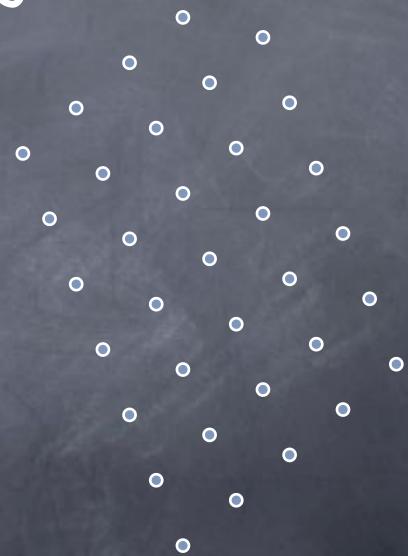
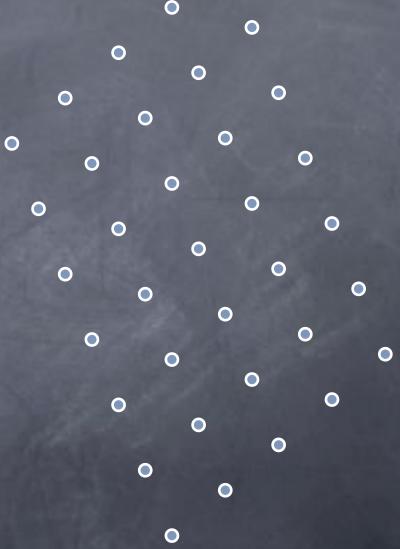
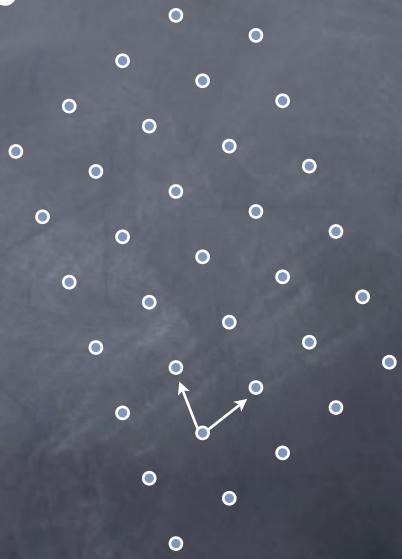
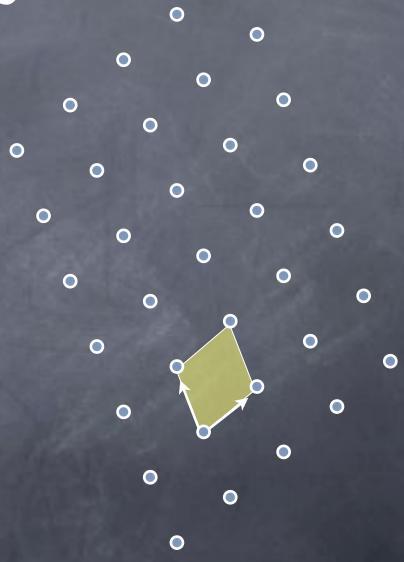
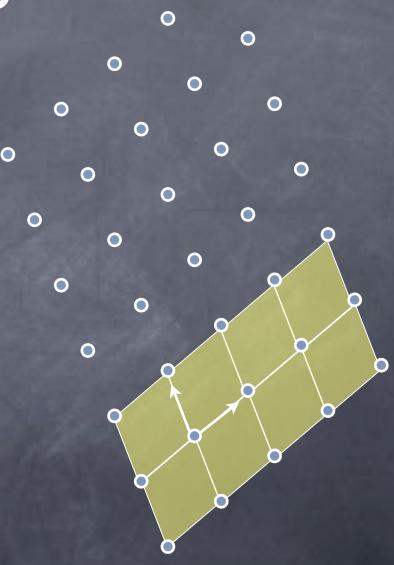
Lattice Cryptography Lecture 21



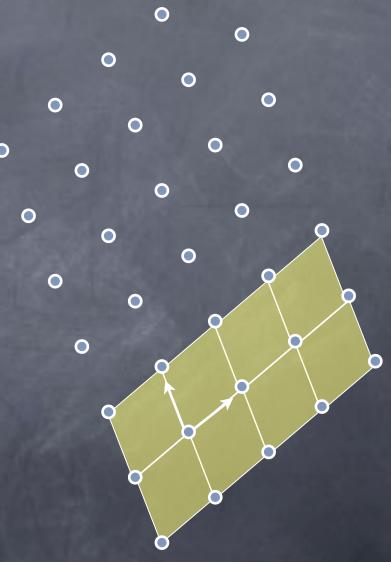




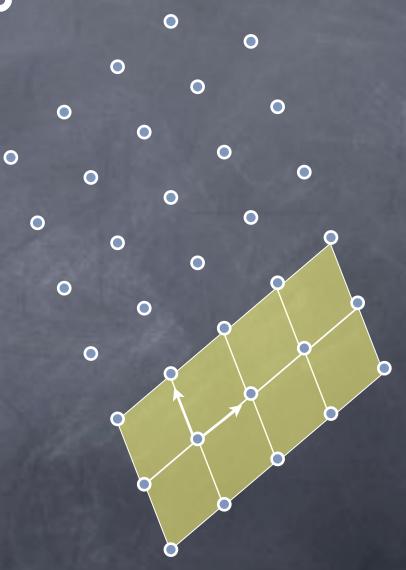




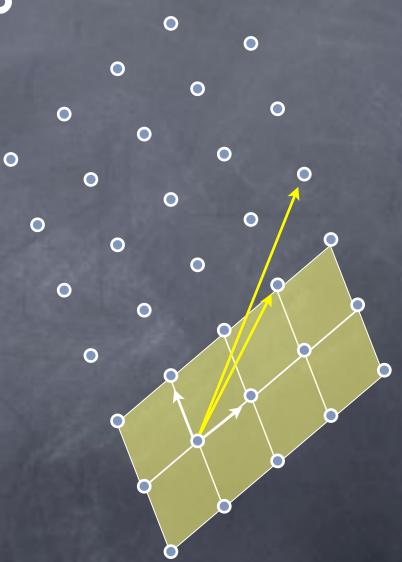
- ${\color{red} @}$ A infinite set of points in \mathbb{R}^n obtained by tiling with a "basis"



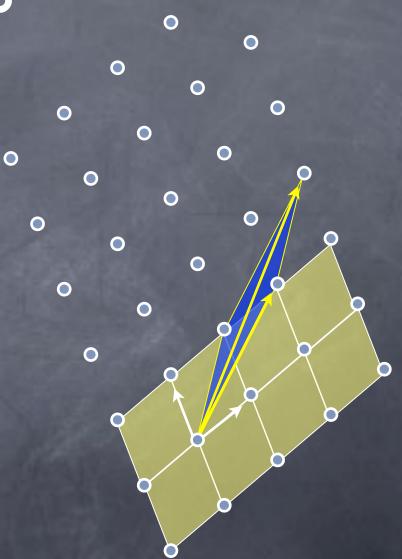
- A infinite set of points in Rⁿ obtained by tiling with a "basis"
 - \odot Formally, $\{ \Sigma_i \times_i \mathbf{b_i} \mid x_i \text{ integers } \}$
- Basis is not unique



