Hash Functions in Action

Hash Functions in Action

Lecture 11

Main syntactic feature: Variable input length to fixed length output

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

 - \bullet h $\leftarrow \mathcal{H}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions
 - \bullet h $\leftarrow \mathcal{H}$; Ah \rightarrow (x,y): Weak Collision-Resistant Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

 - \bullet h $\leftarrow \mathcal{H}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, $Pr[x\neq y \text{ and } h(x)=h(y)]$ is negligible in the following experiment:
- $A \rightarrow X$; $A \leftarrow \mathcal{U}$; $A(h) \rightarrow Y$: Universal One-Way Hash Functions $A \rightarrow \mathcal{U}$: Collision-Resistant Hash Functions

 - Also often required: "unpredictability"

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, $Pr[x\neq y \text{ and } h(x)=h(y)]$ is negligible in the following experiment:
- $A \rightarrow (x,y)$, $A \rightarrow (x,y)$ $A \rightarrow (x,$

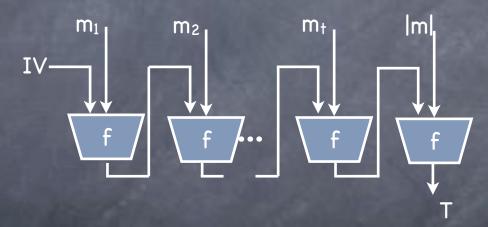
 - Also often required: "unpredictability"
 - Today: applications of hash functions (and what we require of them)

A single function, not a family (e.g. SHA-1, SHA-256, MD4, MD5)

- A single function, not a family (e.g. SHA-1, SHA-256, MD4, MD5)
- From a fixed input-length compression function

- A single function, not a family (e.g. SHA-1, SHA-256, MD4, MD5)
- From a fixed input-length compression function
- Merkle-Damgård iterated hash function:

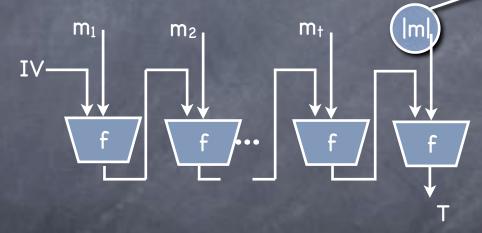
- A single function, not a family (e.g. SHA-1, SHA-256, MD4, MD5)
- From a fixed input-length compression function
- Merkle-Damgård iterated hash function:



A single function, not a family (e.g. SHA-1, SHA-256, MD4, MD5)

From a fixed input-length compression function

Merkle-Damgård iterated hash function:



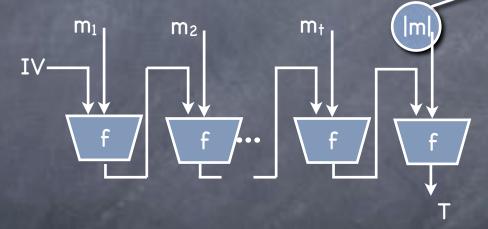
Collision resistance

even with variable

A single function, not a family (e.g. SHA-1, SHA-256, MD4, MD5)

From a fixed input-length compression function

Collision resistance Merkle-Damgård iterated hash function:



If f "collision resistant", then so is the Merkle-Damgård iterated hash-function (for any IV)

Trivial (very inefficient) solution (to sign a single n bit message):

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri1)i=1...n

- Trivial (very inefficient) solution (to sign a single n bit message):
 - \odot Key: 2n random strings (each k-bit long) $(r^{i}_{0}, r^{i}_{1})_{i=1..n}$

r¹o	r ² 0	r ³ 0
r¹1	r²1	r^3 1

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1..n

Signature for m ₁ m _n be (r ⁱ _{mi}) _{i=1}	6	Signature	for	m_1m_n	be	(r ⁱ mi) _{i=1}
---	----------	-----------	-----	----------	----	------------------------------------

r¹0	r ² 0	r ³ 0
r^{1}_{1}	r²1	r^3 1

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1...n
 - Signature for m₁...m_n be (rⁱmi)_{i=1..n}

ו	r¹o	r²0	r ³ 0
	r¹1	r²1	r^3 1

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1..n

r¹o	r²o	r ³ 0
r^{l}_{1}	r²1	r ³ 1

- Signature for m₁...m_n be (rⁱ_{mi})_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1...r

