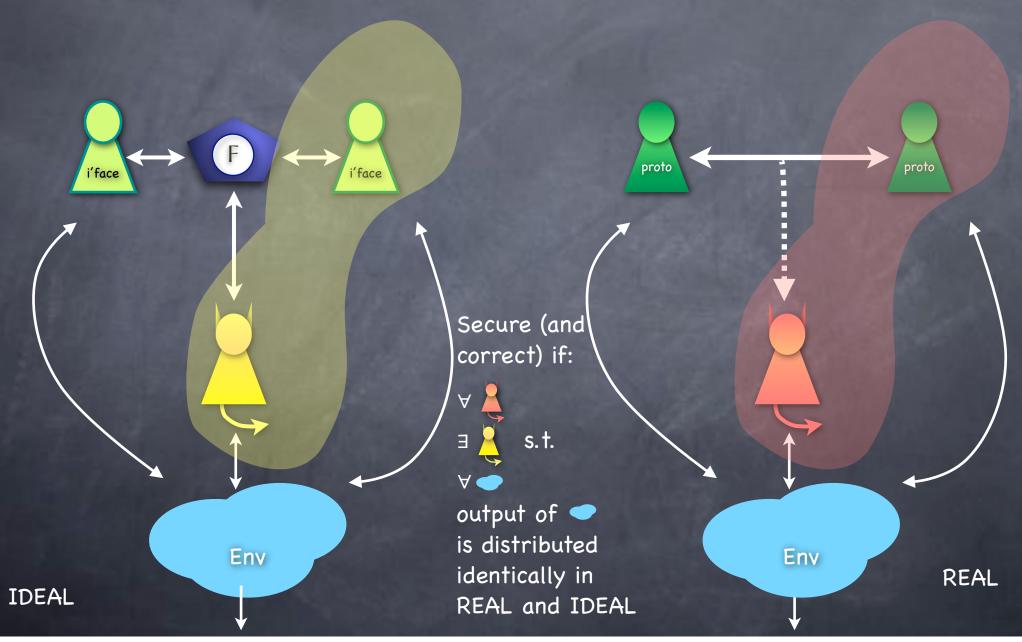
Secure 2-Party Computation

Lecture 12 Yao's Garbled Circuit

SIM-Secure MPC



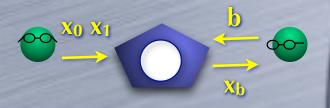
Passive Adversary

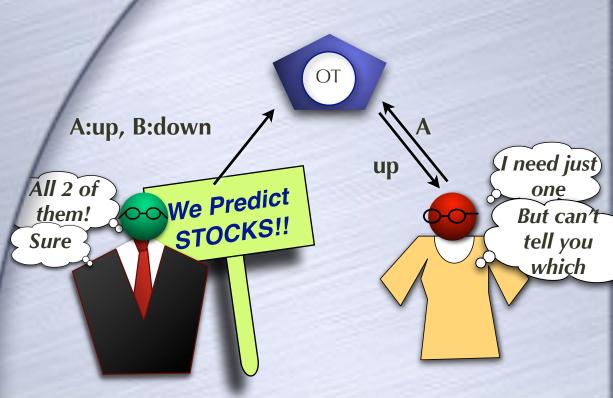
- Gets only read access to the internal state of the corrupted players (and can use that information in talking to environment)
 - Also called "Honest-But-Curious" adversary
 - Will require that simulator also corrupts passively
- Simplifies several cases
 - e.g. coin-tossing [why?], commitment [coming up]
- Oddly, sometimes security against a passive adversary is more demanding than against an active adversary
 - Active adversary: too pessimistic about what guarantee is available even in the IDEAL world
 - e.g. 2-party SFE for OR, with output going to only one party (trivial against active adversary; impossible without computational assumptions against passive adversary)

Oblivious Transfer

Pick one out of two, without revealing which

> Intuitive property: transfer partial information "obliviously"

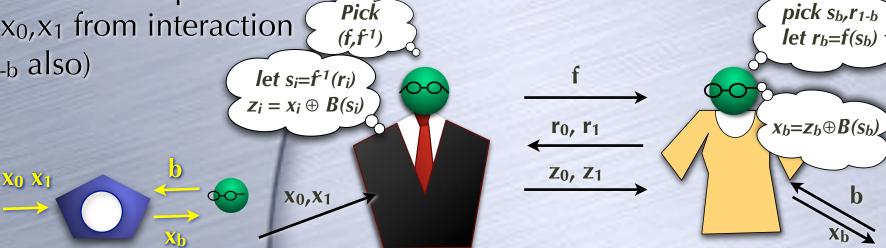




IDEAL World

An OT Protocol (passive receiver corruption)

- Using a TOWP
 - \bigcirc Depends on receiver to pick x_0 , x_1 as prescribed
- Simulation for passive corrupt receiver: simulate z_0, z_1 knowing only x_b (use random z_{1-b})
- Simulation for corrupt sender: Extract x_0, x_1 from interaction (pick s_{1-b} also)



Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE
 - $f(x_0,x_1;b) = none; g(x_0,x_1;b) = x_b$

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE
 - $f(x_0,x_1;b) = none; g(x_0,x_1;b) = x_b$
- Symmetric SFE: both parties get the same output

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE
 - $f(x_0,x_1;b) = none; g(x_0,x_1;b) = x_b$
- Symmetric SFE: both parties get the same output
 - e.g. $f(x_0,x_1;b,z) = g(x_0,x_1;b,z) = x_b \oplus z$ [OT from this! How?]

