Applied Cryptography

Lecture 1

Applied Cryptography

Lecture 1

Our first encounter with secrecy: Secret-Sharing

© Cryptography is all about "controlling access to information"

Access to learning and/or influencing information

Cryptography is all about "controlling access to information"

Access to learning and/or influencing information

One of the aspects of access control is secrecy

A "dealer" and two "players" Alice and Bob

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits m₁m₂

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits m₁m₂
- She wants to "share" it among the two players so that neither player by itself learns anything about the message, but together they can find it

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits m₁m₂
- She wants to "share" it among the two players so that neither player by itself learns anything about the message, but together they can find it
- Bad idea: Give m₁ to Alice and m₂ to Bob

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits m1m2
- She wants to "share" it among the two players so that neither player by itself learns anything about the message, but together they can find it
- Bad idea: Give m₁ to Alice and m₂ to Bob
- Other ideas?

To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
 - Bob learns nothing (b is a random bit)

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and <u>b</u> to Bob
 - Bob learns nothing (b is a random bit)
 - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p. $\frac{1}{2}$, 1 w.p. $\frac{1}{2}$)

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and <u>b</u> to Bob
 - Bob learns nothing (b is a random bit)
 - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p. $\frac{1}{2}$, 1 w.p. $\frac{1}{2}$) = $m = 0 \rightarrow (a,b) = (0,0)$ or (1,1) $m = 1 \rightarrow (a,b) = (1,0)$ or (0,1)

- To share a bit m, Dealer picks a uniformly random bit b and gives a := m⊕b to Alice and b to Bob
 - Bob learns nothing (b is a random bit)
 - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p. $\frac{1}{2}$, 1 w.p. $\frac{1}{2}$) $= 0 \rightarrow (a,b) = (0,0)$ or (1,1) $= 1 \rightarrow (a,b) = (1,0)$ or (0,1)
 - Her view is independent of the message

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
 - Bob learns nothing (b is a random bit)
 - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p. $\frac{1}{2}$, 1 w.p. $\frac{1}{2}$) = $m = 0 \rightarrow (a,b) = (0,0)$ or (1,1) $m = 1 \rightarrow (a,b) = (1,0)$ or (0,1)
 - Her view is independent of the message
 - Together they can recover m as a⊕b

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and <u>b</u> to Bob
 - Bob learns nothing (b is a random bit)
 - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p. $\frac{1}{2}$, 1 w.p. $\frac{1}{2}$) = $m = 0 \rightarrow (a,b) = (0,0)$ or (1,1) $m = 1 \rightarrow (a,b) = (1,0)$ or (0,1)
 - Her view is independent of the message
 - Together they can recover m as a⊕b
- Multiple bits can be shared independently: as, $m_1m_2 = a_1a_2⊕b_1b_2$

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and <u>b</u> to Bob
 - Bob learns nothing (b is a random bit)
 - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p. $\frac{1}{2}$, 1 w.p. $\frac{1}{2}$) $= m = 0 \rightarrow (a,b) = (0,0)$ or (1,1) $= m = 1 \rightarrow (a,b) = (1,0)$ or (0,1)
 - Her view is independent of the message
 - Together they can recover m as a⊕b
- Multiple bits can be shared independently: as, $m_1m_2 = a_1a_2⊕b_1b_2$
- Note: any one share can be chosen before knowing the message [why?]

Is the message m really secret?

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares
- The shares did not leak any additional information to either party

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares
- The shares did not leak any additional information to either party
- Crypto goal: preserving secrecy

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares
- The shares did not leak any additional information to either party
- Crypto goal: <u>preserving</u> secrecy
 - View is <u>independent</u> of the message

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability $\frac{1}{2}$, by randomly guessing
 - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares
- The shares did not leak any <u>additional</u> information to either party
- Crypto goal: <u>preserving</u> secrecy
 - View is independent of the message
 - i.e., for all possible values of the message, the view is distributed the same way

More general secret-sharing

- More general secret-sharing
 - Allow more than two parties (how?)

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
 - Direct applications (distributed storage of data or keys)

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions
 - Amplifying secrecy of various primitives

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions
 - Amplifying secrecy of various primitives
 - Secure multi-party computation

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions
 - Amplifying secrecy of various primitives
 - Secure multi-party computation
 - Attribute-Based Encryption

- More general secret-sharing
 - Allow more than two parties (how?)
 - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
 - Direct applications (distributed storage of data or keys)
 - Important component in other cryptographic constructions
 - Amplifying secrecy of various primitives
 - Secure multi-party computation
 - Attribute-Based Encryption
 - Leakage resilience ...

(n,t)-secret-sharing

- (n,t)-secret-sharing
 - \odot Divide a message m into n shares $s_1,...,s_n$, such that any t shares are enough to reconstruct the secret

- (n,t)-secret-sharing
 - Divide a message m into n shares s₁,...,s_n, such that any t shares are enough to reconstruct the secret
 - Up to t-1 shares should have no information about the secret

- (n,t)-secret-sharing
 - \odot Divide a message m into n shares $s_1,...,s_n$, such that any t shares are enough to reconstruct the secret
 - Up to t-1 shares should have no information about the secret
 - @ i.e., say, $(s_1,...,s_{t-1})$ identically distributed for every m in the message space

- (n,t)-secret-sharing
 - \odot Divide a message m into n shares $s_1,...,s_n$, such that any t shares are enough to reconstruct the secret
 - Up to t-1 shares should have no information about the secret
 - @ i.e., say, $(s_1,...,s_{t-1})$ identically distributed for every m in the message space
 - our previous example: (2,2) secret-sharing

