Lecture 24

Signatures with various functionality/properties

- Signatures with various functionality/properties
- Constructions come in different flavors:

- Signatures with various functionality/properties
- Constructions come in different flavors:
 - Using minimal/general assumptions, often simple, but not very efficient (e.g., involving NIZK for general NP statements)

- Signatures with various functionality/properties
- Constructions come in different flavors:
 - Using minimal/general assumptions, often simple, but not very efficient (e.g., involving NIZK for general NP statements)
 - Simple and efficient ones in the Random Oracle Model

- Signatures with various functionality/properties
- Constructions come in different flavors:
 - Using minimal/general assumptions, often simple, but not very efficient (e.g., involving NIZK for general NP statements)
 - Simple and efficient ones in the Random Oracle Model
 - Relatively efficient ones under specific assumptions (often relatively strong/new assumptions)

- Signatures with various functionality/properties
- Constructions come in different flavors:
 - Using minimal/general assumptions, often simple, but not very efficient (e.g., involving NIZK for general NP statements)
 - Simple and efficient ones in the Random Oracle Model
 - Relatively efficient ones under specific assumptions (often relatively strong/new assumptions)
- Definitions sometimes have subtleties (not all of them have ideal functionality specifications)

Multiple signers signing the same message

- Multiple signers signing the same message
 - Each signer has an (SK,VK) pair

- Multiple signers signing the same message
 - Each signer has an (SK,VK) pair
- Resulting signature must be "compact": size independent of the number of signers

- Multiple signers signing the same message
 - Each signer has an (SK,VK) pair
- Resulting signature must be "compact": size independent of the number of signers
- Security requirement: Unforgeability (chosen message security)

Following Schnorr Signature: a digital signature scheme secure in the Random Oracle model under the discrete log assumption

- Following Schnorr Signature: a digital signature scheme secure in the Random Oracle model under the discrete log assumption
 - Signing key is x and Verification key is $X = g^{x}$

- Following Schnorr Signature: a digital signature scheme secure in the Random Oracle model under the discrete log assumption
 - Signing key is x and Verification key is $X = g^x$
 - Sign(m;x): compute $R=g^r$, h=H(m,R), s=r+hx. Output (h,s)

- Following Schnorr Signature: a digital signature scheme secure in the Random Oracle model under the discrete log assumption
 - Signing key is x and Verification key is $X = g^x$
 - Sign(m;x): compute $R=g^r$, h=H(m,R), s=r+hx. Output (h,s)
 - Verify(m,(h,s);X): check if h = H(m,gsX-h)

- Following Schnorr Signature: a digital signature scheme secure in the Random Oracle model under the discrete log assumption
 - Signing key is x and Verification key is $X = g^{x}$
 - Sign(m;x): compute $R=g^r$, h=H(m,R), s=r+hx. Output (h,s)
 - Verify(m,(h,s);X): check if h = H(m,gsX-h)
- Alternately Sign(m;x) outputs (R,s). Verify(m,(R,s);X) checks if $g^s = RX^h$ for h = H(m,R)

- Following Schnorr Signature: a digital signature scheme secure in the Random Oracle model under the discrete log assumption
 - Signing key is x and Verification key is $X = g^x$
 - Sign(m;x): compute $R=g^r$, h=H(m,R), s=r+hx. Output (h,s)
 - Verify(m,(h,s);X): check if h = H(m,gsX-h)
- Alternately Sign(m;x) outputs (R,s). Verify(m,(R,s);X) checks if g^s = RX^h for h = H(m,R)
- Security by showing that a forger can be used to get distinct signatures (h_1,s_1) , (h_2,s_2) with same (m,R) (but different h, by programming the RO) that lets us solve for x

- Following Schnorr Signature: a digital signature scheme secure in the Random Oracle model under the discrete log assumption
 - Signing key is x and Verification key is $X = g^{x}$
 - Sign(m;x): compute $R=g^r$, h=H(m,R), s=r+hx. Output (h,s)
 - Verify(m,(h,s);X): check if h = H(m,gsX-h)
- Alternately Sign(m;x) outputs (R,s). Verify(m,(R,s);X) checks if g^s = RX^h for h = H(m,R)
- Security by showing that a forger can be used to get distinct signatures (h_1,s_1) , (h_2,s_2) with same (m,R) (but different h, by programming the RO) that lets us solve for x
- Extended to a multi-signature scheme [BN'06]