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE
 - $f(x_0,x_1;b) = none; g(x_0,x_1;b) = x_b$
- Symmetric SFE: both parties get the same output
 - e.g. $f(x_0,x_1;b,z) = g(x_0,x_1;b,z) = x_b \oplus z$ [OT from this! How?]
 - General SFE from appropriate symmetric SFE [How?]

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE
 - $f(x_0,x_1;b) = none; g(x_0,x_1;b) = x_b$
- Symmetric SFE: both parties get the same output
 - e.g. $f(x_0,x_1;b,z) = g(x_0,x_1;b,z) = x_b \oplus z$ [OT from this! How?]
 - General SFE from appropriate symmetric SFE [How?]
- One-sided SFE: only one party gets any output

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE
 - $f(x_0,x_1;b) = none; g(x_0,x_1;b) = x_b$
- Symmetric SFE: both parties get the same output
 - @ e.g. $f(x_0,x_1;b,z) = g(x_0,x_1;b,z) = x_b \oplus z$ [OT from this! How?]
 - General SFE from appropriate symmetric SFE [How?]
- One-sided SFE: only one party gets any output
 - Symmetric SFE from one-sided SFE (passive secure) [How?]

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE
 - $f(x_0,x_1;b) = none; g(x_0,x_1;b) = x_b$
- Symmetric SFE: both parties get the same output
 - e.g. $f(x_0,x_1;b,z) = g(x_0,x_1;b,z) = x_b \oplus z$ [OT from this! How?]
 - General SFE from appropriate symmetric SFE [How?]
- One-sided SFE: only one party gets any output
 - Symmetric SFE from one-sided SFE (passive secure) [How?]
- So, for passive security, enough to consider one-sided SFE

Randomized Functions: f(X;Y;r)

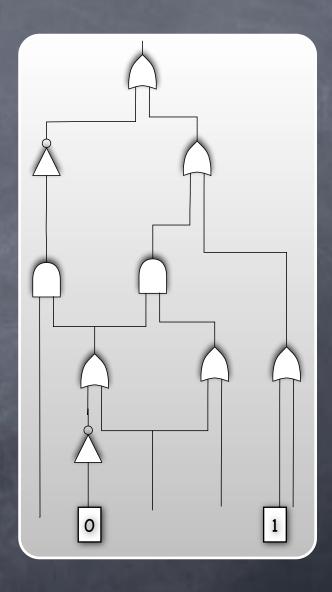
- Randomized Functions: f(X;Y;r)
 - Neither party should know r (beyond what is revealed by output)

- Randomized Functions: f(X;Y;r)
 - Neither party should know r (beyond what is revealed by output)
 - Evaluating f'(X,a;Y,b) := f(X;Y;a⊕b) with random a,b works

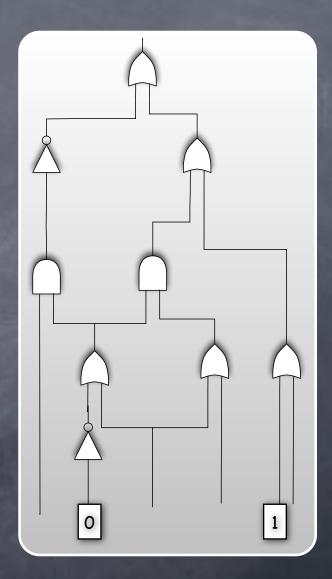
- Randomized Functions: f(X;Y;r)
 - Neither party should know r (beyond what is revealed by output)
 - \bullet Evaluating $f'(X,a;Y,b) := f(X;Y;a \oplus b)$ with random a,b works
 - Note f' is deterministic

- Randomized Functions: f(X;Y;r)
 - Neither party should know r (beyond what is revealed by output)
 - \bullet Evaluating $f'(X,a;Y,b) := f(X;Y;a \oplus b)$ with random a,b works
 - Note f' is deterministic
- For passive security, realizing <u>deterministic</u>, <u>one-sided SFE</u> enough for all SFE

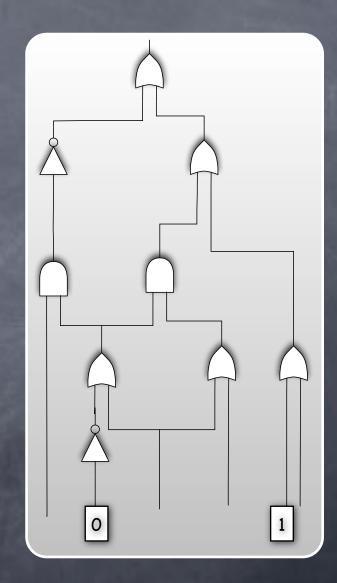
- Randomized Functions: f(X;Y;r)
 - Neither party should know r (beyond what is revealed by output)
 - \bullet Evaluating $f'(X,a;Y,b) := f(X;Y;a \oplus b)$ with random a,b works
 - Note f' is deterministic
- For passive security, realizing <u>deterministic</u>, <u>one-sided SFE</u> enough for all SFE
- © Can we do "general" deterministic, one-sided SFE (i.e., for all functions)?



