarrow \{0,1\}^{t(k)}$
 - Compresses
- A family
 - Alternately, takes two inputs, the index of the member of the family, and the real input

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
000	0	0	0	1
001	0	0	1	1
010	0	1	0	1
011	0	1	1	0
100	1	0	0	1
101	1	0	1	0
110	1	1	0	1
111	1	1	1	0

	0.000
	h _N (x)
•	1
8	1
E	1
	1
	1
Ø.	1
	1
	1

- Hash function h: $\{0,1\}^k \rightarrow \{0,1\}^{t(k)}$
 - Compresses
- A family
 - Alternately, takes two inputs, the index of the member of the family, and the real input
- Efficient sampling and evaluation

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
000	0	0	0	1
001	0	0	1	1
010	0	1	0	1
011	0	1	1	0
100	1	0	0	1
101	1	0	1	0
110	1	1	0	1
111	1	1	1	0

- Hash function h: $\{0,1\}^k \rightarrow \{0,1\}^{t(k)}$
 - Compresses
- A family
 - Alternately, takes two inputs, the index of the member of the family, and the real input
- Efficient sampling and evaluation
- Idea: when the hash function is randomly chosen, "behaves randomly"

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
000	0	0	0	1
001	0	0	1	1
010	0	1	0	1
011	0	1	1	0
100	1	0	0	1
101	1	0	1	0
110	1	1	0	1
111	1	1	1	0

- Hash function h: $\{0,1\}^k \rightarrow \{0,1\}^{t(k)}$
 - Compresses
- A family
 - Alternately, takes two inputs, the index of the member of the family, and the real input
- Efficient sampling and evaluation
- Idea: when the hash function is randomly chosen, "behaves randomly"
 - Main goal: to "avoid collisions".
 Will see several variants of the problem

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
000	0	0	0	1
001	0	0	1	1
010	0	1	0	1
011	0	1	1	0
100	1	0	0	1
101	1	0	1	0
110	1	1	0	1
111	1	1	1	0

A single fixed function

- A single fixed function
 - e.g. SHA-3, SHA-256, SHA-1, MD5, MD4

- A single fixed function
 - e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
 - Not a family ("unkeyed")

- A single fixed function
 - e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
 - Not a family ("unkeyed")
 - (And no security parameter knob)

- A single fixed function
 - @ e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
 - Not a family ("unkeyed")
 - (And no security parameter knob)
- Not collision-resistant under any of the following definitions

Hash Functions in Crypto Practice

- A single fixed function
 - e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
 - Not a family ("unkeyed")
 - (And no security parameter knob)
- Not collision-resistant under any of the following definitions
- Alternately, could be considered as have already been randomly chosen from a family (and security parameter fixed too)

Hash Functions in Crypto Practice

- A single fixed function
 - e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
 - Not a family ("unkeyed")
 - (And no security parameter knob)
- Not collision-resistant under any of the following definitions
- Alternately, could be considered as have already been randomly chosen from a family (and security parameter fixed too)
 - Usually involves hand-picked values (e.g. "I.V." or "round constants") built into the standard

If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

- If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - $A \rightarrow (x,y)$; $h \leftarrow M$: Combinatorial Hash Functions (even non-PPT A)

- If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

- If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

 - $A \rightarrow x$; h←¼; A(h)→y: Universal One-Way Hash Functions
 - \bullet h $\leftarrow \mathcal{U}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions

- If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

 - $A \rightarrow x$; h←¼; A(h)→y: Universal One-Way Hash Functions
- Also useful sometimes: A gets only oracle access to h(.) (weak).
 Or, A gets any coins used for sampling h (strong).