Schnorr: Sign(m;x) = (R,s) where $R=g^r$, s=r+hx for h=H(m,R). Verify(m,(R,s);X) checks if $g^s=RX^h$ for h=H(m,R)

- Schnorr: Sign(m;x) = (R,s) where R= g^r , s = r + hx for h=H(m,R). Verify(m,(R,s);X) checks if g^s = RX^h for h = H(m,R)
- For multiple signers with keys $X_1,...,X_n$ can create an "aggregated" signature (R,s) such that $g^s = R.X_1^{h1}...X_n^{hn}$, where $h_i = H(m,R,X_i,n)$

- Schnorr: Sign(m;x) = (R,s) where $R=g^r$, s=r+hx for h=H(m,R). Verify(m,(R,s);X) checks if $g^s=RX^h$ for h=H(m,R)
- For multiple signers with keys $X_1,...,X_n$ can create an "aggregated" signature (R,s) such that $g^s = R.X_1^{h1}...X_n^{hn}$, where $h_i = H(m,R,X_i,n)$
 - Signing done sequentially by individual signers (user i has x_i). Initially set R=1 (identity in the group) and s=0. Then:

- Schnorr: Sign(m;x) = (R,s) where $R=g^r$, s=r+hx for h=H(m,R). Verify(m,(R,s);X) checks if $g^s=RX^h$ for h=H(m,R)
- For multiple signers with keys $X_1,...,X_n$ can create an "aggregated" signature (R,s) such that $g^s = R.X_1^{h1}...X_n^{hn}$, where $h_i = H(m,R,X_i,n)$
 - Signing done sequentially by individual signers (user i has x_i). Initially set R=1 (identity in the group) and s=0. Then:
 - $AddSign(m;(R',s');x_i) = (R,s)$ where $R=R'.g^{ri}$ and $s=s'+r_i+h_ix_i$

- Schnorr: Sign(m;x) = (R,s) where $R=g^r$, s=r+hx for h=H(m,R). Verify(m,(R,s);X) checks if $g^s=RX^h$ for h=H(m,R)
- For multiple signers with keys $X_1,...,X_n$ can create an "aggregated" signature (R,s) such that $g^s = R.X_1^{h1}...X_n^{hn}$, where $h_i = H(m,R,X_i,n)$
 - Signing done sequentially by individual signers (user i has x_i). Initially set R=1 (identity in the group) and s=0. Then:
 - $AddSign(m;(R',s');x_i) = (R,s) where R=R'.g^{ri} and s = s' + r_i + h_ix_i$
 - \odot So that finally R = $g^r = g^{r1+...+rn}$ and $s = r + h_1x_1 + ... + h_nx_n$

- Schnorr: Sign(m;x) = (R,s) where $R=g^r$, s = r + hx for h=H(m,R). Verify(m,(R,s);X) checks if $g^s = RX^h$ for h = H(m,R)
- For multiple signers with keys $X_1,...,X_n$ can create an "aggregated" signature (R,s) such that $g^s = R.X_1^{h1}...X_n^{hn}$, where $h_i = H(m,R,X_i,n)$
 - Signing done sequentially by individual signers (user i has x_i). Initially set R=1 (identity in the group) and s=0. Then:
 - AddSign(m;(R',s');x_i) = (R,s) where R=R'.g^{ri} and s = s' + r_i + h_ix_i
 - \odot So that finally R = $g^r = g^{r1+...+rn}$ and $s = r + h_1x_1 + ... + h_nx_n$
- Security by showing that a forger succeeds with same (m,R) when given two distinct answers for h₁ (by programming the RO)

 Generalization of multi-signatures where multiple signers may have different messages

- Generalization of multi-signatures where multiple signers may have different messages
- Sequential aggregation: each signer gets the aggregated signature so far and adds her signature into it

- Generalization of multi-signatures where multiple signers may have different messages
- Sequential aggregation: each signer gets the aggregated signature so far and adds her signature into it
- General aggregation: signatures can be created independently and then aggregated in arbitrary order

Water's Signature: Secure if the Computational Diffie-Hellman assumption holds in a group with bilinear pairings (no RO)