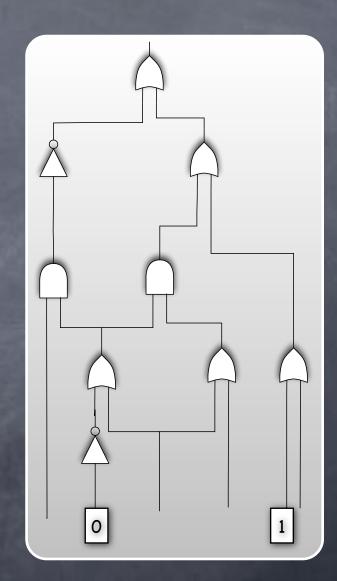
Directed acyclic graph



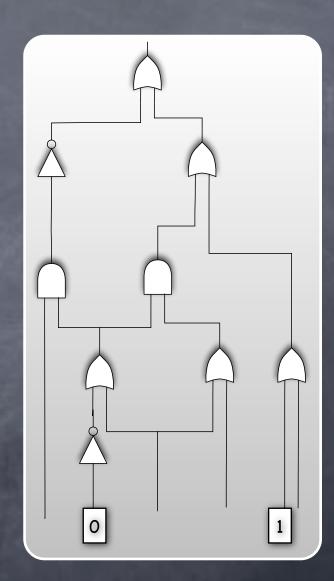
- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)



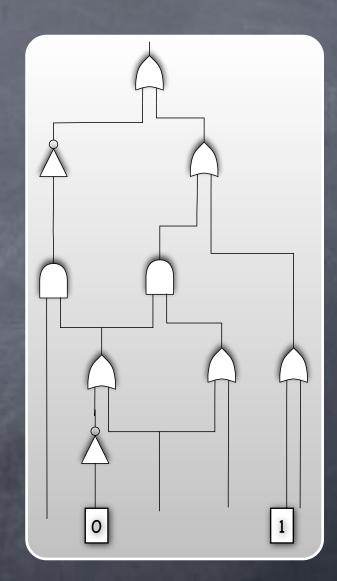
- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires



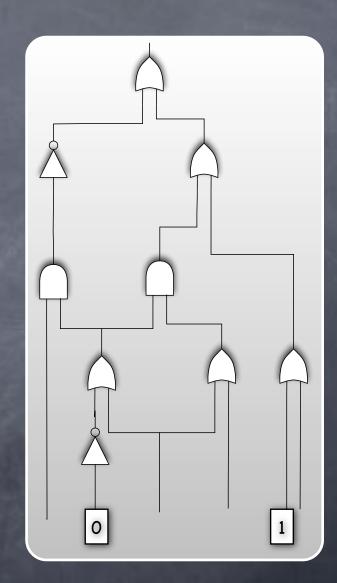
- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - Each wire comes out of a unique gate



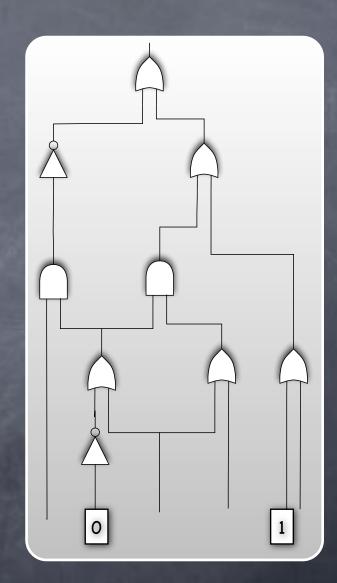
- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - Each wire comes out of a unique gate
 - But a wire might fan-out



- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - Each wire comes out of a unique gate
 - But a wire might fan-out
 - Acyclic: output well-defined



- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - Each wire comes out of a unique gate
 - But a wire might fan-out
 - Acyclic: output well-defined
 - Note: no memory gates



e.g.: OR (single gate, 2 input bits, 1 bit output)

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: X > Y for two bit inputs $X=x_1x_0$, $Y=y_1y_0$: (x₁ AND (NOT y₁)) OR (NOT(x₁ XOR y₁) AND (x₀ AND (NOT y₀))

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: X > Y for two bit inputs $X=x_1x_0$, $Y=y_1y_0$: (x₁ AND (NOT y₁)) OR (NOT(x₁ XOR y₁) AND (x₀ AND (NOT y₀))
- Can convert any ("efficient") program into a ("small") circuit