© Construction: (n,n) secret-sharing

- © Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - o or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - o or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - \odot or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)
 - Share(M):

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - o or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)
 - Share(M):
 - Pick s₁,...,s_{n-1} uniformly at random from G

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - o or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)
 - o or, $G = \mathbb{Z}_p$ (group of integers mod p)
 - Share(M):
 - Pick s₁,...,s_{n-1} uniformly at random from G
 - \odot Let $s_n = M (s_1 + ... + s_{n-1})$

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - o or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)
 - o or, $G = \mathbb{Z}_p$ (group of integers mod p)
 - Share(M):
 - Pick s₁,...,s_{n-1} uniformly at random from G
 - \circ Let $s_n = M (s_1 + ... + s_{n-1})$
 - @ Reconstruct($s_1,...,s_n$): M = $s_1 + ... + s_n$

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - \odot or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)
 - Share(M):
 - Pick s₁,...,s_{n-1} uniformly at random from G
 - \circ Let $s_n = M (s_1 + ... + s_{n-1})$
 - @ Reconstruct($s_1,...,s_n$): $M = s_1 + ... + s_n$
 - Claim: This is an (n,n) secret-sharing scheme [Why?]

- Construction: (n,n) secret-sharing
 - Message-space = share-space = G, a group
 - \odot e.g. G = \mathbb{Z}_2 (group of bits, with xor as the group operation)
 - \odot or, $G = \mathbb{Z}_2^d$ (group of d-bit strings)
 - Share(M):

Additive Secret-Sharing

- Pick s₁,...,s_{n-1} uniformly at random from G
- \odot Let $s_n = M (s_1 + ... + s_{n-1})$
- @ Reconstruct($s_1,...,s_n$): $M = s_1 + ... + s_n$
- Claim: This is an (n,n) secret-sharing scheme [Why?]

& Sook

Additive Secret-Sharing: Proof

- Share(M):
 - Pick s₁,...,s_{n-1} uniformly at random from G
- Reconstruct($s_1,...,s_n$): $M = s_1 + ... + s_n$
- Claim: Upto n-1 shares give no information about M
- **Proof**: Let T ⊆ $\{1,...,n\}$, |T| = n-1. We shall show that $\{s_i\}_{i \in T}$ is distributed the same way (in fact, uniformly) irrespective of what M is.
 - For concreteness consider $T=\{2,...,n\}$. Fix any (n-1)-tuple of elements in $G, (g_1,...,g_{n-1}) \in G^{n-1}$. To prove $\Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})]$ is independent of M.
 - Fix any M.
 - $(s_2,...,s_n) = (g_1,...,g_{n-1}) \Leftrightarrow (s_2,...,s_{n-1}) = (g_1,...,g_{n-2}) \text{ and } s_1 = M-(g_1+...+g_{n-1}).$
 - So $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})] = Pr[(s_1,...,s_{n-1})=(M-(g_1+...+g_{n-1}), g_1,...,g_{n-2})]$
 - But $Pr[(s_1,...,s_{n-1})=(M-(g_1+...+g_{n-1}), g_1,...,g_{n-2})] = 1/|G|^{n-1}$, since $(s_1,...,s_{n-1})$ are picked uniformly at random
 - Hence $Pr[(s_2,...,s_n)=(g_1,...,g_{n-1})] = 1/|G|^{n-1}$, irrespective of M.

© Construction: (n,2) secret-sharing

- Construction: (n,2) secret-sharing

- Construction: (n,2) secret-sharing
- \odot Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)

- Construction: (n,2) secret-sharing
- \odot Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)

- Construction: (n,2) secret-sharing
- \odot Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)

n distinct, non-0 field elements

Since i⁻¹ exists, exactly one solution for r·i+M=d, for every value of d

- Construction: (n,2) secret-sharing
- \odot Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)
 - @ Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$

n distinct, non-0 field elements

Since i⁻¹ exists, exactly one solution for r·i+M=d, for every value of d

- Construction: (n,2) secret-sharing
- \bullet Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)
 - Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$
 - Each s_i by itself is uniformly distributed, irrespective of M [Why?] Since i-1 exist

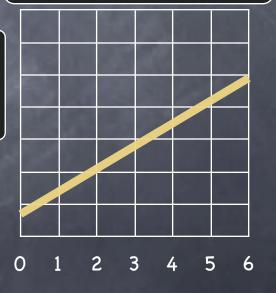
Since i⁻¹ exists, exactly one solution for r·i+M=d, for every value of d

- Construction: (n,2) secret-sharing
- \bullet Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)
 - @ Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$
 - Each s_i by itself is uniformly distributed, irrespective of M [Why?]— Since i-1 exists, exactly
 - "Geometric" interpretation

Since i⁻¹ exists, exactly one solution for r·i+M=d, for every value of d

- Construction: (n,2) secret-sharing
- $_{\odot}$ Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_{P})
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)
 - Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$
 - Each s_i by itself is uniformly distributed, irrespective of M [Why?] Since i-1 exist
 - "Geometric" interpretation

Since i⁻¹ exists, exactly one solution for r·i+M=d, for every value of d

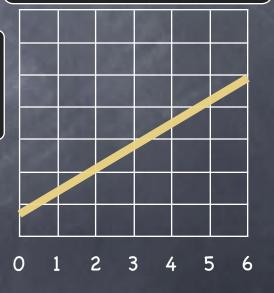


- Construction: (n,2) secret-sharing
- \odot Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)

one solution for r·i+M=d,

for every value of d

- Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)
- Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$
- Each s_i by itself is uniformly distributed, irrespective of M [Why?] Since i-1 exists, exactly
- "Geometric" interpretation
 - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares $s_i = f(i)$.