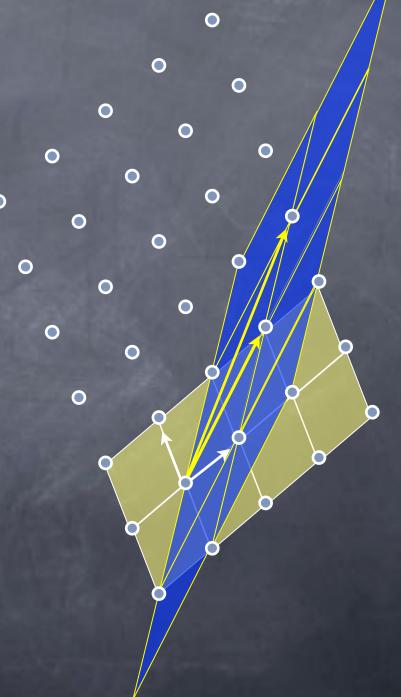
- A infinite set of points in Rⁿ obtained by tiling with a "basis"
 - \odot Formally, $\{ \Sigma_i \times_i \mathbf{b_i} \mid x_i \text{ integers } \}$
- Basis is not unique



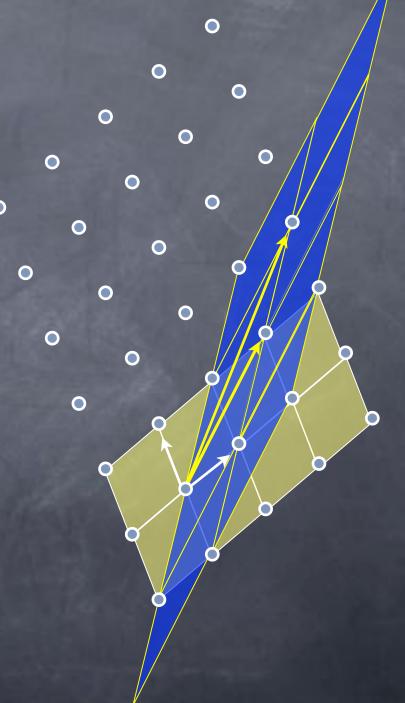
- A infinite set of points in Rⁿ obtained by tiling with a "basis"
 - \odot Formally, $\{ \Sigma_i \times_i \mathbf{b_i} \mid x_i \text{ integers } \}$
- Basis is not unique



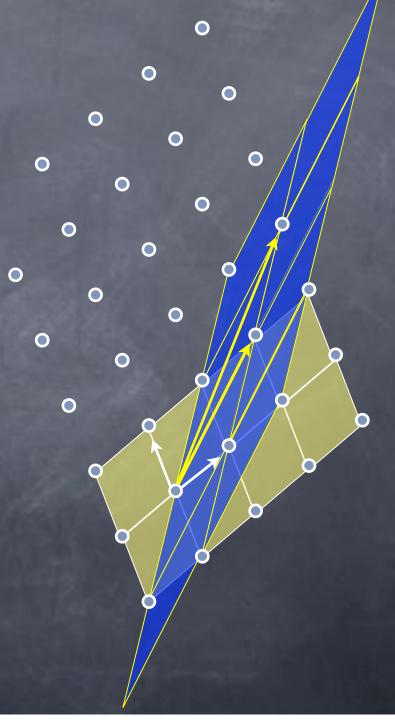
- - \odot Formally, $\{ \Sigma_i \times_i \mathbf{b_i} \mid x_i \text{ integers } \}$
- Basis is not unique



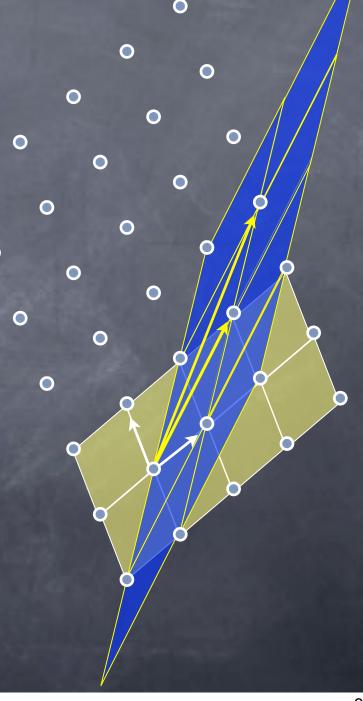
- A infinite set of points in Rⁿ obtained by tiling with a "basis"
 - \circ Formally, $\{ \Sigma_i \times_i \mathbf{b_i} \mid x_i \text{ integers } \}$
- Basis is not unique
- Several problems related to highdimensional lattices are believed to be hard, with cryptographic applications



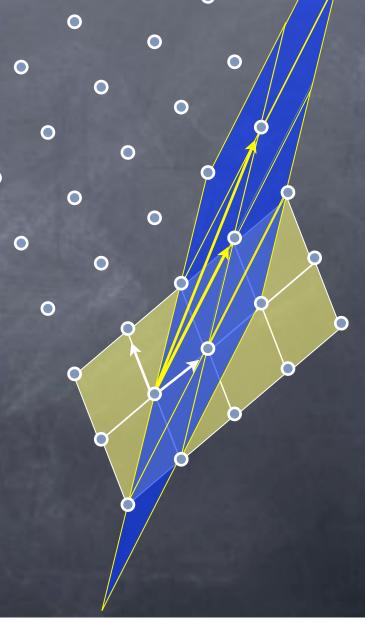
- A infinite set of points in Rⁿ obtained by tiling with a "basis"
 - \odot Formally, $\{ \Sigma_i \times_i \mathbf{b_i} \mid x_i \text{ integers } \}$
- Basis is not unique
- Several problems related to highdimensional lattices are believed to be hard, with cryptographic applications
 - Hardness assumptions are "milder" (worst-case hardness)



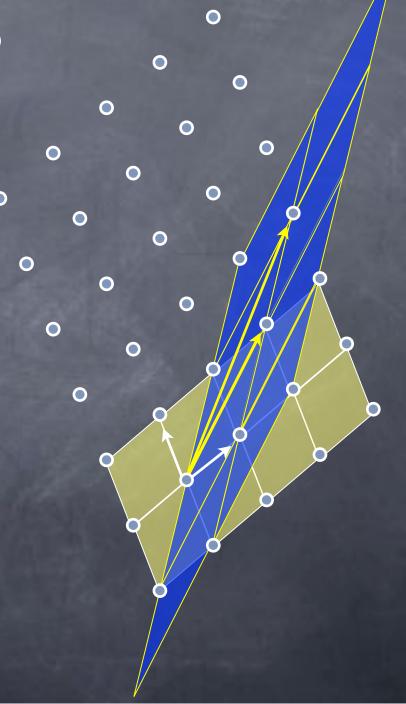
- A infinite set of points in Rⁿ obtained by tiling with a "basis"
 - \odot Formally, $\{ \Sigma_i \times_i \mathbf{b_i} \mid x_i \text{ integers } \}$
- Basis is not unique
- Several problems related to highdimensional lattices are believed to be hard, with cryptographic applications
 - Hardness assumptions are "milder" (worst-case hardness)
 - Believed to hold even against quantum computation: "Post-Quantum Cryptography"