- Water's Signature: Secure if the Computational Diffie-Hellman assumption holds in a group with bilinear pairings (no RO)
 - Signing key is x and verification key is X := $e(g,g)^x$, and generators $u_0,u_1,...,u_k$ (for k bit long messages)

- Water's Signature: Secure if the Computational Diffie-Hellman assumption holds in a group with bilinear pairings (no RO)
 - Signing key is x and verification key is $X := e(g,g)^x$, and generators $u_0,u_1,....,u_k$ (for k bit long messages)
 - Sign(m;x) = (R,S) where R=g^r and S = g^x H^r, where H = $u_0.u_1^{m1}...u_k^{mk}$

- Water's Signature: Secure if the Computational Diffie-Hellman assumption holds in a group with bilinear pairings (no RO)
 - Signing key is x and verification key is $X := e(g,g)^x$, and generators $u_0,u_1,....,u_k$ (for k bit long messages)
 - Sign(m;x) = (R,S) where R=g^r and S = g^x H^r, where H = $u_0.u_1^{m1}...u_k^{mk}$
 - \circ Verify(m,(R,S);X,u,u₁,...,u_k): check e(S,g) = e(R,H).X

- Water's Signature: Secure if the Computational Diffie-Hellman assumption holds in a group with bilinear pairings (no RO)
 - Signing key is x and verification key is X := $e(g,g)^x$, and generators $u_0,u_1,...,u_k$ (for k bit long messages)
 - Sign(m;x) = (R,S) where R=g^r and S = g^x H^r, where H = $u_0.u_1^{m1}...u_k^{mk}$
 - \circ Verify(m,(R,S);X,u,u₁,...,u_k): check e(S,g) = e(R,H).X
- Extended to a sequential aggregate scheme [LOSSW'06]

For user i verification key is $X_i := e(g,g)^{x_i}$, and $u^i_0, u^i_1, ..., u^i_k$. Signing key is x_i and $y^i_0, y^i_1, ..., y^i_k$ where $u^i_j = g^{y_{ij}}$

- For user i verification key is $X_i := e(g,g)^{x_i}$, and $u^i_0, u^i_1, ..., u^i_k$. Signing key is x_i and $y^i_0, y^i_1, ..., y^i_k$ where $u^i_j = g^{y_i j}$
- Signature will be (R,S) where $R=g^{r1+..+rn}$, $S=g^{x1+..xn}$ (H₁ ... H_n) $r^{1+..+rn}$

- For user i verification key is $X_i := e(g,g)^{x_i}$, and $u^i_0, u^i_1, ..., u^i_k$. Signing key is x_i and $y^i_0, y^i_1, ..., y^i_k$ where $u^i_j = g^{y_i j}$
- Signature will be (R,S) where $R=g^{r1+..+rn}$, $S=g^{x1+..xn}$ (H₁ ... H_n)^{r1+..+rn}
- Verification of signature (R,S) for messages ($m^1,...,m^n$): check if $e(S,g) = e(R,H_1)X_1 ... e(R,H_n)X_n$ where $H_i = u^i_0.(u^i_1)^{m1}...(u^i_k)^{mk}$

- For user i verification key is $X_i := e(g,g)^{x_i}$, and $u^i_0, u^i_1,, u^i_k$. Signing key is x_i and $y^i_0, y^i_1, ..., y^i_k$ where $u^i_j = g^{y_i j}$
- Signature will be (R,S) where $R=g^{r_1+..+r_n}$, $S=g^{x_1+..x_n}$ (H₁ ... H_n) $r_1+..+r_n$
- Verification of signature (R,S) for messages ($m^1,...,m^n$): check if $e(S,g) = e(R,H_1)X_1 ... e(R,H_n)X_n$ where $H_i = u^i_0.(u^i_1)^{m1}...(u^i_k)^{mk}$
- Signing done sequentially by individual signers. Initially set R=1 and S = 1 (identity in the group). Then:

- For user i verification key is $X_i := e(g,g)^{x_i}$, and $u^i_0, u^i_1, ..., u^i_k$. Signing key is x_i and $y^i_0, y^i_1, ..., y^i_k$ where $u^i_j = g^{y_{ij}}$
- Signature will be (R,S) where $R=g^{r_1+..+r_n}$, $S=g^{x_1+..x_n}$ (H₁ ... H_n) $r_1+..+r_n$
- Verification of signature (R,S) for messages ($m^1,...,m^n$): check if $e(S,g) = e(R,H_1)X_1 ... e(R,H_n)X_n$ where $H_i = u^i_0.(u^i_1)^{m1}...(u^i_k)^{mk}$
- Signing done sequentially by individual signers. Initially set R=1 and S = 1 (identity in the group). Then:
 - AddSign(mⁱ,(R',S'); x_i , y^i_0 , y^i_1 ,..., y^i_k) = ReRand(R",S"), where R"=R' and S" = S'.g^{xi}.(R')^{hi} where h_i s.t. g^{hi} = H_i

- For user i verification key is $X_i := e(g,g)^{x_i}$, and $u^i_0, u^i_1, ..., u^i_k$. Signing key is x_i and $y^i_0, y^i_1, ..., y^i_k$ where $u^i_j = g^{y_{ij}}$
- Signature will be (R,S) where $R=g^{r1+..+rn}$, $S=g^{x1+..xn}$ (H₁ ... H_n)^{r1+..+rn}
- Verification of signature (R,S) for messages ($m^1,...,m^n$): check if $e(S,g) = e(R,H_1)X_1 ... e(R,H_n)X_n$ where $H_i = u^i_0.(u^i_1)^{m1}...(u^i_k)^{mk}$
- Signing done sequentially by individual signers. Initially set R=1 and S = 1 (identity in the group). Then:
 - AddSign(mⁱ,(R',S'); x_i , y^i_0 , y^i_1 ,..., y^i_k) = ReRand(R",S"), where R"=R' and S" = S'.g^{xi}.(R')^{hi} where h_i s.t. g^{hi} = H_i
 - @ ReRand(R",S") = (R,S), where R = R"g[†] and S = S" (H₁..H_i)[†]

To speed up verification of a collection of signatures

- To speed up verification of a collection of signatures
 - Batching done by the verifier

- To speed up verification of a collection of signatures
 - Batching done by the verifier
 - Incomparable to aggregate signatures

- To speed up verification of a collection of signatures
 - Batching done by the verifier
 - Incomparable to aggregate signatures
 - Batch verifiable signature scheme reduces verification time, but does not reduce the total size of signatures that verifier gets. Retains individual signatures (that can be forwarded/re-batched).

- To speed up verification of a collection of signatures
 - Batching done by the verifier
 - Incomparable to aggregate signatures
 - Batch verifiable signature scheme reduces verification time, but does not reduce the total size of signatures that verifier gets. Retains individual signatures (that can be forwarded/re-batched).
 - Aggregate signatures saves on bandwidth and verification time, but does not allow un-aggregating the signatures

@ Idea: to verify several equations of the form $Z_i = g^{zi}$, pick random weights w_i and check $\Pi_i \ Z_i^{wi} = g^{\sum zi.wi}$

- Idea: to verify several equations of the form $Z_i = g^{zi}$, pick random weights w_i and check $\Pi_i Z_i^{wi} = g^{\sum zi.wi}$
 - If one (or more) equation is wrong, probability of verifying is 1/q, where q is the size of the domain of w_i . Efficiency by using a small domain (say $\{0,1\}$) for w_i .

- Idea: to verify several equations of the form $Z_i = g^{zi}$, pick random weights w_i and check $\Pi_i Z_i^{wi} = g^{\sum zi.wi}$
 - If one (or more) equation is wrong, probability of verifying is 1/q, where q is the size of the domain of w_i . Efficiency by using a small domain (say $\{0,1\}$) for w_i .
 - Can repeat k times (independent of number of signatures)

- Idea: to verify several equations of the form $Z_i = g^{zi}$, pick random weights w_i and check $\Pi_i Z_i^{wi} = g^{\sum zi.wi}$
 - If one (or more) equation is wrong, probability of verifying is 1/q, where q is the size of the domain of w_i . Efficiency by using a small domain (say $\{0,1\}$) for w_i .
 - Can repeat k times (independent of number of signatures)
- Similarly for pairing equations, but with further optimizations

- Idea: to verify several equations of the form $Z_i = g^{zi}$, pick random weights w_i and check $\Pi_i Z_i^{wi} = g^{\sum zi.wi}$
 - If one (or more) equation is wrong, probability of verifying is 1/q, where q is the size of the domain of w_i . Efficiency by using a small domain (say $\{0,1\}$) for w_i .
 - Can repeat k times (independent of number of signatures)
- Similarly for pairing equations, but with further optimizations
 - e.g. Waters' signature: e(S,g)=e(R,H).X (g same for all signers)