1	r^1_0	r ² 0	r ³ 0
	r¹1	r²1	r^3 1

- Signature for m₁...m_n be (rⁱ_{mi})_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m
- A much better solution, using 2-UHF:

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1..n

r¹o	r² ₀	r ³ 0
r^{l}_{1}	r²1	r^3 1

- Signature for m₁...m_n be (rⁱ_{mi})_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m
- A much better solution, using 2-UHF:
 - Onetime-MAC_h(M) = h(M), where h← \mathcal{H} , and \mathcal{H} is a 2-UHF

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) (rio,ri) i=1...n

r¹o	r ² 0	r ³ 0
r^{1}_{1}	r²1	r^3 1

- Signature for m₁...m_n be (rⁱ_{mi})_{i=1..n}
- Negligible probability that Eve can produce a signature on m'≠m
- A much better solution, using 2-UHF:
 - Onetime-MAC_h(M) = h(M), where h←\$\mathcal{H}\$, and \$\mathcal{H}\$ is a 2-UHF
 - Seeing hash of one input gives no information on hash of another value

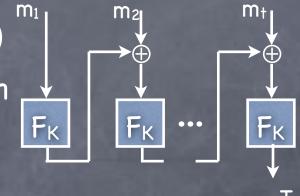
With Combinatorial Hash Functions and PRF

With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

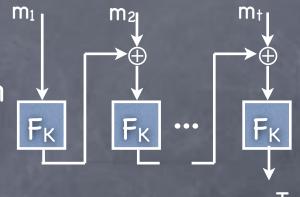
With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- © CBC-MAC: Extends to any fixed length domain



With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- © CBC-MAC: Extends to any fixed length domain
- Alternate approach:



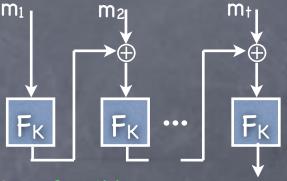
With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)

CBC-MAC: Extends to any fixed length domain

Alternate approach:

MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF



- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):

- Recall: PRF is a MAC (on one-block messages)
- © CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks
 - \circ Or, output not the last tag T, but $F_{K'}(T)$, where K' is an independent key (EMAC)

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks
 - Or, output not the last tag T, but F_{K'}(T), where K' is an independent key (EMAC)
 - Or, XOR last message block with another key K' (CMAC)

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach:
 - MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - \odot Derive K as $F_{K'}(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks
 - Or, output not the last tag T, but $F_{K'}(T)$, where K' is an independent key (EMAC)
 - Or, XOR last message block with another key K' (CMAC)
- Leave variable input-lengths to the hash?

Previous extension solutions required pseudorandomness of MAC

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?

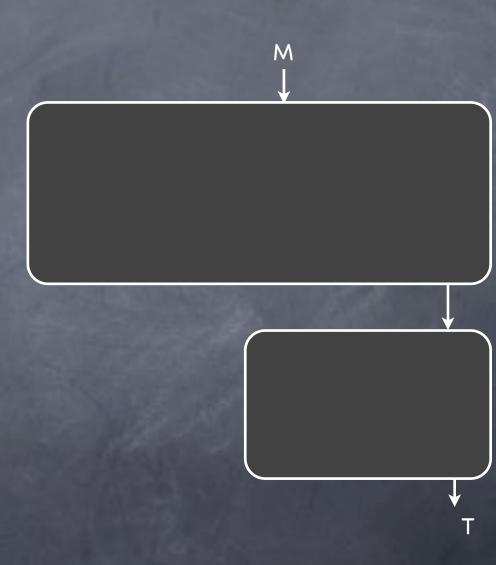
- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy
 - MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF

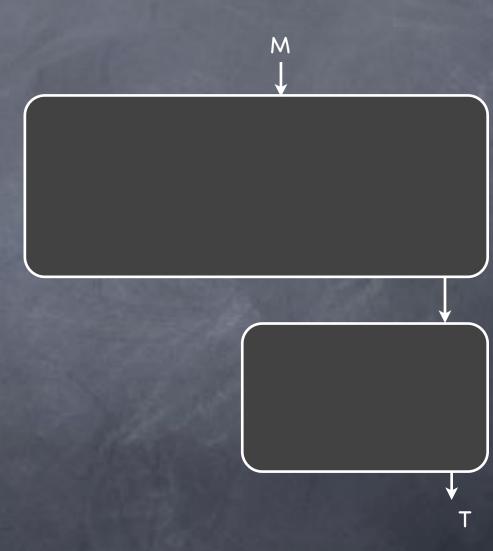
- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy
 - MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF
 - Weak-CRHFs can be based on OWF. Can be efficiently constructed from fixed input-length MACs.