- If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

 - $A \rightarrow x$; h←¼; A(h)→y: Universal One-Way Hash Functions
- Also useful sometimes: A gets only oracle access to h(.) (weak).
 Or, A gets any coins used for sampling h (strong).
- © CRHF the strongest; UOWHF still powerful (will be enough for digital signatures)

Weaker variants of CRHF/UOWHF (where x is random)

- Weaker variants of CRHF/UOWHF (where x is random)

- Weaker variants of CRHF/UOWHF (where x is random)
 - - Pre-image collision resistance if h(x)=h(y) w.n.p

- Weaker variants of CRHF/UOWHF (where x is random)
 - - Pre-image collision resistance if h(x)=h(y) w.n.p
 - \circ i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)

- Weaker variants of CRHF/UOWHF (where x is random)
 - - Pre-image collision resistance if h(x)=h(y) w.n.p
 - i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)

- Weaker variants of CRHF/UOWHF (where x is random)
 - - Pre-image collision resistance if h(x)=h(y) w.n.p
 - \circ i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)

- Weaker variants of CRHF/UOWHF (where x is random)
 - - Pre-image collision resistance if h(x)=h(y) w.n.p
 - i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)
 - - Second Pre-image collision resistance if h(x)=h(y) w.n.p

- Weaker variants of CRHF/UOWHF (where x is random)
 - - Pre-image collision resistance if h(x)=h(y) w.n.p
 - i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)
 - - Second Pre-image collision resistance if h(x)=h(y) w.n.p
 - Incomparable (neither implies the other) [Exercise]

- Weaker variants of CRHF/UOWHF (where x is random)
 - - Pre-image collision resistance if h(x)=h(y) w.n.p
 - i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)
 - - Second Pre-image collision resistance if h(x)=h(y) w.n.p
 - Incomparable (neither implies the other) [Exercise]
- CRHF implies second pre-image collision resistance and, if sufficiently compressing, then pre-image collision resistance [Exercise]

If range of the hash function is too small, not collision-resistant

- If range of the hash function is too small, not collision-resistant
 - If range poly-size (i.e. hash log-long), then non-negligible probability that two random x, y provide collision

- If range of the hash function is too small, not collision-resistant
 - If range poly-size (i.e. hash log-long), then non-negligible probability that two random x, y provide collision
- In practice interested in minimizing the hash length (for efficiency)

- If range of the hash function is too small, not collision-resistant
 - If range poly-size (i.e. hash log-long), then non-negligible probability that two random x, y provide collision
- In practice interested in minimizing the hash length (for efficiency)
 - Generic collision-finding attack: birthday attack

- If range of the hash function is too small, not collision-resistant
 - If range poly-size (i.e. hash log-long), then non-negligible probability that two random x, y provide collision
- In practice interested in minimizing the hash length (for efficiency)
 - Generic collision-finding attack: birthday attack
 - Look for a collision in a set of random hashes (needs only oracle access to the hash function)

- If range of the hash function is too small, not collision-resistant
 - If range poly-size (i.e. hash log-long), then non-negligible probability that two random x, y provide collision
- In practice interested in minimizing the hash length (for efficiency)
 - Generic collision-finding attack: birthday attack
 - Look for a collision in a set of random hashes (needs only oracle access to the hash function)

- If range of the hash function is too small, not collision-resistant
 - If range poly-size (i.e. hash log-long), then non-negligible probability that two random x, y provide collision
- In practice interested in minimizing the hash length (for efficiency)
 - Generic collision-finding attack: birthday attack
 - Look for a collision in a set of random hashes (needs only oracle access to the hash function)
 - Expected size of the set before collision: O(/|range|)
 - Birthday attack effectively halves the hash length (say security parameter) over "naïve attack"

- Even better: 2-Universal Hash Functions

- © Combinatorial HF: $A \rightarrow (x,y)$; $h \leftarrow \#$. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

- © Combinatorial HF: A→(x,y); h← \cancel{y} . h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - $\forall x,z \ Pr_{h \leftarrow \mathcal{U}} [h(x)=z] = 1/|Z| \text{ (where } h:X \rightarrow Z)$

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- © Combinatorial HF: A→(x,y); h←#. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - $\forall x,z \ Pr_{h\leftarrow \mathcal{H}} [h(x)=z] = 1/|Z| \text{ (where } h:X\rightarrow Z)$

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - $\forall x \neq y, w, z \ Pr_{h \leftarrow \#} [h(x)=w, h(y)=z] = 1/|Z|^2$
 - $\forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- © Combinatorial HF: A→(x,y); h←#. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - Ø $\forall x,z \text{ Pr}_{h \leftarrow \mathcal{U}} [h(x)=z] = 1/|Z| \text{ (where h: X→Z)}$