- Construction: (n,2) secret-sharing
- \odot Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)
 - Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$
 - Each s_i by itself is uniformly distributed, irrespective of M [Why?] Since i-1 exists, exactly
 - "Geometric" interpretation
 - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares $s_i = f(i)$.
 - \odot s_i is independent of M: exactly one line passing 0 1 2 3 4 5 6 through (i,s_i) and (0,M') for each secret M'

one solution for r·i+M=d,

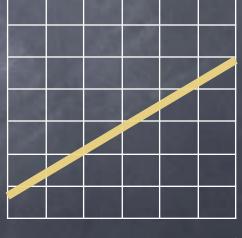
for every value of d

- Construction: (n,2) secret-sharing
- \odot Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)
 - Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$
 - Each s_i by itself is uniformly distributed, irrespective of M [Why?] Since i⁻¹ exists, exactly
 - "Geometric" interpretation
 - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares $s_i = f(i)$.
 - \circ s_i is independent of M: exactly one line passing $_0$ $_1$ $_2$ $_3$ $_4$ $_5$ $_6$ through (i,s_i) and (0,M') for each secret M'

one solution for r·i+M=d,

for every value of d

But can reconstruct the line from two points!



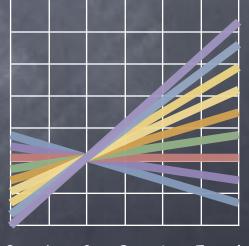
- Construction: (n,2) secret-sharing
- \odot Message-space = share-space = F, a field (e.g. integers mod a prime, \mathbb{F}_P)
 - Share(M): pick random r. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)
 - Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$
 - Each s_i by itself is uniformly distributed, irrespective of M [Why?] Since i⁻¹ exists, exactly
 - "Geometric" interpretation
 - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares $s_i = f(i)$.
 - s_i is independent of M: exactly one line passing 0 1 2 3 4 5 through (i,s_i) and (0,M') for each secret M'

one solution for r·i+M=d,

for every value of d

But can reconstruct the line from two points!

n distinct, non-0 field elements



(n,2) Secret-Sharing: Proof

- Share(M): pick random r ← F. Let $s_i = r \cdot i + M$ (for i=1,...,n < |F|)</p>
- Reconstruct(s_i , s_j): $r = (s_i-s_j)/(i-j)$; $M = s_i r_i$
- Claim: Any one share gives no information about M
- Proof: For any i∈{1,...,n} we shall show that s_i is distributed the same way (in fact, uniformly) irrespective of what M is.
- Fix any M.
- For any g ∈ F, $s_i = g ⇔ r · i + M = g ⇔ r = (g-M) · i 1 (since i≠0)$
- So, $Pr[s_i=g] = Pr[r=(g-M)\cdot i^{-1}] = 1/|F|$, since r is chosen uniformly at random

(n,t) secret-sharing in a field

- (n,t) secret-sharing in a field
 - Generalizing the geometric/algebraic view: instead of lines, use polynomials

(n,t) secret-sharing in a field

Shamir Secret-Sharing

Generalizing the geometric/algebraic view: instead of lines, use polynomials

- (n,t) secret-sharing in a field
 - Generalizing the geometric/algebraic view: instead of lines, use polynomials
 - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are $s_i=f(i)$.

- (n,t) secret-sharing in a field
 - Generalizing the geometric/algebraic view: instead of lines, use polynomials
 - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are $s_i=f(i)$.
 - @ Random polynomial with f(0)=M: $c_0 + c_1X + c_2X^2 + ... + c_{t-1}X^{t-1}$ by picking $c_0=M$ and $c_1,...,c_{t-1}$ at random.

- (n,t) secret-sharing in a field
 - Generalizing the geometric/algebraic view: instead of lines, use polynomials
 - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are $s_i=f(i)$.
 - @ Reconstruct($s_1,...,s_t$): Lagrange interpolation to find M= c_0

- (n,t) secret-sharing in a field
 - Generalizing the geometric/algebraic view: instead of lines, use polynomials
 - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are $s_i=f(i)$.
 - Random polynomial with f(0)=M: $c_0 + c_1X + c_2X^2 + ... + c_{t-1}X^{t-1}$ by picking $c_0=M$ and $c_1,...,c_{t-1}$ at random.
 - Reconstruct(s₁,...,s_t): Lagrange interpolation to find M=c₀
 - Need t points to reconstruct the polynomial. Given t-1 points, there is exactly one polynomial passing through (0,M') for each M'

Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
 - \circ t variables: $c_0,...,c_{t-1}$. t equations: $1.c_0 + i.c_1 + i^2.c_2 + ... i^{t-1}.c_{t-1} = s_i$

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
 - \circ t variables: $c_0,...,c_{t-1}$. t equations: $1.c_0 + i.c_1 + i^2.c_2 + ... i^{t-1}.c_{t-1} = s_i$
 - \odot A linear system: Wc=s, where W a $t \times t$ matrix with $W_i=(1 i i^2 ... i^{t-1})$

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
 - ★ variables: $c_0,...,c_{t-1}$. † equations: $1.c_0 + i.c_1 + i^2.c_2 + ... i^{t-1}.c_{t-1} = s_i$