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy
 - MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF
 - Weak-CRHFs can be based on OWF. Can be efficiently constructed from fixed input-length MACs.
- What are candidate fixed input-length MACs in practice that do not use a block-cipher?

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
 - Why? "No export restrictions!" Also security/efficiency/legacy
 - MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF
 - Weak-CRHFs can be based on OWF. Can be efficiently constructed from fixed input-length MACs.
- What are candidate fixed input-length MACs in practice that do not use a block-cipher?
 - Compression functions (with key as IV)

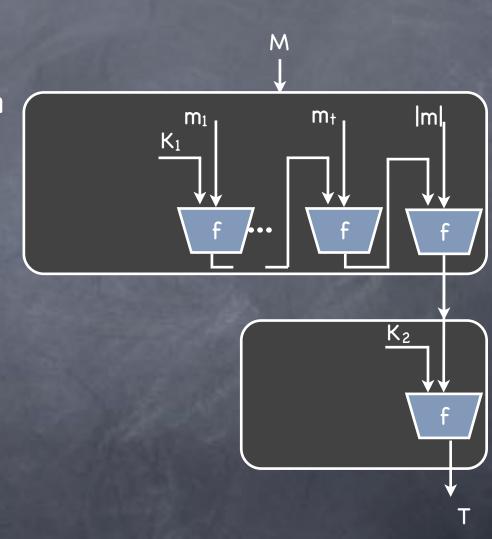


HMAC: Hash-based MAC



HMAC: Hash-based MAC

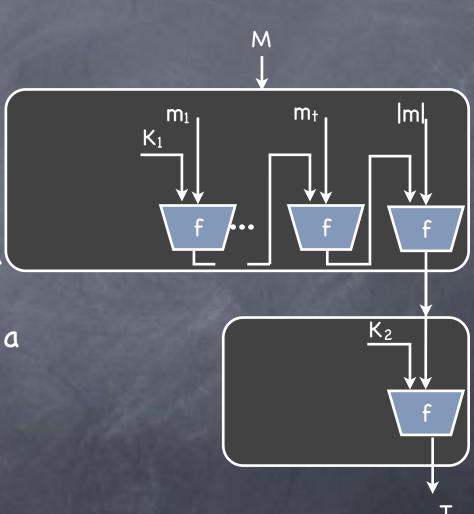
Essentially built from a compression function f



HMAC: Hash-based MAC

Essentially built from a compression function f

If keys K₁, K₂ independent (called NMAC), then secure MAC if f is a fixed input-length MAC, and the Merkle-Damgård iterated-hash is a weak-CRHF

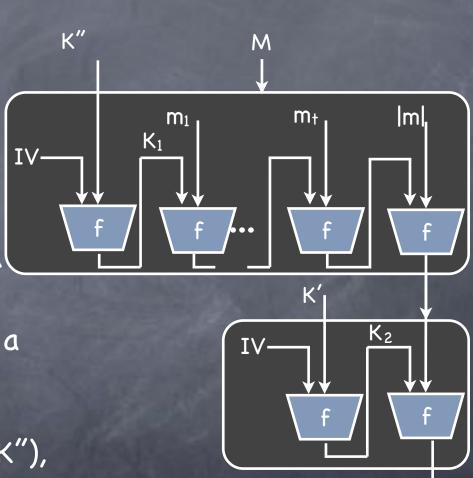


HMAC: Hash-based MAC

Essentially built from a compression function f

If keys K₁, K₂ independent (called NMAC), then secure MAC if f is a fixed input-length MAC, and the Merkle-Damgård iterated-hash is a weak-CRHF