0	∀x≠v.w.z	Prhes	h(x)=w	h(y)=z	$] = 1/ Z ^2$
	~ <i>/\T \\\</i>	-		/ '\\//_ -	

0	∀x≠y	Prh←#	[h(x)=h(y)]	= 1/ Z	
---	------	-------	------	-------	------	--------	--

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

Negligible collision-probability if super-polynomial-sized range

- © Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - $\forall x,z \ Pr_{h \leftarrow \mathcal{U}} [h(x)=z] = 1/|Z| \text{ (where } h:X \rightarrow Z)$
- & k-Universal:

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
О	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- © Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
О	0	0	1	1
1	0	1	0	1
2	1	0	0	1

& k-Universal:

 $\forall x_1..x_k$ (distinct), $z_1..z_k$, $Pr_{h \leftarrow \mathcal{U}} [\forall i \ h(x_i) = z_i] = 1/|Z|^k$

- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - - $\forall x \neq y \ Pr_{h \leftarrow \mathcal{H}} [h(x) = h(y)] = 1/|Z|$

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
О	0	0	1	1
1	0	1	О	1
2	1	0	0	1

Negligible collision-probability if

super-polynomial-sized range

k-Universal:

- $\forall x_1..x_k$ (distinct), $z_1..z_k$, $Pr_{h \leftarrow \mathcal{U}} [\forall i \ h(x_i) = z_i] = 1/|Z|^k$
- Inefficient example:
 # set of all functions from X to Z

- © Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - $\forall x \neq y, w, z \ Pr_{h \leftarrow \mathcal{U}} [h(x)=w, h(y)=z] = 1/|Z|^2$
 - $\forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
О	0	0	1	1
1	0	1	0	1
2	1	0	0	1

Negligible collision-probability if

super-polynomial-sized range

k-Universal:

- $\forall x_1..x_k$ (distinct), $z_1..z_k$, $Pr_{h \leftarrow \mathcal{U}} [\forall i \ h(x_i) = z_i] = 1/|Z|^k$
- Inefficient example:
 # set of all functions from X to Z
 - But we will need all h∈
 to be succinctly described and efficiently evaluable

- © Combinatorial HF: A→(x,y); h←#. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

0	∀x≠y,w,z	Prh+#	h(x)	=w. h(v)=z]	$= 1/ Z ^2$
	~ ^ / T / / V / C		. '''(/')	_ ,, , , , , ,	,,,	/ -

0	∀x ≠ y	Prh←£	[h(x)=	=h(y)] = 1/ Z
---	---------------	-------	---------	-------	----------

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- © Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
- \circ e.g. $h_{a,b}(x) = ax+b$ (in a finite field, X=Z)

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
О	0	0	1	1
1	0	1	О	1
2	1	0	0	1

- © Combinatorial HF: A→(x,y); h←#. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

0	∀x≠y,w,z	Pr _{h←¾} [h(x)=v	v, h(y)	=z] =	$1/ Z ^2$
---	----------	---------------------	--------	---------	--------	-----------

$$\forall x \neq y \Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$$

a	e.a.	$h_{a,b}(x) =$	= ax+b ((in a	finite	field.	X=Z
	U. 4.	''u,D(/\) -					

6	Prah	ax+b=z	$1 = Pr_{ab}$	[b = z-ax]	l = 1/ Z
	l a,b	LUNID - Z		L D - L un	- 1/ <i>-</i> -

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- © Combinatorial HF: $A \rightarrow (x,y)$; $h \leftarrow \#$. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

0	∀x≠y,w,z	Prh←#	h(x)=w,	h(y)=z]	$= 1/ Z ^2$
---	----------	-------	---------	-----	-------	-------------

$$⊗$$
 $\forall x \neq y Pr_{h \leftarrow \mathcal{U}} [h(x)=h(y)] = 1/|Z|$

6	e.g.	$h_{a,b}(x)$	=	ax+b	(in	a	finite	field,	X=Z)
----------	------	--------------	---	------	-----	---	--------	--------	------

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- $Pr_{a,b} [ax+b=z] = Pr_{a,b} [b=z-ax] = 1/|Z|$
- Pr_{a,b} [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the two equations (for $x\neq y$)