- Idea: to verify several equations of the form $Z_i = g^{zi}$, pick random weights w_i and check $\Pi_i Z_i^{wi} = g^{\sum zi.wi}$
 - If one (or more) equation is wrong, probability of verifying is 1/q, where q is the size of the domain of w_i . Efficiency by using a small domain (say $\{0,1\}$) for w_i .
 - Can repeat k times (independent of number of signatures)
- Similarly for pairing equations, but with further optimizations
 - e.g. Waters' signature: e(S,g)=e(R,H).X (g same for all signers)
 - © Can save on number of pairing operations using $\Pi_i e(S_i,g)^{wi} = \Pi_i e(S_i^{wi},g) = e(\Pi_i S_i^{wi},g)$

To sign a message "anonymously" [CvH'91]

- To sign a message "anonymously" [CvH'91]
 - Signature shows that message was signed by some member of a group

- To sign a message "anonymously" [CvH'91]
 - Signature shows that message was signed by some member of a group
 - But a group manager can "trace" the signer

- To sign a message "anonymously" [CvH'91]
 - Signature shows that message was signed by some member of a group
 - But a group manager can "trace" the signer
 - However, the group manager or other group members "cannot frame" a member

Full-Anonymity: Adversary gives (m,ID₀,ID₁) and gets back Sign(m;ID_b) for a random bit b. Advantage of the adversary in finding b should be negligible.

- Full-Anonymity: Adversary gives (m,ID₀,ID₁) and gets back Sign(m;ID_b) for a random bit b. Advantage of the adversary in finding b should be negligible.
 - Adversary knows secret keys of all group-members, and has oracle access to the "tracing algorithm" (but not allowed to query it on the challenge)

- Full-Anonymity: Adversary gives (m,ID₀,ID₁) and gets back Sign(m;ID_b) for a random bit b. Advantage of the adversary in finding b should be negligible.
 - Adversary knows secret keys of all group-members, and has oracle access to the "tracing algorithm" (but not allowed to query it on the challenge)
 - Implies unlinkability (can't link signatures from same user)

- Full-Anonymity: Adversary gives (m,ID₀,ID₁) and gets back Sign(m;ID_b) for a random bit b. Advantage of the adversary in finding b should be negligible.
 - Adversary knows secret keys of all group-members, and has oracle access to the "tracing algorithm" (but not allowed to query it on the challenge)
 - Implies unlinkability (can't link signatures from same user)
- Full-Traceability: If a set of group members collude and create a valid signature, the <u>tracing algorithm</u> will trace at least one member of the set. This holds even if the group manager is passively corrupt.

- Full-Anonymity: Adversary gives (m,ID₀,ID₁) and gets back Sign(m;ID_b) for a random bit b. Advantage of the adversary in finding b should be negligible.
 - Adversary knows secret keys of all group-members, and has oracle access to the "tracing algorithm" (but not allowed to query it on the challenge)
 - Implies unlinkability (can't link signatures from same user)
- Full-Traceability: If a set of group members collude and create a valid signature, the <u>tracing algorithm</u> will trace at least one member of the set. This holds even if the group manager is passively corrupt.
 - Implies unforgeability (i.e., with no group members colluding with it, adversary cannot produce a valid signature) and framing-resistance (even colluding with the group manager)

A general construction: using a digital signature scheme, a CCA secure encryption scheme, and a "simulation-sound" NIZK [BMW'03]

- A general construction: using a digital signature scheme, a CCA secure encryption scheme, and a "simulation-sound" NIZK [BMW'03]
- Each member's signing key SK*_i consists of a key-pair (VK_i,SK_i) and a certificate from the group-manager for VK_i (optionally binding it to ID_i)

Group Signatures

- A general construction: using a digital signature scheme, a CCA secure encryption scheme, and a "simulation-sound" NIZK [BMW'03]
- Each member's signing key SK*_i consists of a key-pair (VK_i,SK_i) and a certificate from the group-manager for VK_i (optionally binding it to ID_i)
- Signature is (C,π) , C being an encryption of (s,SK^*_i) where s is a signature on the message using SK_i and π being a proof (w.r.t a CRS in the group's public-key) that C is correct (and in particular, contains a correct s and SK^*)