In HMAC (K₁,K₂) derived from (K',K"), in turn heuristically derived from a single key K. If f is a (weak kind of) PRF K₁, K₂ can be considered independent



Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- If H is a Random Oracle, then just H(K||M) will be a MAC

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- - But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- - But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery
 - (That attack can be fixed by preventing extension: prefix-free encoding)

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- - But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery
 - (That attack can be fixed by preventing extension: prefix-free encoding)
 - Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned out to be flawed too

Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
Security: Same experiment as MAC's, but adversary given VK

- Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK
- Secure digital signatures using OWF, UOWHF and PRF

- Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK
- Secure digital signatures using OWF, UOWHF and PRF
 - Hence, from OWF alone (more efficiently from OWP)

- Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK
- Secure digital signatures using OWF, UOWHF and PRF
 - Hence, from OWF alone (more efficiently from OWP)
- More efficient using CRHF instead of UOWHF

- Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK
- Secure digital signatures using OWF, UOWHF and PRF
 - Hence, from OWF alone (more efficiently from OWP)
- More efficient using CRHF instead of UOWHF
- Even more efficient based on (strong) number-theoretic assumptions

- Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK
- Secure digital signatures using OWF, UOWHF and PRF
 - Hence, from OWF alone (more efficiently from OWP)
- More efficient using CRHF instead of UOWHF
- Even more efficient based on (strong) number-theoretic assumptions
 - e.g. Cramer-Shoup Signature based on "Strong RSA assumption"

- Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK
- Secure digital signatures using OWF, UOWHF and PRF
 - Hence, from OWF alone (more efficiently from OWP)
- More efficient using CRHF instead of UOWHF
- Even more efficient based on (strong) number-theoretic assumptions
 - e.g. Cramer-Shoup Signature based on "Strong RSA assumption"
- Efficient schemes secure in the Random Oracle Model

- Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK
- Secure digital signatures using OWF, UOWHF and PRF
 - Hence, from OWF alone (more efficiently from OWP)
- More efficient using CRHF instead of UOWHF
- Even more efficient based on (strong) number-theoretic assumptions
 - e.g. Cramer-Shoup Signature based on "Strong RSA assumption"
- Efficient schemes secure in the Random Oracle Model
 - e.g. RSA-PSS in RSA Standard PKCS#1

Recall One-time MAC to sign a single n bit message

- Recall One-time MAC to sign a single n bit message
 - Shared secret key: 2n random strings (each k-bit long) (rio,ri) i=1...n
 - Signature for m₁...m_n be (rⁱ_{mi})_{i=1..n}

r^1_0	r ² 0	r ³ 0
r^{1}_{1}	r ² 1	r^3 1

- Recall One-time MAC to sign a single n bit message
 - Shared secret key: 2n random strings (each k-bit long) (rio,ri) i=1...n
 - Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- One-Time Digital Signature: Same signing key and signature, but VK= $(f(r^i_0), f(r^i_1))_{i=1..n}$ where f is a OWF

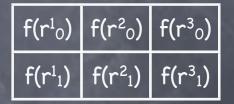
r^{1}_{0}	r²0	r ³ 0
r^{1}	r ² 1	r ³ 1

- Recall One-time MAC to sign a single n bit message
 - Shared secret key: 2n random strings (each k-bit long) (rio,ri) i=1..n
 - Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- One-Time Digital Signature: Same signing key and signature, but VK= $(f(r^i_0), f(r^i_1))_{i=1..n}$ where f is a OWF

f(r ¹ ₀)	f(r ² ₀)	f(r ³ ₀)
f(r11)	f(r ² ₁)	f(r31)

r¹0	r²o	r ³ 0
r^{l}_{1}	r²1	r ³ 1

- Recall One-time MAC to sign a single n bit message
 - Shared secret key: 2n random strings (each k-bit long) (rio,ri) i=1..n
 - Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- One-Time Digital Signature: Same signing key and signature, but VK= $(f(r^i_0), f(r^i_1))_{i=1..n}$ where f is a OWF
 - Verification applies f to signature elements and compares with VK



r¹o	r ² 0	r ³ 0
r^{1}_{1}	r ² 1	r ³ 1

- Recall One-time MAC to sign a single n bit message
 - Shared secret key: 2n random strings (each k-bit long) (rio,ri) i=1...n
 - Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- One-Time Digital Signature: Same signing key and signature, but VK= $(f(r^i_0), f(r^i_1))_{i=1..n}$ where f is a OWF
 - Verification applies f to signature elements and compares with VK
 - Security [Exercise]