- © Combinatorial HF: A→(x,y); h← \cancel{U} . h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

0	∀x≠y,w,z	Pr _{h←#} [h(x)=w	h(y)=	$z] = 1/ Z ^2$
---	----------	---------------------	--------	-------	-----------------

6	e.g.	$h_{a,b}(x)$	= ax+b	(in a	finite	field,	X=Z
----------	------	--------------	--------	-------	--------	--------	-----

L)	2	1	0	0	1
	653		100	3	500
Negli	gible	collisi	on-pro	babil	ity if

super-polynomial-sized range

 $x h_1(x) h_2(x) h_3(x) h_4(x)$

- $Pr_{a,b} [ax+b=z] = Pr_{a,b} [b=z-ax] = 1/|Z|$
- Pr_{a,b} [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the two equations (for $x\neq y$)

$$\circ$$
 Pr_{a,b} [ax+b = w, ay+b = z] = $1/|Z|^2$

- © Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - - $\forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x)=h(y)] = 1/|Z|$
- \circ e.g. $h_{a,b}(x) = ax+b$ (in a finite field, X=Z)

Negligible	collision-probability	if
super-po	lynomial-sized range	2

 $x | h_1(x) | h_2(x) | h_3(x) | h_4(x)$

- $Pr_{a,b} [ax+b=z] = Pr_{a,b} [b=z-ax] = 1/|Z|$
- Pr_{a,b} [ax+b = w, ay+b = z] = ? Exactly one (a,b) satisfying the two equations (for $x\neq y$)
 - \circ Pr_{a,b} [ax+b = w, ay+b = z] = $1/|Z|^2$
- But does not compress!

- © Combinatorial HF: A→(x,y); h←#. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

0	∀x≠y,w,z	Prh+#	h(x)	=w. h(v)=z]	$= 1/ Z ^2$
	~ ^ / T / / V / C		. '''(/')	_ ,, , , , , ,	,,,	/ -

0	∀x ≠ y	Prh←£	[h(x)=	=h(y)] = 1/ Z
---	---------------	-------	---------	-------	----------

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- © Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - - $\forall x \neq y$ $Pr_{h \leftarrow \mathcal{H}} [h(x) = h(y)] = 1/|Z|$

0	e.g. $h'_h(x) = Chop(h(x))$	where h	from a
	(possibly non-compress	sing) 2-u	niversal HF

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - $\forall x \neq y, w, z \ Pr_{h \leftarrow \mathcal{U}} [h(x)=w, h(y)=z] = 1/|Z|^2$

0	e.g. $h'_h(x) = Chop(h(x))$	where	h	from a	1
	(possibly non-compress	ing) 2-	-ur	niversa	l HF

0	O	O	1	1	
1	0	1	0	1	
2	1	0	0	1	

Negligible collision-probability if

super-polynomial-sized range

 $h_1(x) h_2(x) h_3(x) h_4(x)$

Ohop a t-to-1 map from Z to Z' (e.g. removes last bit: 2-to-1)

- © Combinatorial HF: A→(x,y); h←𝒯. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - ⊗ $\forall x,z$ $Pr_{h \leftarrow M} [h(x)=z] = 1/|Z| (where h:X→Z)$
 - $\forall x \neq y, w, z \ Pr_{h \leftarrow \mathcal{U}} [h(x)=w, h(y)=z] = 1/|Z|^2$

0	e.g. $h'_h(x) = Chop(h(x))$	where	h	from a	1
	(possibly non-compress	ing) 2-	-ur	niversa	l HF

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

- - Pr_h [Chop(h(x)) = w, Chop(h(y)) = z] = Pr_h [h(x) = w0 or w1, h(y) = z0 or z1] = $4/|Z|^2 = 1/|Z'|^2$

One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p

- One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p
- Can be constructed from OWF

- One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p
- Can be constructed from OWF
- Easier to see OWP ⇒ UOWHF

- Universal One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p
- Can be constructed from OWF
- Easier to see OWP ⇒ UOWHF