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: X > Y for two bit inputs $X=x_1x_0$, $Y=y_1y_0$: $(x_1 \text{ AND (NOT } y_1))$ OR $(\text{NOT}(x_1 \text{ XOR } y_1) \text{ AND (x_0 AND (NOT } y_0))}$
- Can convert any ("efficient") program into a ("small") circuit
 - Size of circuit: number of wires (as a function of number of input wires)

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- @ e.g.: X > Y for two bit inputs $X = x_1x_0$, $Y = y_1y_0$: $(x_1 \text{ AND (NOT } y_1)) \text{ OR (NOT}(x_1 \text{ XOR } y_1) \text{ AND } (x_0 \text{ AND (NOT } y_0))$
- Can convert any ("efficient") program into a ("small") circuit
 - Size of circuit: number of wires (as a function of number of 00 01 10 11

input wires)

Can convert a truth-table into a circuit

0

00

Circuits and Functions

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: X > Y for two bit inputs $X=x_1x_0$, $Y=y_1y_0$: $(x_1 \text{ AND (NOT } y_1))$ OR $(\text{NOT}(x_1 \text{ XOR } y_1) \text{ AND (x_0 AND (NOT } y_0))}$
- Can convert any ("efficient") program into a ("small") circuit
 - Size of circuit: number of wires (as a function of number of input wires)

input wires)

- Can convert a truth-table into a circuit
 - Directly: circuit size exponential in input size

0

0

Circuits and Functions

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: X > Y for two bit inputs $X=x_1x_0$, $Y=y_1y_0$: $(x_1 \text{ AND (NOT } y_1))$ OR $(\text{NOT}(x_1 \text{ XOR } y_1) \text{ AND } (x_0 \text{ AND (NOT } y_0))$
- Can convert any ("efficient") program into a ("small") circuit
 - Size of circuit: number of wires (as a function of number of input wires)
 OO 01 10 11
- Can convert a truth-table into a circuit
 - Directly: circuit size exponential in input size
 - In general, finding a small/smallest circuit from truth-table is notoriously hard

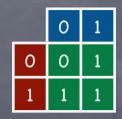
Circuits and Functions

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: X > Y for two bit inputs $X=x_1x_0$, $Y=y_1y_0$: $(x_1 \text{ AND (NOT } y_1))$ OR $(\text{NOT}(x_1 \text{ XOR } y_1) \text{ AND (x_0 AND (NOT } y_0))}$
- Can convert any ("efficient") program into a ("small") circuit
 - Size of circuit: number of wires (as a function of number of input wires)
 OO 01 10 11
- Can convert a truth-table into a circuit
 - Directly: circuit size exponential in input size
 - In general, finding a small/smallest circuit from truth-table is notoriously hard
 - Often problems already described as succinct programs/circuits

"General": evaluate any arbitrary circuit

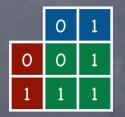
- "General": evaluate any arbitrary circuit
 - One-sided output: both parties give inputs, one party gets outputs

- "General": evaluate any arbitrary circuit
 - One-sided output: both parties give inputs, one party gets outputs
 - Either party maybe corrupted passively

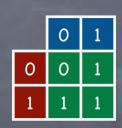


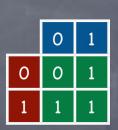
- "General": evaluate any arbitrary circuit
 - One-sided output: both parties give inputs, one party gets outputs
 - Either party maybe corrupted passively
- Consider evaluating OR (single gate circuit)

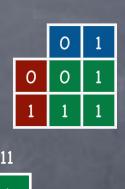
- "General": evaluate any arbitrary circuit
 - One-sided output: both parties give inputs, one party gets outputs
 - Either party maybe corrupted passively
- Consider evaluating OR (single gate circuit)
 - Alice holds x=a, Bob has y=b; Bob should get OR(x,y)

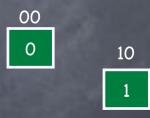


- "General": evaluate any arbitrary circuit
 - One-sided output: both parties give inputs, one party gets outputs
 - Either party maybe corrupted passively
- Consider evaluating OR (single gate circuit)
 - Alice holds x=a, Bob has y=b; Bob should get OR(x,y)
 - Any ideas?

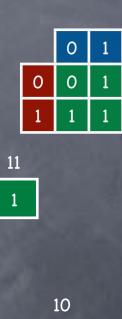




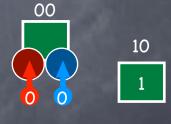




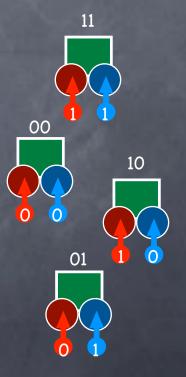
- Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)



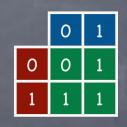
- Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)

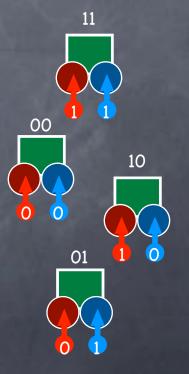


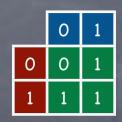
- Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)



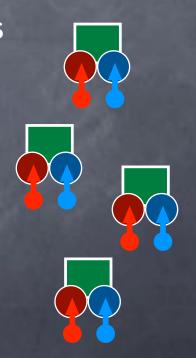
- Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
- \odot She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).