 - W is a Vandermonde matrix: invertible

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
 - ★ variables: $c_0,...,c_{t-1}$. † equations: $1.c_0 + i.c_1 + i^2.c_2 + ... i^{t-1}.c_{t-1} = s_i$

 - W is a Vandermonde matrix: invertible
 - $o c = W^{-1}s$

(n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret

- (n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret
 - i.e., "access structure" $\mathcal{A} = \{S: |S| \ge t \}$, is the set of all subsets of parties who can reconstruct the secret

- (n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret
 - i.e., "access structure" $A = \{S: |S| \ge t \}$, is the set of all subsets of parties who can reconstruct the secret
 - In general access structure could be any monotonic set of subsets

- (n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret
 - set of all subsets of parties who can reconstruct the secret $A = \{S: |S| \ge t \}$, is the if $s \ne A$, then for all $s \ne S$.
 - In general access structure could be any monotonic set of subsets

- (n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret
 - i.e., "access structure" $\mathcal{A} = \{S: |S| \ge t \}$, is the set of all subsets of parties who can reconstruct the secret If $s \ne A$, then for all $s \ne S$.
 - In general access structure could be any monotonic set of subsets
- Shamir's secret-sharing solves threshold secret-sharing. How about the others?

Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.

- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"

- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"
 - \odot How big is \mathcal{B} ? (Say when $\mathcal A$ is a threshold access structure)

- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"

 $|\mathcal{B}|$ = (n choose t)

 \odot How big is \mathcal{B} ? (Say when $\mathcal A$ is a threshold access structure)

- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"

 $|\mathcal{B}|$ = (n choose t)

- lacktriangle How big is \mathcal{B} ? (Say when $\mathcal A$ is a threshold access structure)
- Total share complexity = $\Sigma_{S \in \mathcal{B}}$ |S| field elements. (Compare with Shamir's scheme: n field elements in all.)

- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"

 $|\mathcal{B}|$ = (n choose t)

- $oldsymbol{\varnothing}$ How big is \mathcal{B} ? (Say when $\mathcal A$ is a threshold access structure)
- Total share complexity = $\Sigma_{S \in \mathcal{B}}$ |S| field elements. (Compare with Shamir's scheme: n field elements in all.) $t \cdot (n \text{ choose t})$

- Idea: For arbitrary monotonic access structure \mathcal{A} , there is a "basis" \mathcal{B} of minimal sets in \mathcal{A} . For each S in \mathcal{B} generate an (|S|,|S|) sharing, and distribute them to the members of S.
 - Works, but very "inefficient"

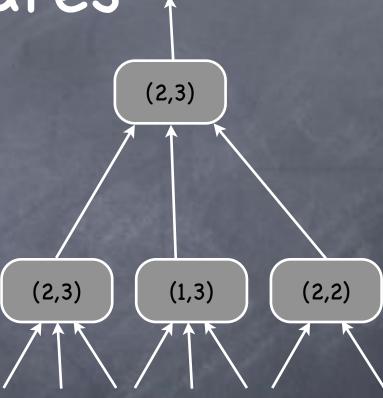
 $|\mathcal{B}|$ = (n choose t)

- lacktriangle How big is \mathcal{B} ? (Say when $\mathcal A$ is a threshold access structure)
- Total share complexity = $\Sigma_{S \in \mathcal{B}}$ |S| field elements. (Compare with Shamir's scheme: n field elements in all.) $t \cdot (n \text{ choose})$
- More efficient schemes known for large classes of access structures

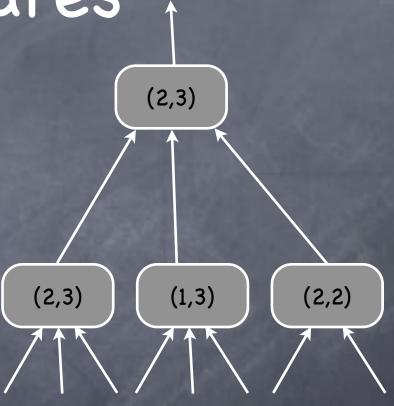
A simple generalization of threshold access structures

A simple generalization of threshold access structures

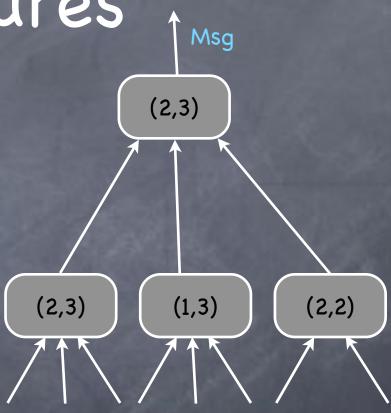
A threshold tree to specify the access structure



- A simple generalization of threshold access structures
 - A threshold tree to specify the access structure
 - Can realize by recursively threshold secret-sharing the shares



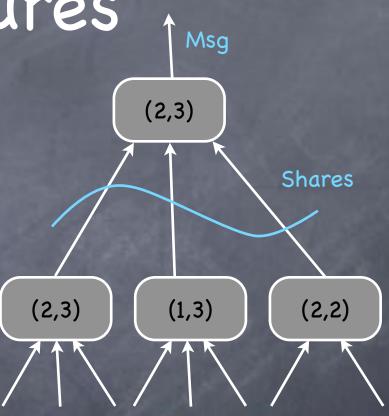
- A simple generalization of threshold access structures
 - A threshold tree to specify the access structure
 - Can realize by recursively threshold secret-sharing the shares