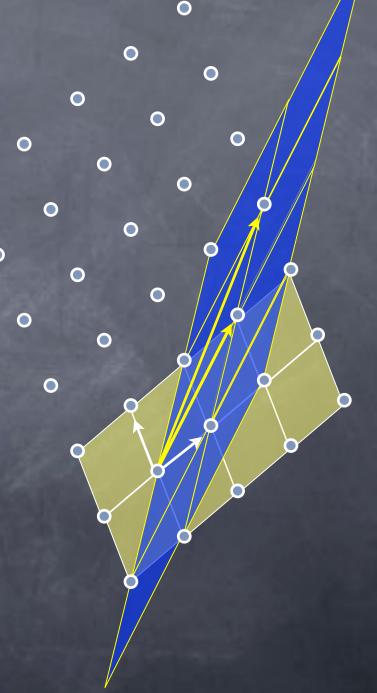
Given a basis $\{\underline{b}_1,...,\underline{b}_m\}$ in \mathbb{R}^n , lattice has points $\{\Sigma_i \times_i \underline{b}_i \mid x_i \text{ integers }\}$



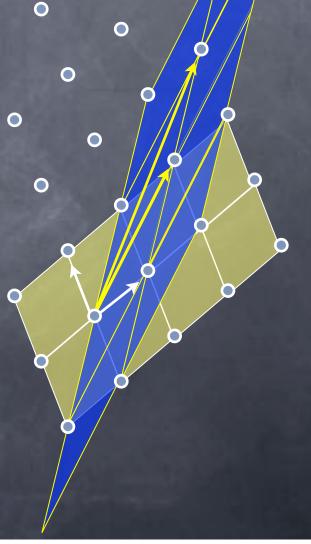
- Given a basis $\{b_1,...,b_m\}$ in \mathbb{R}^n , lattice has points $\{\Sigma_i \times_i b_i \mid x_i \text{ integers }\}$
- An interesting case: lattices in \mathbb{Z}_q^n



- Given a basis $\{\underline{b}_1,...,\underline{b}_m\}$ in \mathbb{R}^n , lattice has points $\{\Sigma_i \times_i \underline{b}_i \mid x_i \text{ integers }\}$
- $oldsymbol{\circ}$ An interesting case: lattices in \mathbb{Z}_q^n
 - \odot Given an nxm matrix A over \mathbb{Z}_q two n-dimensional lattices associated with A



- Given a basis $\{\underline{b}_1,...,\underline{b}_m\}$ in \mathbb{R}^n , lattice has points $\{\Sigma_i \times_i \underline{b}_i \mid x_i \text{ integers }\}$
- $oldsymbol{\circ}$ An interesting case: lattices in \mathbb{Z}_q^n
 - \odot Given an nxm matrix A over \mathbb{Z}_q two ndimensional lattices associated with A
 - LA: Vectors spanned by rows of A



- Given a basis $\{\underline{b}_1,...,\underline{b}_m\}$ in \mathbb{R}^n , lattice has points $\{\Sigma_i \times_i \underline{b}_i \mid x_i \text{ integers }\}$
- $oldsymbol{\circ}$ An interesting case: lattices in \mathbb{Z}_q^n
 - \odot Given an nxm matrix A over \mathbb{Z}_q two ndimensional lattices associated with A
 - LA: Vectors spanned by rows of A

0

- Given a basis $\{\underline{b}_1,...,\underline{b}_m\}$ in \mathbb{R}^n , lattice has points $\{\Sigma_i \times_i \underline{b}_i \mid x_i \text{ integers }\}$
- lacktriangle An interesting case: lattices in \mathbb{Z}_q^n
 - \odot Given an nxm matrix A over \mathbb{Z}_q two n-dimensional lattices associated with A
 - L_A: Vectors spanned by rows of A
 - \odot Operations mod q (i.e., over \mathbb{Z}_q)

- Given a basis $\{\underline{b}_1,...,\underline{b}_m\}$ in \mathbb{R}^n , lattice has points $\{\Sigma_i \times_i \underline{b}_i \mid x_i \text{ integers }\}$
- \odot An interesting case: lattices in \mathbb{Z}_q^n
 - \odot Given an nxm matrix A over \mathbb{Z}_q two n-dimensional lattices associated with A
 - L_A: Vectors spanned by rows of A
 - \odot Operations mod q (i.e., over \mathbb{Z}_q)
- Dual lattice L*: { $\underline{v} \mid \langle \underline{v}, \underline{u} \rangle$ is an integer }

- Given a basis $\{\underline{b}_1,...,\underline{b}_m\}$ in \mathbb{R}^n , lattice has points $\{\Sigma_i \times_i \underline{b}_i \mid x_i \text{ integers }\}$
- \odot An interesting case: lattices in \mathbb{Z}_q^n
 - \odot Given an nxm matrix A over \mathbb{Z}_q two n-dimensional lattices associated with A
 - L_A: Vectors spanned by rows of A
 - \odot Operations mod q (i.e., over \mathbb{Z}_q)
- Dual lattice L*: { $\underline{v} \mid \langle \underline{v}, \underline{u} \rangle$ is an integer }
 - @ e.g. $(L_A)^* = 1/q L_{A^{\perp}}$ and $(L_{A^{\perp}})^* = 1/q L_{A^{\perp}}$



Several problems related to lattices are believed to be computationally hard in high dimensions

- Several problems related to lattices are believed to be computationally hard in high dimensions
- © Closest Vector Problem (CVP): Given a point in \mathbb{R}^n , find the point closest to it in the lattice

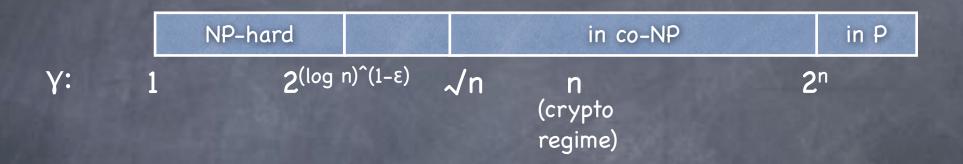
- Several problems related to lattices are believed to be computationally hard in high dimensions
- © Closest Vector Problem (CVP): Given a point in \mathbb{R}^n , find the point closest to it in the lattice
- Shortest Vector Problem (SVP): Given a lattice basis, find the shortest non-zero vector in the lattice