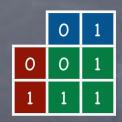




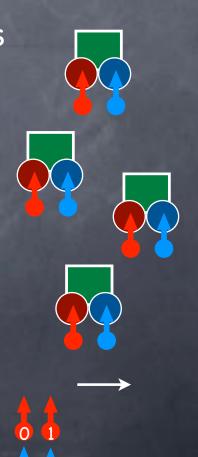


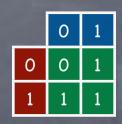
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
- \odot She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).



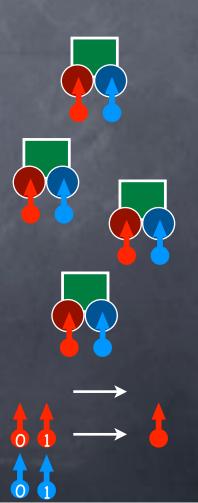


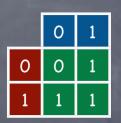
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
- \odot She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).



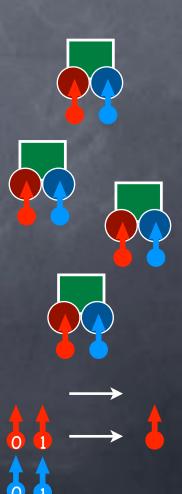


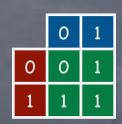
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
- \odot She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).



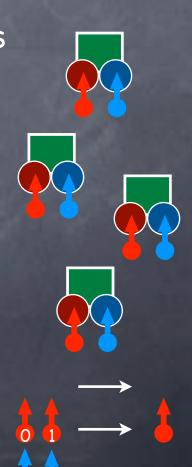


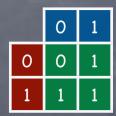
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
- \odot She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).
 - So far Bob gets no information



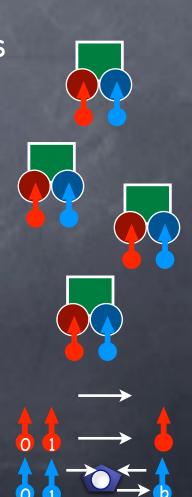


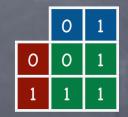
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
- \odot She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).
 - So far Bob gets no information
- Bob "obliviously picks up" K_{y=b}, and tries the two keys K_x,K_y on the four boxes. For one box both locks open and he gets the output.

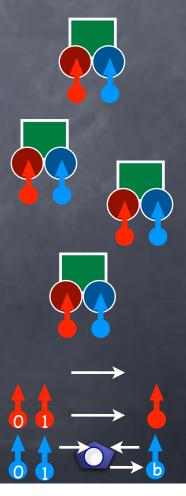




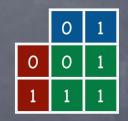
- Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
- \odot She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).
 - So far Bob gets no information
- Bob "obliviously picks up" K_{y=b}, and tries the two keys K_x,K_y on the four boxes. For one box both locks open and he gets the output.

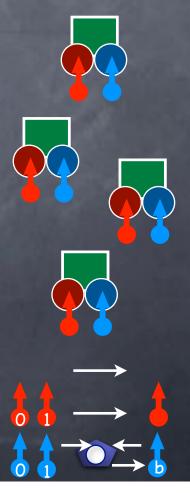




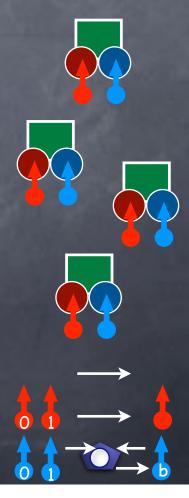


Secure?

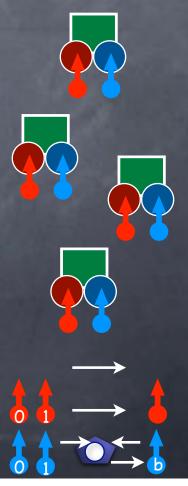




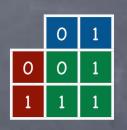
- Secure?