Group Signatures

- A general construction: using a digital signature scheme, a CCA secure encryption scheme, and a "simulation-sound" NIZK [BMW'03]
- Each member's signing key SK*_i consists of a key-pair (VK_i,SK_i) and a certificate from the group-manager for VK_i (optionally binding it to ID_i)
- Signature is (C,π) , C being an encryption of (s,SK^*_i) where s is a signature on the message using SK_i and π being a proof (w.r.t a CRS in the group's public-key) that C is correct (and in particular, contains a correct s and SK^*)
- Tracing algorithm decrypts C to find SK*; and hence ID;

For "leaking secrets"

- For "leaking secrets"
 - Similar to group signatures, but with unwitting collaborators

- For "leaking secrets"
 - Similar to group signatures, but with unwitting collaborators
 - i.e. the "ring" is not a priori fixed

- For "leaking secrets"
 - Similar to group signatures, but with unwitting collaborators
 - i.e. the "ring" is not a priori fixed
 - And no manager who can trace the signer

Recall T-OWP/RO based signature

- Recall T-OWP/RO based signature

- Recall T-OWP/RO based signature

 - \odot Sign(m;F⁻¹) = F⁻¹(H(m))

- Recall T-OWP/RO based signature

 - \circ Sign(m;F⁻¹) = F⁻¹(H(m))
 - Verify(S;F): check if H(m) = F(S)

- Recall T-OWP/RO based signature
 - $(SK,VK) = (F^{-1},F)$
 - \circ Sign(m;F⁻¹) = F⁻¹(H(m))
 - Verify(S;F): check if H(m) = F(S)
- Extended to a ring signature [RST'01]

- Recall T-OWP/RO based signature

 - \circ Sign(m;F⁻¹) = F⁻¹(H(m))
 - Verify(S;F): check if H(m) = F(S)
- Extended to a ring signature [RST'01]
- \bullet Verify(m, (S₁,...,S_n); (F₁,...,F_n)) : check H(m) = F₁(S₁) + ... + F_n(S_n)

- Recall T-OWP/RO based signature

 - \odot Sign(m;F⁻¹) = F⁻¹(H(m))
 - Verify(S;F): check if H(m) = F(S)
- Extended to a ring signature [RST'01]
- Verify(m, $(S_1,...,S_n)$; $(F_1,...,F_n)$): check $H(m) = F_1(S_1) + ... + F_n(S_n)$
- Sign (m; F_1^{-1} , F_2 ,..., F_n) = (S₁,..., S_n) where S₂,..., S_n are random and S₁ = F_1^{-1} (H(m) F_2 (S₂) ... F_n (S_n))

- Recall T-OWP/RO based signature
 - \circ (SK,VK) = (F⁻¹,F)
 - \odot Sign(m;F⁻¹) = F⁻¹(H(m))
 - Verify(S;F): check if H(m) = F(S)
- Extended to a ring signature [RST'01]
- \bullet Verify(m, (S₁,...,S_n); (F₁,...,F_n)): check H(m) = F₁(S₁) + ... + F_n(S_n)
- Sign (m; F_1^{-1} , F_2 ,..., F_n) = (S_1 ,..., S_n) where S_2 ,..., S_n are random and $S_1 = F_1^{-1}$ ($H(m) F_2(S_2) ... F_n(S_n)$)
- Unwitting collaborators: Fi's could be the verification keys for a standard signature scheme

Ring signature allows statements of the form
 (P₁ signed m) or (P₂ signed m) or or (P_n signed m)

- Ring signature allows statements of the form
 (P₁ signed m) or (P₂ signed m) or or (P_n signed m)
- Mesh signatures extend this to more complex statements

- Ring signature allows statements of the form
 (P₁ signed m) or (P₂ signed m) or or (P_n signed m)
- Mesh signatures extend this to more complex statements
 - \odot e.g., (P₁ signed m₁) or ((P₂ signed m₂) and (P₃ signed m₃))