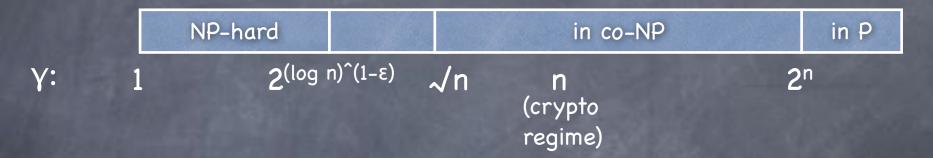
- Several problems related to lattices are believed to be computationally hard in high dimensions
- © Closest Vector Problem (CVP): Given a point in \mathbb{R}^n , find the point closest to it in the lattice
- Shortest Vector Problem (SVP): Given a lattice basis, find the shortest non-zero vector in the lattice
 - \odot SVP_Y: find one within a factor γ of the shortest

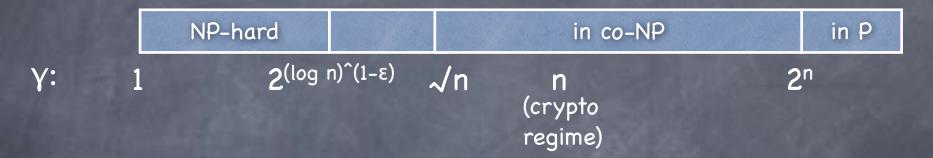
- Several problems related to lattices are believed to be computationally hard in high dimensions
- © Closest Vector Problem (CVP): Given a point in \mathbb{R}^n , find the point closest to it in the lattice
- Shortest Vector Problem (SVP): Given a lattice basis, find the shortest non-zero vector in the lattice
 - \odot SVP_Y: find one within a factor γ of the shortest
 - @ GapSVP $_{Y}$: decide if the length of the shortest vector is < 1 or > Y (promised to be one of the two)

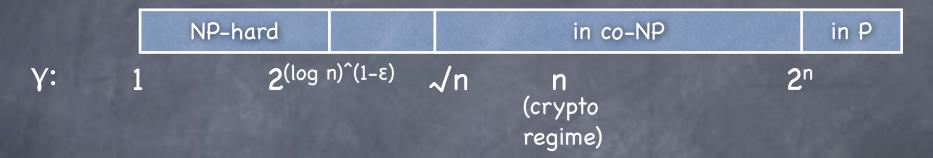
- Several problems related to lattices are believed to be computationally hard in high dimensions
- © Closest Vector Problem (CVP): Given a point in \mathbb{R}^n , find the point closest to it in the lattice
- Shortest Vector Problem (SVP): Given a lattice basis, find the shortest non-zero vector in the lattice
 - \odot SVP_Y: find one within a factor γ of the shortest
 - @ GapSVP $_{Y}$: decide if the length of the shortest vector is < 1 or > Y (promised to be one of the two)

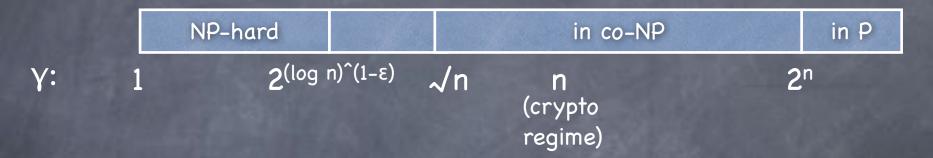
- Several problems related to lattices are believed to be computationally hard in high dimensions
- © Closest Vector Problem (CVP): Given a point in \mathbb{R}^n , find the point closest to it in the lattice
- Shortest Vector Problem (SVP): Given a lattice basis, find the shortest non-zero vector in the lattice
 - \odot SVP_Y: find one within a factor γ of the shortest
 - @ GapSVP $_{Y}$: decide if the length of the shortest vector is < 1 or > Y (promised to be one of the two)
- Shortest Independent Vector Problem (SIVP): Find n independent vectors minimizing the longest of them





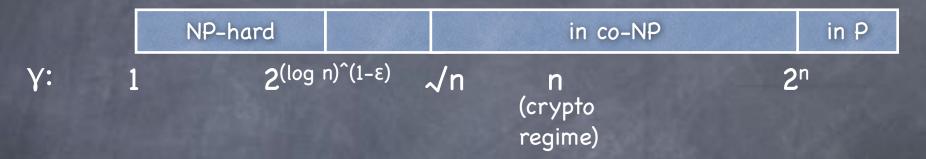






Lattices in Cryptography

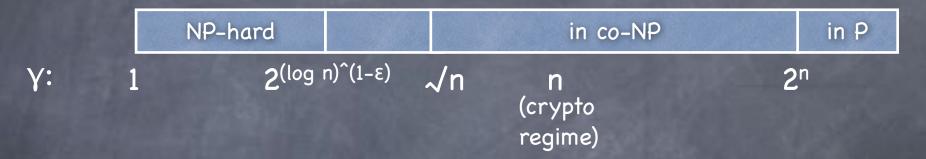
Worst-case hardness of lattice problems (e.g. GapSVP)



Assumptions about worst-case hardness (e.g. P≠NP) are qualitatively simpler than that of average-case hardness

Lattices in Cryptography

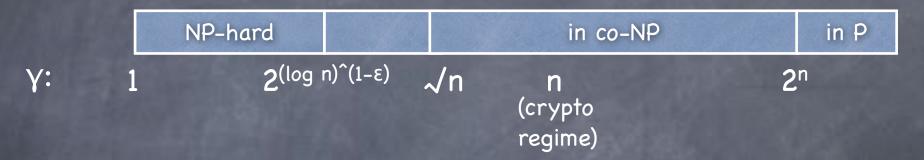
Worst-case hardness of lattice problems (e.g. GapSVP)



- Assumptions about worst-case hardness (e.g. P≠NP) are qualitatively simpler than that of average-case hardness
 - Crypto requires average-case hardness

Lattices in Cryptography

Worst-case hardness of lattice problems (e.g. GapSVP)



- Assumptions about worst-case hardness (e.g. P≠NP) are qualitatively simpler than that of average-case hardness
 - Crypto requires average-case hardness
 - For many lattice problems average-case hardness assumptions are implied by worst-case hardness of related problems (but at regimes not known to be NP-hard)

LWE: given noisy inner-products of random vectors with a hidden vector, find the hidden vector

- LWE: given noisy inner-products of random vectors with a hidden vector, find the hidden vector
 - Given $\langle \underline{a_1}, \underline{s} \rangle + \underline{e_1}$, ..., $\langle \underline{a_m}, \underline{s} \rangle + \underline{e_m}$ and $\underline{a_1}, ..., \underline{a_m}$ find s. $\underline{a_i}$ uniform, $\underline{e_i}$ Gaussian noise

- LWE: given noisy inner-products of random vectors with a hidden vector, find the hidden vector
 - Given $\langle \underline{a}_1, \underline{s} \rangle + \underline{e}_1$, ..., $\langle \underline{a}_m, \underline{s} \rangle + \underline{e}_m$ and $\underline{a}_1, \ldots, \underline{a}_m$ find s. \underline{a}_i uniform, \underline{e}_i Gaussian noise
- LWE-Decision version: distinguish between such an input and a random input