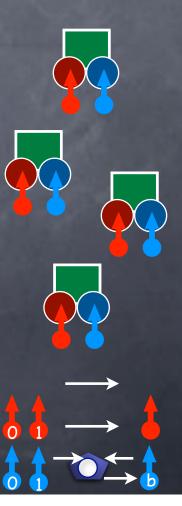


- Secure?
- For curious Alice: only influence from Bob is when he picks up his key K_{y=b}
 - But this is done "obliviously", and so she learns nothing

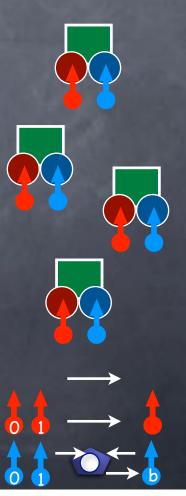


- Secure?
- For curious Alice: only influence from Bob is when he picks up his key K_{y=b}
 - But this is done "obliviously", and so she learns nothing
- For curious Bob: Everything is predictable (i.e., simulatable), given the final outcome

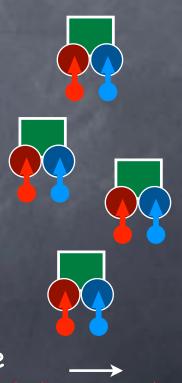


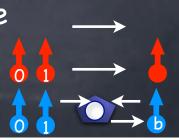


- Secure?
- For curious Alice: only influence from Bob is when he picks up his key K_{y=b}
 - But this is done "obliviously", and so she learns nothing
- For curious Bob: Everything is predictable (i.e., simulatable), given the final outcome
 - What Bob sees: His key opens K_y in two boxes, Alice's opens K_x in two boxes; only one random box fully opens. It has the outcome.

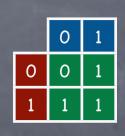


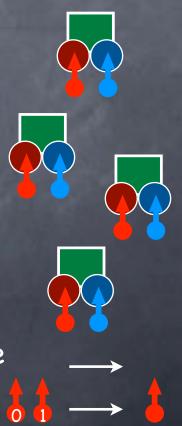
- Secure?
- For curious Alice: only influence from Bob is when he picks up his key $K_{y=b}$
 - But this is done "obliviously", and so she learns nothing
- For curious Bob: Everything is predictable (i.e., simulatable), given the final outcome
 - What Bob sees: His key opens K_y in two boxes, Alice's opens K_x in two boxes; only one random box fully opens. It has the outcome.
 - Note when y=1, cases x=0 and x=1 appear same

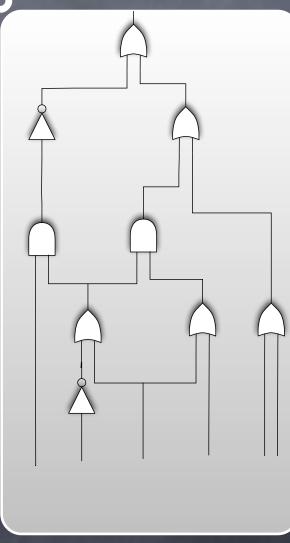




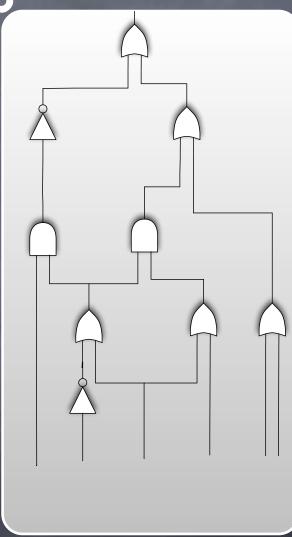
- Secure?
- For curious Alice: only influence from Bob is when he picks up his key K_{y=b}
 - But this is done "obliviously", and so she learns nothing
- For curious Bob: Everything is predictable (i.e., simulatable), given the final outcome
 - What Bob sees: His key opens K_y in two boxes, Alice's opens K_x in two boxes; only one random box fully opens. It has the outcome.
 - Note when y=1, cases x=0 and x=1 appear same
 - Formally, easy to simulate (can stuff unopenable boxes randomly)



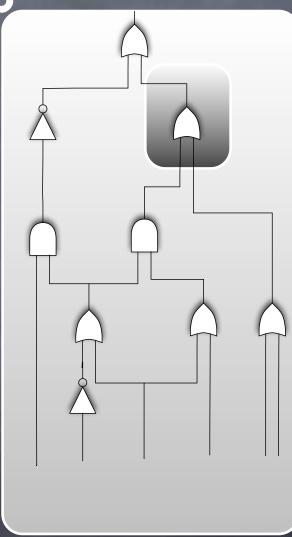




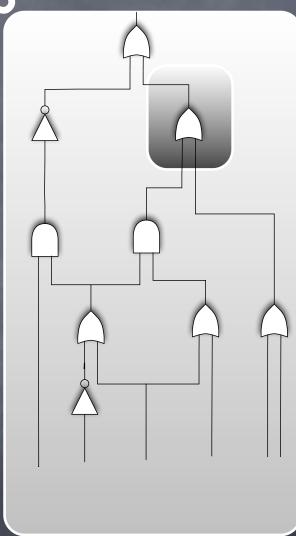
Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate



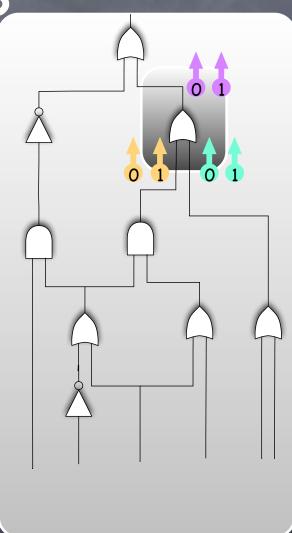
Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate



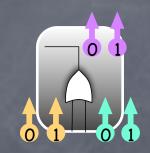
- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$



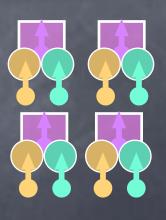
- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$



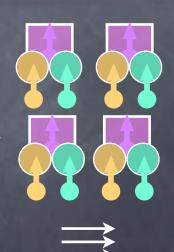
- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$



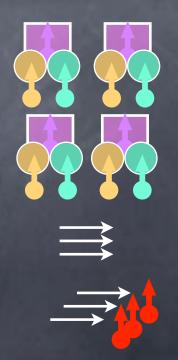
- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$
 - For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{u=b}$



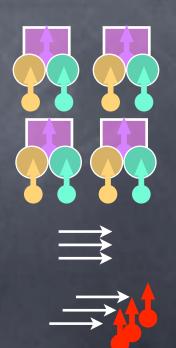
- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$
 - For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{u=b}$
 - Give to Bob: Boxes for each gate, one key for each of Alice's input wires



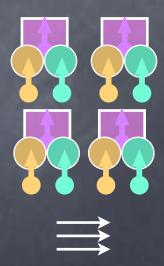
- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$
 - For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{u=b}$
 - Give to Bob: Boxes for each gate, one key for each of Alice's input wires



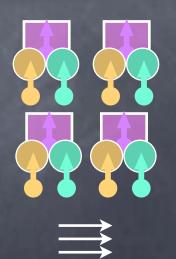
- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$
 - For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{u=b}$
 - Give to Bob: Boxes for each gate, one key for each of Alice's input wires
 - Obliviously: one key for each of Bob's input wires

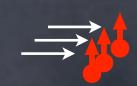


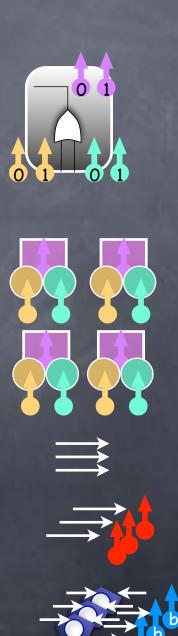
- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$
 - For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{u=b}$
 - Give to Bob: Boxes for each gate, one key for each of Alice's input wires
 - Obliviously: one key for each of Bob's input wires

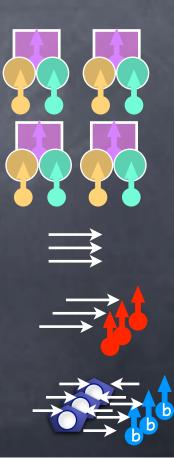


- Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
 - For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$
 - For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{u=b}$
 - Give to Bob: Boxes for each gate, one key for each of Alice's input wires
 - Obliviously: one key for each of Bob's input wires
 - Boxes for output gates have values instead of keys



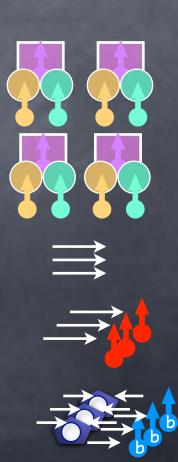




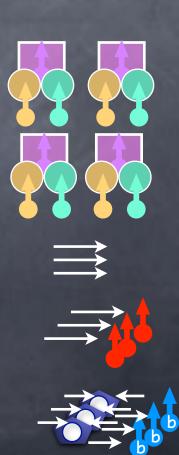


Evaluation: Bob gets one key for each input wire of a gate, opens one box for the gate, gets one key for the output wire, and proceeds

Gets output from a box in the output gate

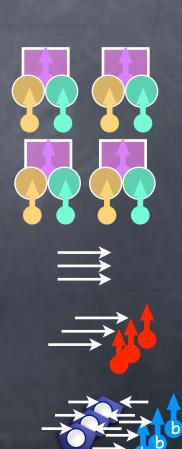


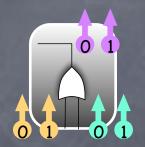
- Gets output from a box in the output gate
- Security similar to before



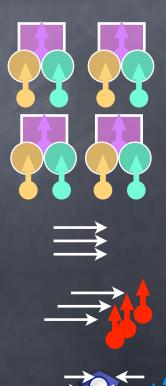


- Gets output from a box in the output gate
- Security similar to before
- Curious Alice sees nothing (as Bob picks up keys obliviously)





- Gets output from a box in the output gate
- Security similar to before
- Curious Alice sees nothing (as Bob picks up keys obliviously)
- Everything is simulatable for curious Bob given final output: Bob could prepare boxes and keys (stuffing unopenable boxes arbitrarily); for an output gate, place the output bit in the box that opens



That was too physical!