- One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p
- Can be constructed from OWF
- Easier to see OWP ⇒ UOWHF
 - - suppose h compresses by a bit (i.e., 2-to-1 maps), and

- One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p
- Can be constructed from OWF
- Easier to see OWP ⇒ UOWHF
 - - suppose h compresses by a bit (i.e., 2-to-1 maps), and
 - \circ for all z,z', can sample (solve for) h s.t. h(z) = h(z')

- One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p
- Can be constructed from OWF
- Easier to see OWP ⇒ UOWHF
 - - suppose h compresses by a bit (i.e., 2-to-1 maps), and
 - \circ for all z,z', can sample (solve for) h s.t. h(z) = h(z')
 - Is a UOWHF [Why?]

UOWHE

- Universal One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p.
- Can be constructed from OWF
- Easier to see OWP ⇒ UOWHF
 - - suppose h compresses by a bit (i.e., 2-to-1 maps), and
 - \circ for all z,z', can sample (solve for) h s.t. h(z) = h(z')
 - Is a UOWHF [Why?] BreakOWP(z) { get $x \leftarrow A$; give h to A, s.t. h(z)=h(f(x)); if $A \rightarrow y$ s.t. h(f(x)) = h(f(y)), output y; }

- Universal One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p.
- Can be constructed from OWF
- Easier to see OWP ⇒ UOWHF
 - - suppose h compresses by a bit (i.e., 2-to-1 maps), and
 - \circ for all z,z', can sample (solve for) h s.t. h(z) = h(z')
 - Is a UOWHF [Why?] BreakOWP(z) { get $x \leftarrow A$; give h to A, s.t. h(z)=h(f(x)); if $A \rightarrow y$ s.t. h(f(x)) = h(f(y)), output y; }
 - Gives a UOWHF with range and domain same as the UHF

- Universal One-Way HF: A→x; h←#; A(h)→y. h(x)=h(y) w.n.p.
- Can be constructed from OWF
- Easier to see OWP ⇒ UOWHF
 - - suppose h compresses by a bit (i.e., 2-to-1 maps), and
 - \circ for all z,z', can sample (solve for) h s.t. h(z) = h(z')
 - Is a UOWHF [Why?] \Rightarrow BreakOWP(z) { get x \leftarrow A; give h to A, s.t. h(z)=h(f(x)); if A \rightarrow y s.t. h(f(x)) = h(f(y)), output y; }
 - Gives a UOWHF with range and domain same as the UHF
 - Will see shortly, how to extend the domain to arbitrarily long strings (without increasing output size)

© Combinatorial hash functions, UOWHF and CRHF

- Combinatorial hash functions, UOWHF and CRHF
 - (And weaker variants of CRHF: pre-image collision resistance and second-pre-image collision resistance)

- Combinatorial hash functions, UOWHF and CRHF
 - (And weaker variants of CRHF: pre-image collision resistance and second-pre-image collision resistance)
- Collision-resistant combinatorial HF from 2-Universal Hash Functions

- Combinatorial hash functions, UOWHF and CRHF
 - (And weaker variants of CRHF: pre-image collision resistance and second-pre-image collision resistance)
- Collision-resistant combinatorial HF from 2-Universal Hash Functions
- UOWHF from UHF and OWP (possible from OWF)

- Combinatorial hash functions, UOWHF and CRHF
 - (And weaker variants of CRHF: pre-image collision resistance and second-pre-image collision resistance)
- Collision-resistant combinatorial HF from 2-Universal Hash Functions
- UOWHF from UHF and OWP (possible from OWF)
- Next:

- Combinatorial hash functions, UOWHF and CRHF
 - (And weaker variants of CRHF: pre-image collision resistance and second-pre-image collision resistance)
- Collision-resistant combinatorial HF from 2-Universal Hash Functions
- UOWHF from UHF and OWP (possible from OWF)
- Next:
 - A candidate CRHF construction

- Combinatorial hash functions, UOWHF and CRHF
 - (And weaker variants of CRHF: pre-image collision resistance and second-pre-image collision resistance)
- Collision-resistant combinatorial HF from 2-Universal Hash Functions
- UOWHF from UHF and OWP (possible from OWF)
- Next:
 - A candidate CRHF construction
 - Domain extension