- LWE: given noisy inner-products of random vectors with a hidden vector, find the hidden vector
 - Given $\langle \underline{a}_1, \underline{s} \rangle + \underline{e}_1$, ..., $\langle \underline{a}_m, \underline{s} \rangle + \underline{e}_m$ and $\underline{a}_1, \ldots, \underline{a}_m$ find s. \underline{a}_i uniform, \underline{e}_i Gaussian noise
- LWE-Decision version: distinguish between such an input and a random input
- Assumed to be hard (note: average-case hardness). Has been connected with worst-case hardness of GapSVP

- LWE: given noisy inner-products of random vectors with a hidden vector, find the hidden vector
 - Given $\langle \underline{a}_1, \underline{s} \rangle + \underline{e}_1$, ..., $\langle \underline{a}_m, \underline{s} \rangle + \underline{e}_m$ and $\underline{a}_1, \ldots, \underline{a}_m$ find s. \underline{a}_i uniform, \underline{e}_i Gaussian noise
- LWE-Decision version: distinguish between such an input and a random input
- Assumed to be hard (note: average-case hardness). Has been connected with worst-case hardness of GapSVP
 - Turns out to be a very useful assumption

- - x required to be a "short" vector (i.e., each co-ordinate in the range [0,d-1] for some small d)

- - x required to be a "short" vector (i.e., each co-ordinate in the range [0,d-1] for some small d)
 - A is an n x m matrix: maps m log d bits to n log q bits (for compression we require m > n log_dq)

- - x required to be a "short" vector (i.e., each co-ordinate in the range [0,d-1] for some small d)
 - A is an n x m matrix: maps m log d bits to n log q bits (for compression we require m > n log_dq)
 - © Collision yields a short vector (co-ordinates in [-(d-1),d-1]) \mathbf{z} s.t $A\mathbf{z}$ = 0: i.e., a short vector in the lattice L_A^{\perp}

- - x required to be a "short" vector (i.e., each co-ordinate in the range [0,d-1] for some small d)
 - A is an n x m matrix: maps m log d bits to n log q bits (for compression we require m > n log_dq)
 - © Collision yields a short vector (co-ordinates in [-(d-1),d-1]) \mathbf{z} s.t $A\mathbf{z}$ = 0: i.e., a short vector in the lattice L_A^{\perp}
 - Simple to compute: if d small (say, d=2, i.e., x binary), f(x) can be computed using $O(m \log n)$ additions mod q

- - x required to be a "short" vector (i.e., each co-ordinate in the range [0,d-1] for some small d)
 - A is an n x m matrix: maps m log d bits to n log q bits (for compression we require m > n log_dq)
 - © Collision yields a short vector (co-ordinates in [-(d-1),d-1]) \mathbf{z} s.t $A\mathbf{z}$ = 0: i.e., a short vector in the lattice L_A^{\perp}
 - Simple to compute: if d small (say, d=2, i.e., x binary), f(x) can be computed using $O(m \log n)$ additions mod q
- If sufficiently compressing (say by half), a CRHF is also a OWF

© Collision yields a short vector (co-ordinates in [-(d-1),d-1]) \mathbf{z} s.t $A\mathbf{z}$ = 0: i.e., a short vector in the lattice L_A^{\perp}

- © Collision yields a short vector (co-ordinates in [-(d-1),d-1]) \mathbf{z} s.t $A\mathbf{z}$ = 0: i.e., a short vector in the lattice L_A^{\perp}
 - Considered hard when A is chosen uniformly at random

- © Collision yields a short vector (co-ordinates in [-(d-1),d-1]) \mathbf{z} s.t $A\mathbf{z}$ = 0: i.e., a short vector in the lattice L_A^{\perp}
 - Considered hard when A is chosen uniformly at random
 - This is as hard as solving certain lattice problems in <u>the worst</u> <u>case</u> (i.e., with good success probability for <u>every instance</u> of the problem)

The hash function is described by an n x m matrix over \mathbb{Z}_q , where n is the security parameter and m > n

- The hash function is described by an n x m matrix over \mathbb{Z}_q , where n is the security parameter and m > n
 - Large key and correspondingly large number of operations

- The hash function is described by an n x m matrix over \mathbb{Z}_q , where n is the security parameter and m > n
 - Large key and correspondingly large number of operations
- Using "ideal lattices"

- The hash function is described by an n x m matrix over \mathbb{Z}_q , where n is the security parameter and m > n
 - Large key and correspondingly large number of operations
- Using "ideal lattices"
 - @ Have more structure: a random basis for such a lattice can be represented using just m elements of \mathbb{Z}_q (instead of mn)

- The hash function is described by an n x m matrix over \mathbb{Z}_q , where n is the security parameter and m > n
 - Large key and correspondingly large number of operations
- Using "ideal lattices"
 - @ Have more structure: a random basis for such a lattice can be represented using just m elements of \mathbb{Z}_q (instead of mn)
 - \odot Matrix multiplication can be carried out faster (using FFT) with $\tilde{O}(m)$ operations over \mathbb{Z}_q (instead of O(mn))

- $_{\text{@}}$ The hash function is described by an n x m matrix over $\mathbb{Z}_{q},$ where n is the security parameter and m > n
 - Large key and correspondingly large number of operations
- Using "ideal lattices"
 - $m{\varnothing}$ Have more structure: a random basis for such a lattice can be represented using just m elements of \mathbb{Z}_q (instead of mn)
 - \odot Matrix multiplication can be carried out faster (using FFT) with $\widetilde{O}(m)$ operations over \mathbb{Z}_q (instead of O(mn))
- Security depends on worst-case hardness of same problems as before, but when restricted to ideal lattices

NTRU/GGH approach: Private key is a "good" basis, and the public key is a "bad basis"

- NTRU/GGH approach: Private key is a "good" basis, and the public key is a "bad basis"
 - Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis

- NTRU/GGH approach: Private key is a "good" basis, and the public key is a "bad basis"
 - Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis
- To encrypt a message, encode it (randomized) as a short "noise vector" u. Output c = v+u for a lattice point v that is chosen using the public basis

- NTRU/GGH approach: Private key is a "good" basis, and the public key is a "bad basis"
 - Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis
- To encrypt a message, encode it (randomized) as a short "noise vector" u. Output c = v+u for a lattice point v that is chosen using the public basis
 - To decrypt, use the good basis to find v as the closest lattice vector to c, and recover u=c-v

- NTRU/GGH approach: Private key is a "good" basis, and the public key is a "bad basis"
 - Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis
- To encrypt a message, encode it (randomized) as a short "noise vector" u. Output c = v+u for a lattice point v that is chosen using the public basis
 - To decrypt, use the good basis to find v as the closest lattice vector to c, and recover u=c-v
- NTRU Encryption: use lattices with succinct basis

- NTRU/GGH approach: Private key is a "good" basis, and the public key is a "bad basis"
 - Worst basis (one that can be efficiently computed from any basis): Hermite Normal Form (HNF) basis
- To encrypt a message, encode it (randomized) as a short "noise vector" u. Output c = v+u for a lattice point v that is chosen using the public basis
 - To decrypt, use the good basis to find v as the closest lattice vector to c, and recover u=c-v
- NTRU Encryption: use lattices with succinct basis
- Conjectured to be CPA secure. No security reduction known to simple lattice problems

A subset-sum approach:

- A subset-sum approach:
 - Encryption of bit 0 is a point from a uniform distribution (over an interval of integers); encryption of 1 comes from a "wavy" distribution of secret period

- A subset-sum approach:
 - Encryption of bit 0 is a point from a uniform distribution (over an interval of integers); encryption of 1 comes from a "wavy" distribution of secret period
 - Public-key gives several points from the wavy distribution that can be combined (subset sum) to get more points from the wavy distribution

- A subset-sum approach:
 - Encryption of bit 0 is a point from a uniform distribution (over an interval of integers); encryption of 1 comes from a "wavy" distribution of secret period
 - Public-key gives several points from the wavy distribution that can be combined (subset sum) to get more points from the wavy distribution
 - Secret-key consists of the period: enough for a statistical test to distinguish the two distributions

- A subset-sum approach:
 - Encryption of bit 0 is a point from a uniform distribution (over an interval of integers); encryption of 1 comes from a "wavy" distribution of secret period
 - Public-key gives several points from the wavy distribution that can be combined (subset sum) to get more points from the wavy distribution
 - Secret-key consists of the period: enough for a statistical test to distinguish the two distributions
 - © CPA Security: distinguishing the uniform and wavy distributions can be used to distinguish between noise added to lattices obtained as duals of lattices either with no short vector or with a unique short vector

An LWE based approach:

- An LWE based approach:

- An LWE based approach:
 - @ Public-key is (A,P) where P=AS+E, for random matrices (of appropriate dimensions) A and S, and a noise matrix E over \mathbb{Z}_q
 - To encrypt an n bit message, first map it to a vector $\underline{\mathbf{v}}$ in (a sparse sub-lattice of) \mathbb{Z}_q^n ; pick a random vector $\underline{\mathbf{a}}$ with small coordinates; ciphertext is $(\underline{\mathbf{u}},\underline{\mathbf{c}})$ where $\underline{\mathbf{u}} = A^T\underline{\mathbf{a}}$ and $\underline{\mathbf{c}} = P^T\underline{\mathbf{a}} + \underline{\mathbf{v}}$

- An LWE based approach:
 - Public-key is (A,P) where P=AS+E, for random matrices (of appropriate dimensions) A and S, and a noise matrix E over \mathbb{Z}_q
 - To encrypt an n bit message, first map it to a vector $\underline{\mathbf{v}}$ in (a sparse sub-lattice of) \mathbb{Z}_q^n ; pick a random vector $\underline{\mathbf{a}}$ with small coordinates; ciphertext is $(\underline{\mathbf{u}},\underline{\mathbf{c}})$ where $\underline{\mathbf{u}} = A^T\underline{\mathbf{a}}$ and $\underline{\mathbf{c}} = P^T\underline{\mathbf{a}} + \underline{\mathbf{v}}$
 - The Decryption using S: recover message from $\underline{\mathbf{c}} \mathbf{S}^{\mathsf{T}}\underline{\mathbf{u}} = \underline{\mathbf{v}} + \mathbf{E}^{\mathsf{T}}\underline{\mathbf{a}}$

- An LWE based approach:
 - Public-key is (A,P) where P=AS+E, for random matrices (of appropriate dimensions) A and S, and a noise matrix E over \mathbb{Z}_q
 - To encrypt an n bit message, first map it to a vector $\underline{\mathbf{v}}$ in (a sparse sub-lattice of) \mathbb{Z}_q^n ; pick a random vector $\underline{\mathbf{a}}$ with small coordinates; ciphertext is $(\underline{\mathbf{u}},\underline{\mathbf{c}})$ where $\underline{\mathbf{u}} = A^T\underline{\mathbf{a}}$ and $\underline{\mathbf{c}} = P^T\underline{\mathbf{a}} + \underline{\mathbf{v}}$
 - The Decryption using S: recover message from $\underline{\mathbf{c}} \mathbf{S}^{\mathsf{T}}\underline{\mathbf{u}} = \underline{\mathbf{v}} + \mathbf{E}^{\mathsf{T}}\underline{\mathbf{a}}$
 - Allows a small error probability; can be made negligible by first encoding the message using an error correcting code

- An LWE based approach:
 - Public-key is (A,P) where P=AS+E, for random matrices (of appropriate dimensions) A and S, and a noise matrix E over \mathbb{Z}_q
 - To encrypt an n bit message, first map it to a vector $\underline{\mathbf{v}}$ in (a sparse sub-lattice of) \mathbb{Z}_q^n ; pick a random vector $\underline{\mathbf{a}}$ with small coordinates; ciphertext is $(\underline{\mathbf{u}},\underline{\mathbf{c}})$ where $\underline{\mathbf{u}} = A^T\underline{\mathbf{a}}$ and $\underline{\mathbf{c}} = P^T\underline{\mathbf{a}} + \underline{\mathbf{v}}$
 - The Decryption using S: recover message from $\underline{\mathbf{c}} \mathbf{S}^{\mathsf{T}}\underline{\mathbf{u}} = \underline{\mathbf{v}} + \mathbf{E}^{\mathsf{T}}\underline{\mathbf{a}}$
 - Allows a small error probability; can be made negligible by first encoding the message using an error correcting code
 - © CPA security: By LWE assumption, the public-key is indistinguishable from random; and, encryption under random (A,P) loses essentially all information about the message

- An LWE based approach:
 - Public-key is (A,P) where P=AS+E, for random matrices (of appropriate dimensions) A and S, and a noise matrix E over \mathbb{Z}_q
 - To encrypt an n bit message, first map it to a vector $\underline{\mathbf{v}}$ in (a sparse sub-lattice of) \mathbb{Z}_q^n ; pick a random vector $\underline{\mathbf{a}}$ with small coordinates; ciphertext is $(\underline{\mathbf{u}},\underline{\mathbf{c}})$ where $\underline{\mathbf{u}} = A^T\underline{\mathbf{a}}$ and $\underline{\mathbf{c}} = P^T\underline{\mathbf{a}} + \underline{\mathbf{v}}$
 - The Decryption using S: recover message from $\underline{\mathbf{c}} \mathbf{S}^{\mathsf{T}}\underline{\mathbf{u}} = \underline{\mathbf{v}} + \mathbf{E}^{\mathsf{T}}\underline{\mathbf{a}}$
 - Allows a small error probability; can be made negligible by first encoding the message using an error correcting code
 - © CPA security: By LWE assumption, the public-key is indistinguishable from random; and, encryption under random (A,P) loses essentially all information about the message
- LWE also used for CCA secure PKE

GGH/NTRU approach: Secret key is a good basis, and the public key is a bad (i.e., HNF) basis

- GGH/NTRU approach: Secret key is a good basis, and the public key is a bad (i.e., HNF) basis
 - To sign a message, hash it (using an RO) to a random point in Rⁿ and use the good basis to find a lattice point close to it