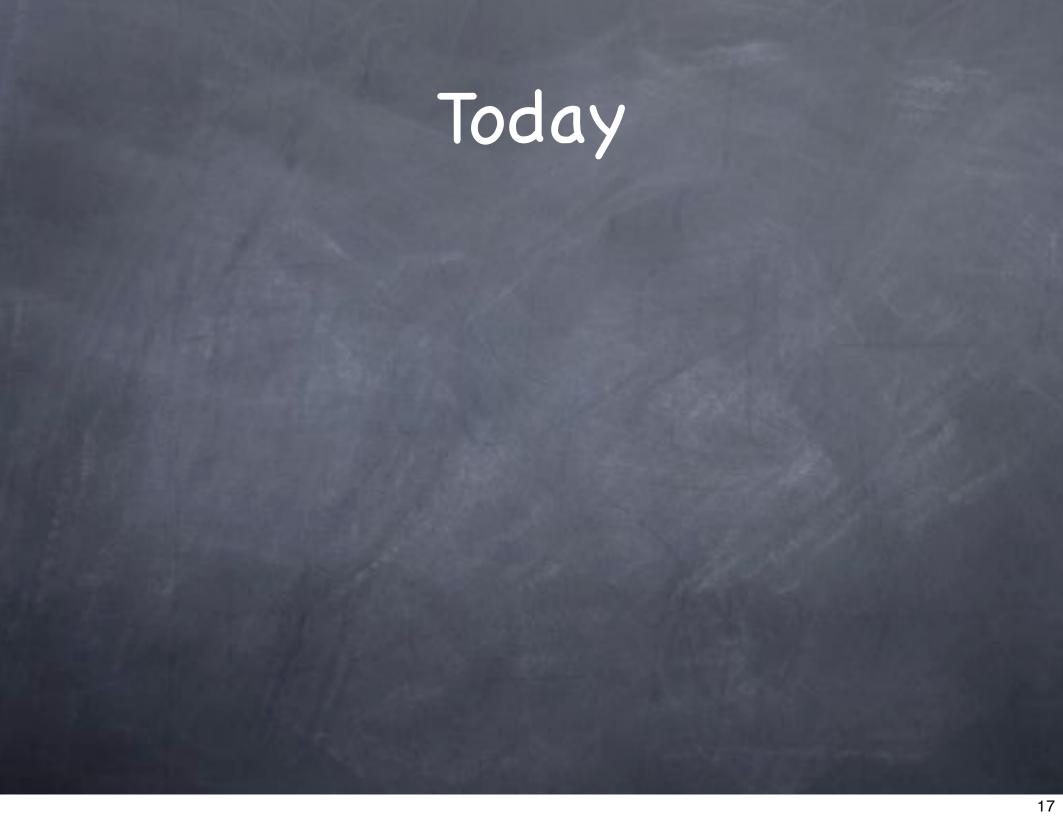
- That was too physical!
- Yao's Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF)

- That was too physical!
- Yao's Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF)
 - Double lock: Enckx(Encky(m))

- That was too physical!
- Yao's Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF)
 - Double lock: Enckx(Encky(m))
 - Need proof to ensure that this suffices for indistinguishability of simulation. (In fact, milder security for Enc suffices)

- That was too physical!
- Yao's Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF)
 - Double lock: Enckx(Encky(m))
 - Need proof to ensure that this suffices for indistinguishability of simulation. (In fact, milder security for Enc suffices)
- Oblivious Transfer: We already saw for one bit (using TOWP); with passive adversaries, just repeat bit-OT several times to transfer longer keys

- That was too physical!
- Yao's Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF)
 - Double lock: Enckx(Encky(m))
 - Need proof to ensure that this suffices for indistinguishability of simulation. (In fact, milder security for Enc suffices)
- Oblivious Transfer: We already saw for one bit (using TOWP); with passive adversaries, just repeat bit-OT several times to transfer longer keys
 - Can we really compose? Yes, for passive security.



2-Party SFE secure against passive adversaries

- 2-Party SFE secure against passive adversaries
 - Yao's Garbled Circuit

- 2-Party SFE secure against passive adversaries
 - Yao's Garbled Circuit
 - Using OT and IND-CPA encryption

- 2-Party SFE secure against passive adversaries
 - Yao's Garbled Circuit
 - Using OT and IND-CPA encryption
 - OT using TOWP

- 2-Party SFE secure against passive adversaries
 - Yao's Garbled Circuit
 - Using OT and IND-CPA encryption
 - OT using TOWP
 - Composition (implicitly)

- 2-Party SFE secure against passive adversaries
 - Yao's Garbled Circuit
 - Using OT and IND-CPA encryption
 - OT using TOWP
 - Composition (implicitly)
- Coming up: Zero-Knowledge proofs and general multi-party computation, more protocols (for different settings). Universal Composition