- Ring signature allows statements of the form
 (P₁ signed m) or (P₂ signed m) or or (P_n signed m)
- Mesh signatures extend this to more complex statements
 - \odot e.g., (P₁ signed m₁) or ((P₂ signed m₂) and (P₃ signed m₃))
 - @ e.g., some two out of the three statements (P_1 signed m_1), (P_2 signed m_2), (P_3 signed m_3) hold

- Ring signature allows statements of the form
 (P₁ signed m) or (P₂ signed m) or or (P_n signed m)
- Mesh signatures extend this to more complex statements
 - \odot e.g., (P₁ signed m₁) or ((P₂ signed m₂) and (P₃ signed m₃))
 - @ e.g., some two out of the three statements (P_1 signed m_1), (P_2 signed m_2), (P_3 signed m_3) hold
 - Signature is produced by the relevant parties collaborating

- Ring signature allows statements of the form
 (P₁ signed m) or (P₂ signed m) or or (P_n signed m)
- Mesh signatures extend this to more complex statements
 - \odot e.g., (P₁ signed m₁) or ((P₂ signed m₂) and (P₃ signed m₃))
 - @ e.g., some two out of the three statements (P_1 signed m_1), (P_2 signed m_2), (P_3 signed m_3) hold
 - Signature is produced by the relevant parties collaborating
 - Security requirements: Unforgeability and Hiding

"Claim-and-endorse": Claim to have attributes satisfying a certain policy, and sign a message

- "Claim-and-endorse": Claim to have attributes satisfying a certain policy, and sign a message
 - Soundness: can't forge, even by colluding

- "Claim-and-endorse": Claim to have attributes satisfying a certain policy, and sign a message
 - Soundness: can't forge, even by colluding
 - Hiding: Verification without learning how the policy was satisfied

- "Claim-and-endorse": Claim to have attributes satisfying a certain policy, and sign a message
 - Soundness: can't forge, even by colluding
 - Hiding: Verification without learning how the policy was satisfied
 - Also unlinkable: cannot link multiple signatures as originating from the same signer

- "Claim-and-endorse": Claim to have attributes satisfying a certain policy, and sign a message
 - Soundness: can't forge, even by colluding
 - Hiding: Verification without learning how the policy was satisfied
 - Also unlinkable: cannot link multiple signatures as originating from the same signer
- c.f. Mesh signatures: here, instead of multiple parties signing a message, a single party with multiple attributes

Suppose Signer wants to control when/how often the signature can be verified, but signature is a commitment to a message

- Suppose Signer wants to control when/how often the signature can be verified, but signature is a commitment to a message
 - Verification is via an interactive protocol

- Suppose Signer wants to control when/how often the signature can be verified, but signature is a commitment to a message
 - Verification is via an interactive protocol
 - It lets the signer verifiably accept or deny endorsing the message

- Suppose Signer wants to control when/how often the signature can be verified, but signature is a commitment to a message
 - Verification is via an interactive protocol
 - It lets the signer verifiably accept or deny endorsing the message
 - Signer refusing to deny can be taken as accepting