- GGH/NTRU approach: Secret key is a good basis, and the public key is a bad (i.e., HNF) basis
 - To sign a message, hash it (using an RO) to a random point in Rⁿ and use the good basis to find a lattice point close to it
 - \bullet e.g. with $\underline{\mathbf{s}} = B_{\lfloor} B^{-1} \underline{\mathbf{m}}$, we have $\underline{\mathbf{s}} \underline{\mathbf{m}} = B \underline{\mathbf{z}}$ for $\underline{\mathbf{z}} \in [\frac{1}{2}, -\frac{1}{2}]^n$

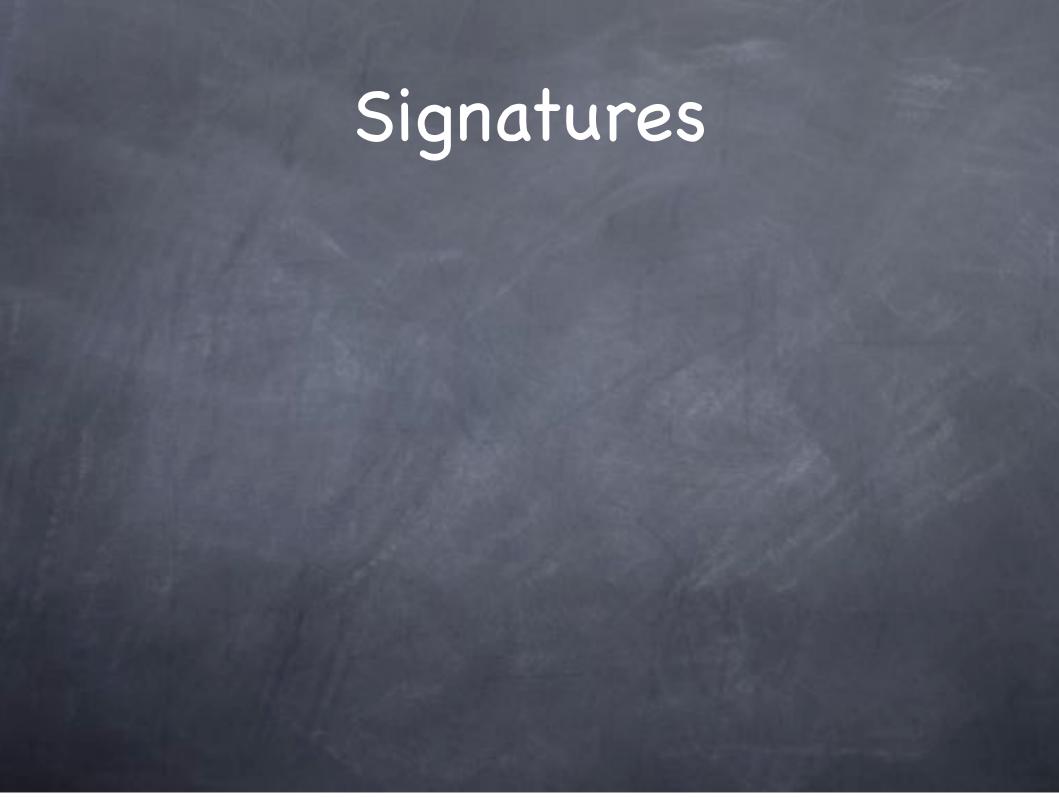
- GGH/NTRU approach: Secret key is a good basis, and the public key is a bad (i.e., HNF) basis
 - To sign a message, hash it (using an RO) to a random point in Rⁿ and use the good basis to find a lattice point close to it
 - e.g. with $\underline{s} = B_{\lfloor} B^{-1} \underline{m}$, we have $\underline{s} \underline{m} = B \underline{z}$ for $\underline{z} \in [\frac{1}{2}, -\frac{1}{2}]^n$
 - Intuitively, it is hard to find such a point using the HNF basis

- GGH/NTRU approach: Secret key is a good basis, and the public key is a bad (i.e., HNF) basis
 - To sign a message, hash it (using an RO) to a random point in Rⁿ and use the good basis to find a lattice point close to it
 - e.g. with $\underline{s} = B_{\lfloor} B^{-1} \underline{m}$, we have $\underline{s} \underline{m} = B \underline{z}$ for $\underline{z} \in [\frac{1}{2}, -\frac{1}{2}]^n$
 - Intuitively, it is hard to find such a point using the HNF basis
 - However, multiple signatures can leak B

- GGH/NTRU approach: Secret key is a good basis, and the public key is a bad (i.e., HNF) basis
 - To sign a message, hash it (using an RO) to a random point in Rⁿ and use the good basis to find a lattice point close to it
 - e.g. with $\underline{\mathbf{s}} = B_{\lfloor} B^{-1} \underline{\mathbf{m}}$, we have $\underline{\mathbf{s}} \underline{\mathbf{m}} = B \underline{\mathbf{z}}$ for $\underline{\mathbf{z}} \in [\frac{1}{2}, -\frac{1}{2}]^n$
 - Intuitively, it is hard to find such a point using the HNF basis
 - However, multiple signatures can leak B
 - Fix (heuristic): Perturbation, to make it harder to recover B

- GGH/NTRU approach: Secret key is a good basis, and the public key is a bad (i.e., HNF) basis
 - To sign a message, hash it (using an RO) to a random point in Rⁿ and use the good basis to find a lattice point close to it
 - e.g. with $\underline{\mathbf{s}} = B_{\lfloor} B^{-1} \underline{\mathbf{m}}$, we have $\underline{\mathbf{s}} \underline{\mathbf{m}} = B \underline{\mathbf{z}}$ for $\underline{\mathbf{z}} \in [\frac{1}{2}, -\frac{1}{2}]^n$
 - Intuitively, it is hard to find such a point using the HNF basis
 - However, multiple signatures can leak B
 - Fix (heuristic): Perturbation, to make it harder to recover B
 - Fix [GPV'08]: instead of rounding off to B_LB⁻¹m[¬], sample from a distribution that does not leak B. Security (in ROM) reduces to worst-case hardness assumptions.

- GGH/NTRU approach: Secret key is a good basis, and the public key is a bad (i.e., HNF) basis
 - To sign a message, hash it (using an RO) to a random point in Rⁿ and use the good basis to find a lattice point close to it
 - e.g. with $\underline{s} = B_{\lfloor} B^{-1} \underline{m}$, we have $\underline{s} \underline{m} = B \underline{z}$ for $\underline{z} \in [\frac{1}{2}, -\frac{1}{2}]^n$
 - Intuitively, it is hard to find such a point using the HNF basis
 - However, multiple signatures can leak B
 - Fix (heuristic): Perturbation, to make it harder to recover B
 - Fix [GPV'08]: instead of rounding off to B_LB⁻¹m[¬], sample from a distribution that does not leak B. Security (in ROM) reduces to worst-case hardness assumptions.
 - Quadratic key size/signing complexity (unlike NTRUSign)



Using CRHF (not in ROM)

- Using CRHF (not in ROM)
 - Obtaining a one-time signature from a "homomorphic" CRHF

- Using CRHF (not in ROM)
 - Obtaining a one-time signature from a "homomorphic" CRHF
 - \bullet h(a.x+y)=a.h(x)+h(y) where a is from a ring \mathcal{A} and x,y from a module over the ring (say \mathcal{A}^m). e.g., h(\mathbf{x}) = A \mathbf{x} .