A simple generalization of threshold access structures

A threshold tree to specify the access structure

Can realize by recursively threshold secret-sharing the shares

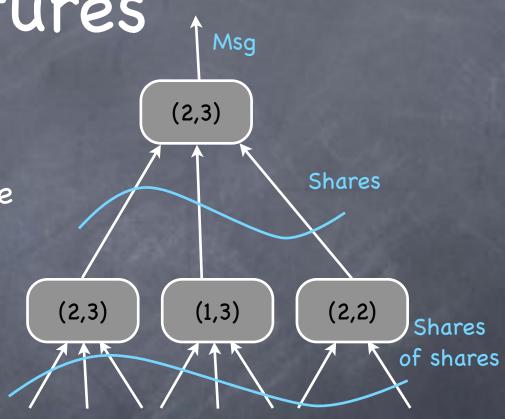


More General Access Structures

A simple generalization of threshold access structures

A threshold tree to specify the access structure

Can realize by recursively threshold secret-sharing the shares



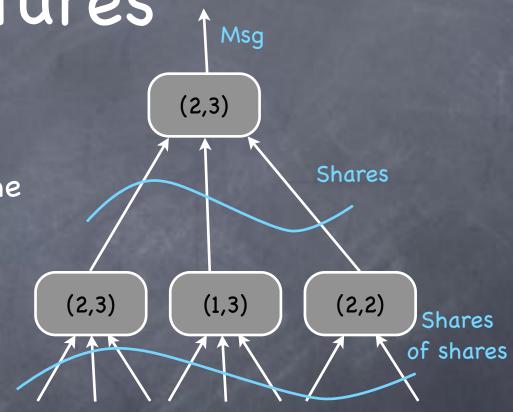
More General Access Structures

A simple generalization of threshold access structures

A threshold tree to specify the access structure

Can realize by recursively threshold secret-sharing the shares

A special case of access structures that can be specified using "monotone span programs"

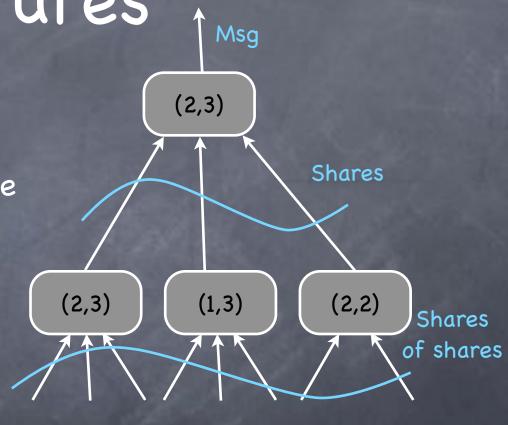


More General Access Structures

A simple generalization of threshold access structures

A threshold tree to specify the access structure

- Can realize by recursively threshold secret-sharing the shares
- A special case of access structures that can be specified using "monotone span programs"
 - Admits <u>linear</u> secret-sharing



Share(M): For some fixed $n \times t$ matrix W, let $\overline{s} = W \cdot \overline{c}$, where $c_0 = M$ and other t-1 coordinates are random.

- Share(M): For some fixed $n \times t$ matrix W, let $\overline{s} = W \cdot \overline{c}$, where $c_0 = M$ and other t-1 coordinates are random.
 - \odot The shares are subsets of coordinates of \overline{s}

- Share(M): For some fixed $n \times t$ matrix W, let $\overline{s} = W \cdot \overline{c}$, where $c_0 = M$ and other t-1 coordinates are random.
 - \odot The shares are subsets of coordinates of \overline{s}

- Share(M): For some fixed $n \times t$ matrix W, let $\overline{s} = W \cdot \overline{c}$, where $c_0 = M$ and other t-1 coordinates are random.
 - The shares are subsets of coordinates of s

Shamir Secret-Sharing is of this form

® Reconstruction: pool together all the available coordinates of \overline{s} ; can reconstruct if there are enough equations to solve for c_0

- Share(M): For some fixed $n \times t$ matrix W, let $\overline{s} = W \cdot \overline{c}$, where $c_0 = M$ and other t-1 coordinates are random.
 - The shares are subsets of coordinates of s

- @ Reconstruction: pool together all the available coordinates of \overline{s} ; can reconstruct if there are enough equations to solve for c_0
 - If not reconstructible, shares independent of secret

- Share(M): For some fixed $n \times t$ matrix W, let $\overline{s} = W \cdot \overline{c}$, where $c_0 = M$ and other t-1 coordinates are random.
 - \circ The shares are subsets of coordinates of \overline{s}

- @ Reconstruction: pool together all the available coordinates of \overline{s} ; can reconstruct if there are enough equations to solve for c_0
 - If not reconstructible, shares independent of secret
- May not correspond to a threshold access structure

- Share(M): For some fixed $n \times t$ matrix W, let $\overline{s} = W \cdot \overline{c}$, where $c_0 = M$ and other t-1 coordinates are random.
 - \odot The shares are subsets of coordinates of \overline{s}

- @ Reconstruction: pool together all the available coordinates of \overline{s} ; can reconstruct if there are enough equations to solve for c_0
 - If not reconstructible, shares independent of secret
- May not correspond to a threshold access structure
- Reconstruction too is a linear combination of available shares (coefficients depending on which subset of shares available)

Linearity of linear secret-sharing:

- Linearity of linear secret-sharing:
 - If two secrets m_1 , $m_2 \in \mathbb{F}$ have been shared and parties get shares $\{x_i\}$ and $\{y_i\}$ (also \mathbb{F} elements) as shares, then each party can locally obtain sharing $\{z_i\}$ of am_1+bm_2

- Linearity of linear secret-sharing:
 - If two secrets m_1 , $m_2 \in \mathbb{F}$ have been shared and parties get shares $\{x_i\}$ and $\{y_i\}$ (also \mathbb{F} elements) as shares, then each party can locally obtain sharing $\{z_i\}$ of am_1+bm_2
 - $z_i = ax_i + by_i$

- Linearity of linear secret-sharing:
 - If two secrets m_1 , $m_2 \in \mathbb{F}$ have been shared and parties get shares $\{x_i\}$ and $\{y_i\}$ (also \mathbb{F} elements) as shares, then each party can locally obtain sharing $\{z_i\}$ of am_1+bm_2
 - o $z_i = ax_i + by_i$

$$\overline{\mathbf{x}} = \mathbf{W} \cdot \overline{\mathbf{c}}_1$$
 $\overline{\mathbf{y}} = \mathbf{W} \cdot \overline{\mathbf{c}}_2$
 $\overline{\mathbf{z}} = \mathbf{W} \cdot (a\overline{\mathbf{c}}_1 + b\overline{\mathbf{c}}_2)$

- Linearity of linear secret-sharing:
 - If two secrets m_1 , $m_2 \in \mathbb{F}$ have been shared and parties get shares $\{x_i\}$ and $\{y_i\}$ (also \mathbb{F} elements) as shares, then each party can locally obtain sharing $\{z_i\}$ of am_1+bm_2
 - o $z_i = ax_i + by_i$
 - Useful in secure multiparty computation (later)

$$\overline{\mathbf{x}} = \mathbf{W} \cdot \overline{\mathbf{c}}_1$$
 $\overline{\mathbf{y}} = \mathbf{W} \cdot \overline{\mathbf{c}}_2$
 $\overline{\mathbf{z}} = \mathbf{W} \cdot (a\overline{\mathbf{c}}_1 + b\overline{\mathbf{c}}_2)$

- Linearity of linear secret-sharing:
 - If two secrets m_1 , $m_2 \in \mathbb{F}$ have been shared and parties get shares $\{x_i\}$ and $\{y_i\}$ (also \mathbb{F} elements) as shares, then each party can locally obtain sharing $\{z_i\}$ of am_1+bm_2

 $\mathbf{x} = \mathbf{W} \cdot \mathbf{c}_1$

 $\overline{y} = W \cdot \overline{c}_2$

 $\overline{z} = W \cdot (a\overline{c}_1 + b\overline{c}_2)$

$$z_i = ax_i + by_i$$

- Useful in secure multiparty computation (later)
- \odot Simple(st) example: from <u>additive</u> shares for two bits m_1 and m_2 , n parties can locally obtain an additive sharing of $m_1 \oplus m_2$

- Linearity of linear secret-sharing:
 - If two secrets m_1 , $m_2 \in \mathbb{F}$ have been shared and parties get shares $\{x_i\}$ and $\{y_i\}$ (also \mathbb{F} elements) as shares, then each party

can locally obtain sharing {z_i} of am₁+bm₂

$$z_i = ax_i + by_i$$

Useful in secure multiparty computation (later)

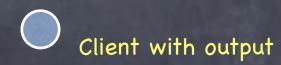
$$\overline{\mathbf{x}} = \mathbf{W} \cdot \overline{\mathbf{c}}_1$$
 $\overline{\mathbf{y}} = \mathbf{W} \cdot \overline{\mathbf{c}}_2$
 $\overline{\mathbf{z}} = \mathbf{W} \cdot (a\overline{\mathbf{c}}_1 + b\overline{\mathbf{c}}_2)$

- \odot Simple(st) example: from <u>additive</u> shares for two bits m_1 and m_2 , n_3 parties can locally obtain an additive sharing of $m_1 \oplus m_2$
 - Gives a "private summation" protocol