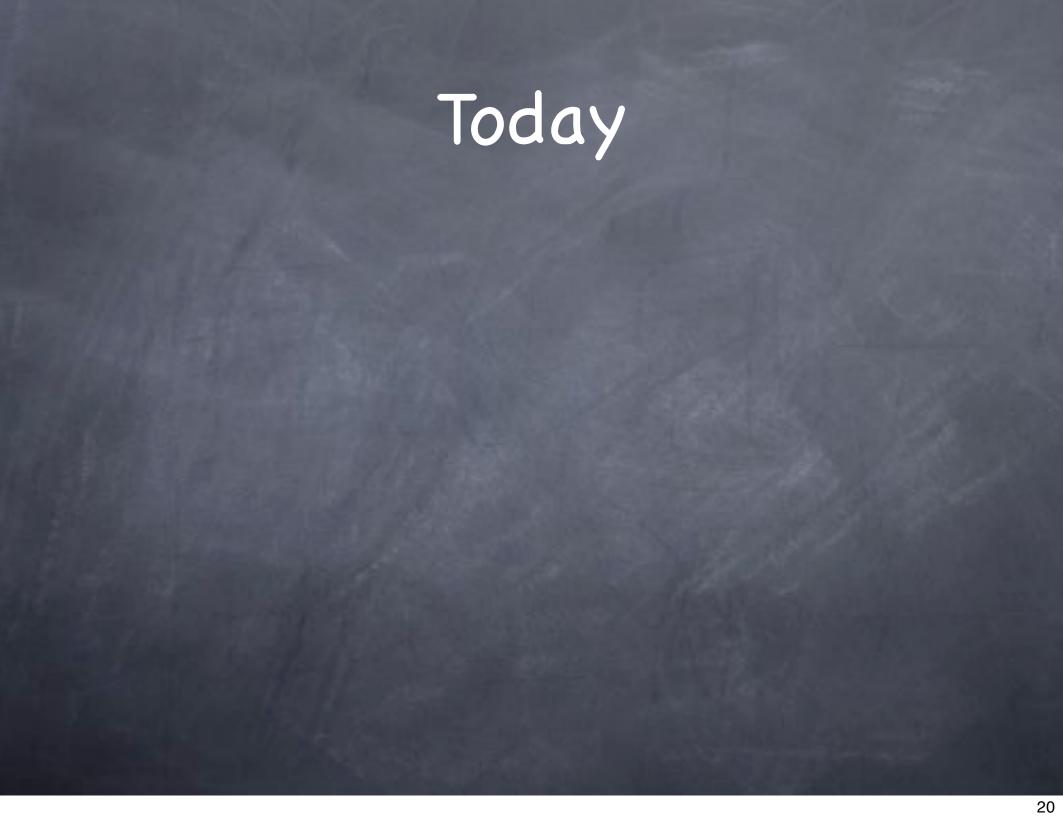
- Suppose Signer wants to control when/how often the signature can be verified, but signature is a commitment to a message
 - Verification is via an interactive protocol
 - It lets the signer verifiably accept or deny endorsing the message
 - Signer refusing to deny can be taken as accepting
- Zero-knowledge verification: A verifier cannot transfer a signature that it verified

- Suppose Signer wants to control when/how often the signature can be verified, but signature is a commitment to a message
 - Verification is via an interactive protocol
 - It lets the signer verifiably accept or deny endorsing the message
 - Signer refusing to deny can be taken as accepting
- Zero-knowledge verification: A verifier cannot transfer a signature that it verified
- Note: Still allows multiple (mutually distrusting) verifiers to be convinced if they run a secure MPC protocol to implement a virtual verifier

Signature addressed to a single designated verifier

- Signature addressed to a single designated verifier
 - Verifier cannot convince others of the validity of the signature

- Signature addressed to a single designated verifier
 - Verifier cannot convince others of the validity of the signature
 - e.g. a ring signature with a ring of size 2, containing the signer and the designated verifier



Signatures

- Signatures
 - Multi-signatures

- Signatures
 - Multi-signatures
 - Aggregate Signatures

- Signatures
 - Multi-signatures
 - Aggregate Signatures
 - Signatures with Batch verification

- Signatures
 - Multi-signatures
 - Aggregate Signatures
 - Signatures with Batch verification
 - Group signatures

- Signatures
 - Multi-signatures
 - Aggregate Signatures
 - Signatures with Batch verification
 - Group signatures
 - Ring and Mesh signatures

- Signatures
 - Multi-signatures
 - Aggregate Signatures
 - Signatures with Batch verification
 - Group signatures
 - Ring and Mesh signatures
 - Attribute-Based signatures

- Signatures
 - Multi-signatures
 - Aggregate Signatures
 - Signatures with Batch verification
 - Group signatures
 - Ring and Mesh signatures
 - Attribute-Based signatures
 - Undeniable signatures

- Signatures
 - Multi-signatures
 - Aggregate Signatures
 - Signatures with Batch verification
 - Group signatures
 - Ring and Mesh signatures
 - Attribute-Based signatures
 - Undeniable signatures
 - Designated verifier signatures

- Signatures
 - Multi-signatures
 - Aggregate Signatures
 - Signatures with Batch verification
 - Group signatures
 - Ring and Mesh signatures
 - Attribute-Based signatures
 - Undeniable signatures
 - Designated verifier signatures
- Next up: digital cash

- Signatures
 - Multi-signatures
 - Aggregate Signatures
 - Signatures with Batch verification
 - Group signatures
 - Ring and Mesh signatures
 - Attribute-Based signatures
 - Undeniable signatures
 - Designated verifier signatures
- Next up: digital cash
 - Using Blind signatures and P-signatures