- Using CRHF (not in ROM)
 - Obtaining a one-time signature from a "homomorphic" CRHF
 - \circ h(a.x+y)=a.h(x)+h(y) where a is from a ring \mathcal{A} and x,y from a module over the ring (say \mathcal{A}^m). e.g., h(\mathbf{x}) = A \mathbf{x} .
 - Signing key: (x,y). Verification key: (h,X,Y) = (h,h(x),h(y)). Signature: Message is mapped to an element $a \in \mathcal{A}$. s=a.x+y Verification: Check h(s)=a.X+Y

- Using CRHF (not in ROM)
 - Obtaining a one-time signature from a "homomorphic" CRHF
 - \circ h(a.x+y)=a.h(x)+h(y) where a is from a ring \mathcal{A} and x,y from a module over the ring (say \mathcal{A}^m). e.g., h(\mathbf{x}) = A \mathbf{x} .
 - Signing key: (x,y). Verification key: (h,X,Y) = (h,h(x),h(y)). Signature: Message is mapped to an element $a \in \mathcal{A}$. s=a.x+yVerification: Check h(s)=a.X+Y
 - (x,y) is information theoretically well-hidden after one sign; so, w.h.p., forgery yields a different signature than computed using the signing key, thereby giving a collision

- Using CRHF (not in ROM)
 - Obtaining a one-time signature from a "homomorphic" CRHF
 - \circ h(a.x+y)=a.h(x)+h(y) where a is from a ring \mathcal{A} and x,y from a module over the ring (say \mathcal{A}^m). e.g., h(\mathbf{x}) = A \mathbf{x} .
 - Signing key: (x,y). Verification key: (h,X,Y) = (h,h(x),h(y)). Signature: Message is mapped to an element $a \in \mathcal{A}$. s=a.x+y Verification: Check h(s)=a.X+Y
 - (x,y) is information theoretically well-hidden after one sign; so, w.h.p., forgery yields a different signature than computed using the signing key, thereby giving a collision
 - Trickier when using ideal lattice based hashing

- Using CRHF (not in ROM)
 - Obtaining a one-time signature from a "homomorphic" CRHF
 - \circ h(a.x+y)=a.h(x)+h(y) where a is from a ring \mathcal{A} and x,y from a module over the ring (say \mathcal{A}^m). e.g., h(\mathbf{x}) = A \mathbf{x} .
 - Signing key: (x,y). Verification key: (h,X,Y) = (h,h(x),h(y)).
 Signature: Message is mapped to an element a ∈A. s=a.x+y
 Verification: Check h(s)=a.X+Y
 - (x,y) is information theoretically well-hidden after one sign; so, w.h.p., forgery yields a different signature than computed using the signing key, thereby giving a collision
 - Trickier when using ideal lattice based hashing
 - Recall: one-time signatures can be augmented to full-fledged signatures using a CRHF (in fact, a UOWHF)

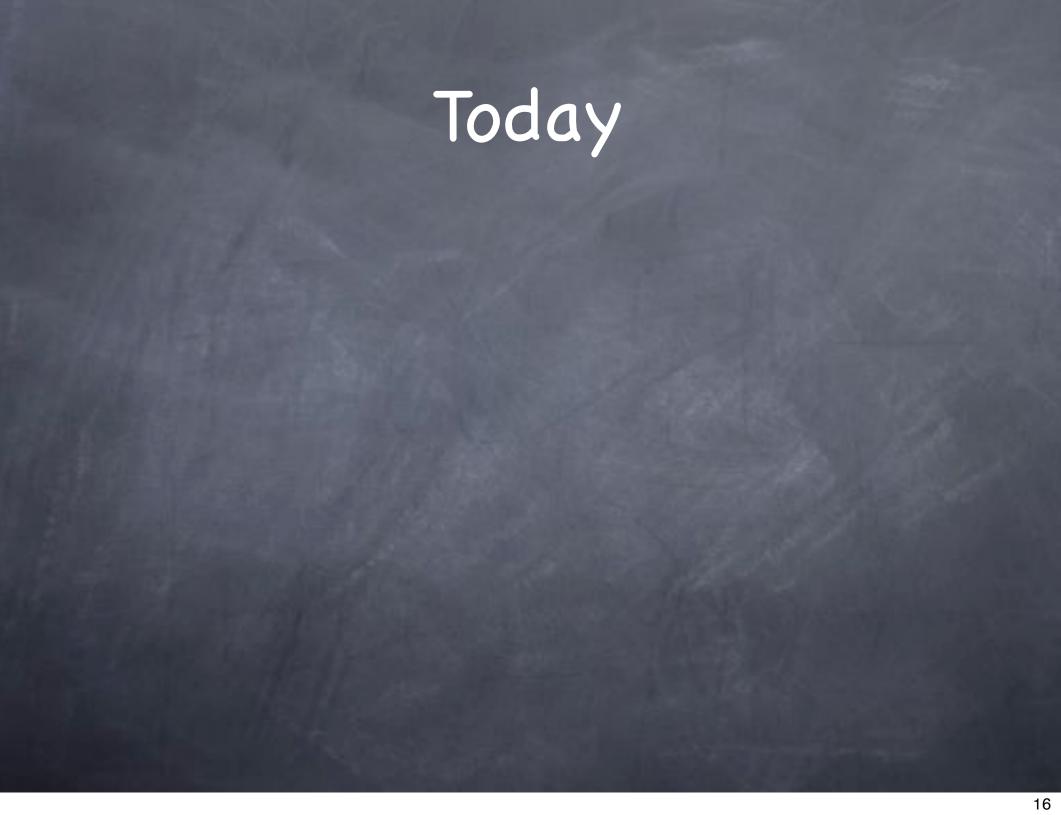
Schemes based on LWE

- Schemes based on LWE
 - IBE, OT, Fully Homomorphic Encryption...

- Schemes based on LWE
 - IBE, OT, Fully Homomorphic Encryption...
- ZK proof systems for lattice problems

- Schemes based on LWE
 - IBE, OT, Fully Homomorphic Encryption...
- ZK proof systems for lattice problems
 - Interactive and non-interactive statistical ZK proofs of knowledge for various lattice problems

- Schemes based on LWE
 - IBE, OT, Fully Homomorphic Encryption...
- ZK proof systems for lattice problems
 - Interactive and non-interactive statistical ZK proofs of knowledge for various lattice problems
 - Useful in building "identification schemes" and potentially in other lattice-based constructions



Lattice based cryptography

- Lattice based cryptography
 - Candidate for post-quantum cryptography

- Lattice based cryptography
 - Candidate for post-quantum cryptography
 - Security typically based on worst-case hardness of problems

- Lattice based cryptography
 - Candidate for post-quantum cryptography
 - Security typically based on worst-case hardness of problems
 - Several problems: SVP and variants, LWE

- Lattice based cryptography
 - Candidate for post-quantum cryptography
 - Security typically based on worst-case hardness of problems
 - Several problems: SVP and variants, LWE
- Hash functions, PKE, Signatures, ...