Gives a "private summation" protocol

Gives a "private summation" protocol

Gives a "private summation" protocol



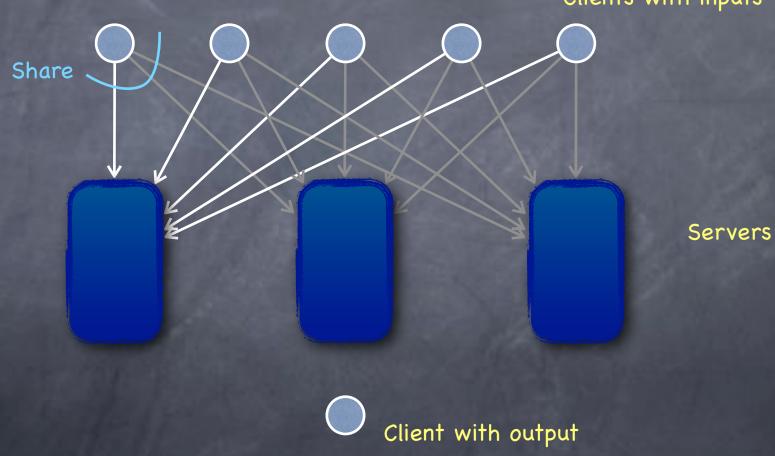
Gives a "private summation" protocol

Clients with inputs

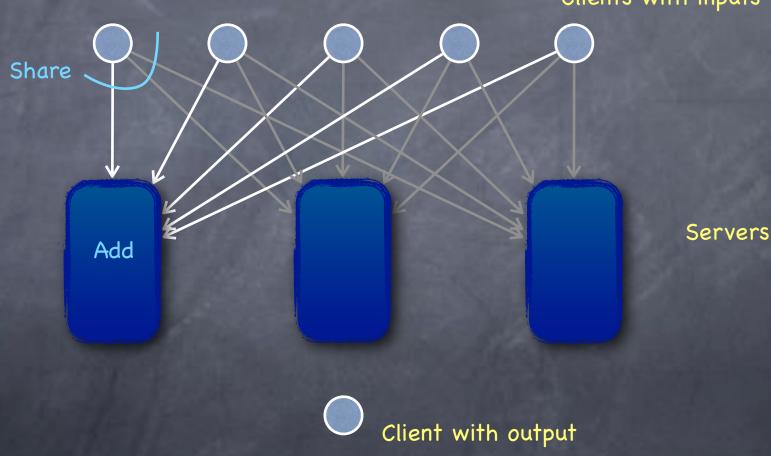
Servers

Client with output

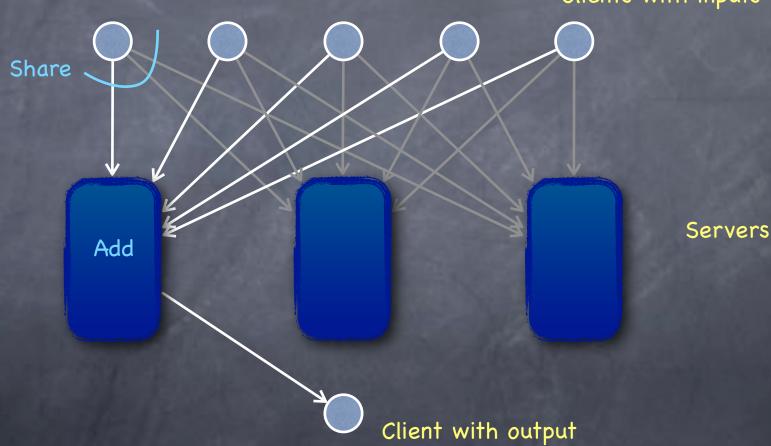
Gives a "private summation" protocol



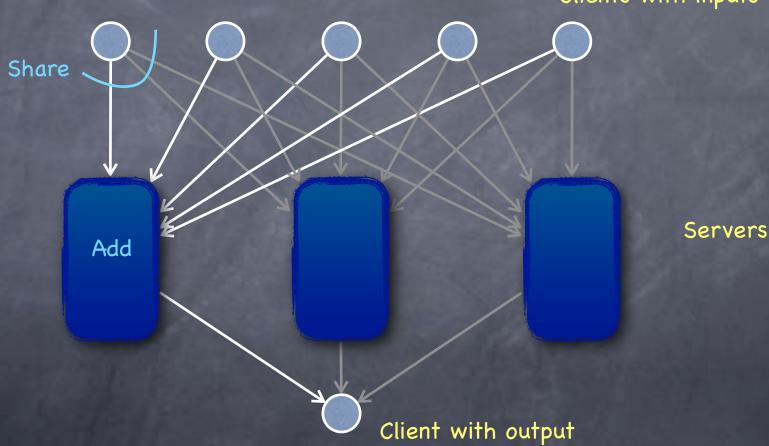
Gives a "private summation" protocol



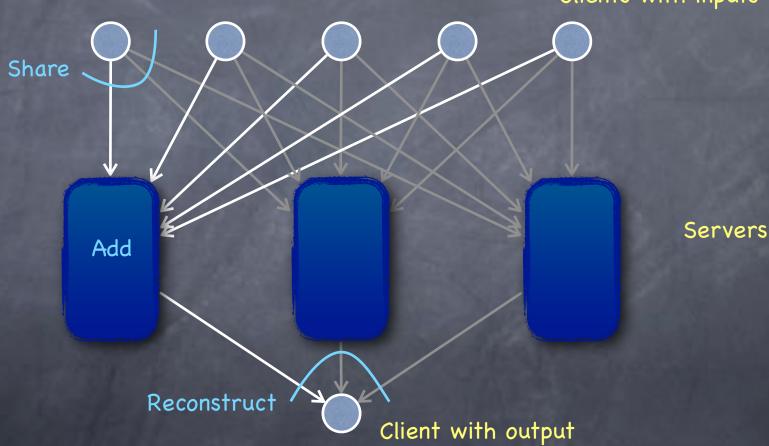
Gives a "private summation" protocol



Gives a "private summation" protocol



Gives a "private summation" protocol



Gives a "private summation" protocol

Clients with inputs Share Servers Add Reconstruct Client with output

Secure against <u>passive</u> corruption (no set of parties learn more than what they must) if at least one server is uncorrupted

Efficiency

Efficiency

Main measure: size of the shares (say, total of all shares)

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)
 - \odot Naive scheme for arbitrary monotonic access structure: if a party is in N sets in \mathcal{B} , N basic shares

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)
 - \odot Naive scheme for arbitrary monotonic access structure: if a party is in N sets in \mathcal{B} , N basic shares
 - \odot N can be exponential in n (as ${\mathcal B}$ can have exponentially many sets)

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)
 - \odot Naive scheme for arbitrary monotonic access structure: if a party is in N sets in \mathcal{B} , N basic shares
 - \odot N can be exponential in n (as $\mathcal B$ can have exponentially many sets)
 - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)
 - \odot Naive scheme for arbitrary monotonic access structure: if a party is in N sets in \mathcal{B} , N basic shares
 - \odot N can be exponential in n (as $\mathcal B$ can have exponentially many sets)
 - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
 - Ideal: if all shares are only this big (e.g. Shamir's scheme)

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)
 - \odot Naive scheme for arbitrary monotonic access structure: if a party is in N sets in \mathcal{B} , N basic shares
 - \odot N can be exponential in n (as $\mathcal B$ can have exponentially many sets)
 - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
 - Ideal: if all shares are only this big (e.g. Shamir's scheme)
 - Not all access structures have ideal schemes

- Main measure: size of the shares (say, total of all shares)
 - Shamir's: each share is as as big as the secret (a single field element)
 - \odot Naive scheme for arbitrary monotonic access structure: if a party is in N sets in \mathcal{B} , N basic shares
 - \odot N can be exponential in n (as $\mathcal B$ can have exponentially many sets)
 - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
 - Ideal: if all shares are only this big (e.g. Shamir's scheme)
 - Not all access structures have ideal schemes
 - Non-linear schemes can be more efficient than linear schemes

Guarding against possible malicious behavior by participants

- Guarding against possible malicious behavior by participants
 - Bad players: may substitute their shares to change the outcome (e.g., in additive sharing, can add to the outcome by adding to one's share)

- Guarding against possible malicious behavior by participants
 - Bad players: may substitute their shares to change the outcome (e.g., in additive sharing, can add to the outcome by adding to one's share)
 - Bad dealer (plus some bad players): may distribute shares which do not have a consistent secret (e.g., in Shamir's, if dealer uses a higher degree polynomial); if participating in reconstruction, may be able to fix the secret at that time, or, even if enough good players get together, deny them ability to reconstruct

- Guarding against possible malicious behavior by participants
 - Bad players: may substitute their shares to change the outcome (e.g., in additive sharing, can add to the outcome by adding to one's share)
 - Bad dealer (plus some bad players): may distribute shares which do not have a consistent secret (e.g., in Shamir's, if dealer uses a higher degree polynomial); if participating in reconstruction, may be able to fix the secret at that time, or, even if enough good players get together, deny them ability to reconstruct
- Privacy: if dealer is honest, adversary (who does not control an authorized set) learns nothing of the secret

- Guarding against possible malicious behavior by participants
 - Bad players: may substitute their shares to change the outcome (e.g., in additive sharing, can add to the outcome by adding to one's share)
 - Bad dealer (plus some bad players): may distribute shares which do not have a consistent secret (e.g., in Shamir's, if dealer uses a higher degree polynomial); if participating in reconstruction, may be able to fix the secret at that time, or, even if enough good players get together, deny them ability to reconstruct
- Privacy: if dealer is honest, adversary (who does not control an authorized set) learns nothing of the secret
- Correctness: if dealer honest, reconstruction correct; even if dealer corrupt, a fixed consistent secret at the end of sharing

Access structure and "Adversary Structure"

- Access structure and "Adversary Structure"
 - Latter saying who all can be malicious

- Access structure and "Adversary Structure"
 - Latter saying who all can be malicious
 - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)

- Access structure and "Adversary Structure"
 - Latter saying who all can be malicious
 - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)
- Typically require that for admissible adversary structures, if dealer honest, honest players in an authorized set will reconstruct the secret (even if malicious players in the set try to sabotage)

- Access structure and "Adversary Structure"
 - Latter saying who all can be malicious
 - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)
- Typically require that for admissible adversary structures, if dealer honest, honest players in an authorized set will reconstruct the secret (even if malicious players in the set try to sabotage)
- A broadcast channel is very useful (to force each player to tell everyone the same story)

- Access structure and "Adversary Structure"
 - Latter saying who all can be malicious
 - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)
- Typically require that for admissible adversary structures, if dealer honest, honest players in an authorized set will reconstruct the secret (even if malicious players in the set try to sabotage)
- A broadcast channel is very useful (to force each player to tell everyone the same story)
 - Broadcast can be achieved on top of point-to-point channels if only a small fraction (<1/3) corrupted</p>

- Access structure and "Adversary Structure"
 - Latter saying who all can be malicious
 - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)
- Typically require that for admissible adversary structures, if dealer honest, honest players in an authorized set will reconstruct the secret (even if malicious players in the set try to sabotage)
- A broadcast channel is very useful (to force each player to tell everyone the same story)
 - Broadcast can be achieved on top of point-to-point channels if only a small fraction (<1/3) corrupted</p>
 - Otherwise malicious players can cause denial-of-service

Secrecy: if view is independent of the message

- Secrecy: if view is independent of the message
 - Does not give unprivileged sets of parties any <u>additional</u> information about the message, than what they already had

- Secrecy: if view is independent of the message
 - Does not give unprivileged sets of parties any <u>additional</u> information about the message, than what they already had
 - Irrespective of their computational power

- Secrecy: if view is independent of the message
 - Does not give unprivileged sets of parties any <u>additional</u> information about the message, than what they already had
 - Irrespective of their computational power
- Such secrecy not always possible (e.g., no public-key encryption)

- Secrecy: if view is independent of the message
 - Does not give unprivileged sets of parties any <u>additional</u> information about the message, than what they already had
 - Irrespective of their computational power
- Such secrecy not always possible (e.g., no public-key encryption)
- Next: secrecy against computationally bounded players