r^1 0	r²0	r ³ 0
r^{1}_{1}	r ² 1	r ³ 1

Recall One-time MAC to sign a single n bit message

Lamport's One-Time Signature

- Shared secret key: 2n random strings (each k-bit long) (rio,ri) i=1..n
- Signature for m₁...m_n be (rⁱ_{mi})_{i=1..n}
- One-Time Digital Signature: Same signing key and signature, but $VK = (f(r_0^i), f(r_1^i))_{i=1..n}$ where f is a OWF
 - Verification applies f to signature elements and compares with VK
 - Security [Exercise]

f(r ¹ ₀)	f(r ² ₀)	f(r ³ ₀)
f(r11)	f(r ² ₁)	f(r31)

r¹o	r ² 0	r ³ 0
r¹1	r²1	r ³ 1

Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)

- Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)
- Hash-and-Sign domain extension

- Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)
- Hash-and-Sign domain extension
 - (If applied to one-time signature, still one-time, but with variable input-length)

- Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)
- Hash-and-Sign domain extension
 - (If applied to one-time signature, still one-time, but with variable input-length)
 - Domain extension using a CRHF (not weak CRHF)

- Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)
- Hash-and-Sign domain extension
 - (If applied to one-time signature, still one-time, but with variable input-length)
 - Domain extension using a CRHF (not weak CRHF)
 - Sign*_{SK,h}(M) = Sign_{SK}(h(M)) where h← \mathcal{H} in both SK,VK

- Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)
- Hash-and-Sign domain extension
 - (If applied to one-time signature, still one-time, but with variable input-length)
 - Domain extension using a CRHF (not weak CRHF)
 - Sign*_{SK,h}(M) = Sign_{SK}(h(M)) where $h \leftarrow \mathcal{H}$ in both SK,VK
 - Can use UOWHF, with fresh h every time (included in signature)

- Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)
- Hash-and-Sign domain extension
 - (If applied to one-time signature, still one-time, but with variable input-length)
 - Domain extension using a CRHF (not weak CRHF)
 - Sign*_{SK,h}(M) = Sign_{SK}(h(M)) where $h \leftarrow \mathcal{H}$ in both SK,VK
 - Can use UOWHF, with fresh h every time (included in signature)
 - Sign*_{SK}(M) = (h,Sign_{SK}(h,h(M))) where h← \mathcal{H} picked by signer

- Lamport's scheme has a fixed-length message (and SK/VK are much longer than the message)
- Hash-and-Sign domain extension
 - (If applied to one-time signature, still one-time, but with variable input-length)
 - Domain extension using a CRHF (not weak CRHF)
 - Sign*_{SK,h}(M) = Sign_{SK}(h(M)) where $h \leftarrow \mathcal{H}$ in both SK,VK
 - Can use UOWHF, with fresh h every time (included in signature)
 - Sign*_{SK}(M) = (h,Sign_{SK}(h,h(M))) where h← \mathcal{H} picked by signer
 - This can then be used to build a full-fledged signature scheme starting from one-time signatures (skipped)

Diffie-Hellman suggestion (heuristic): Sign(M) = $f^{-1}(M)$ where (SK,VK) = (f^{-1},f) , a Trapdoor OWP pair. Verify(M, σ) = 1 iff $f(\sigma)$ =M.

- © Diffie-Hellman suggestion (heuristic): Sign(M) = $f^{-1}(M)$ where (SK,VK) = (f^{-1},f) , a Trapdoor OWP pair. Verify(M, σ) = 1 iff $f(\sigma)$ =M.
 - \odot Attack: pick σ , let M=f(σ) (Existential forgery)

- © Diffie-Hellman suggestion (heuristic): Sign(M) = $f^{-1}(M)$ where (SK,VK) = (f^{-1},f) , a Trapdoor OWP pair. Verify(M, σ) = 1 iff $f(\sigma)$ =M.
 - \odot Attack: pick σ , let M=f(σ) (Existential forgery)
- Fix: Sign(M) = $f^{-1}(Hash(M))$

- © Diffie-Hellman suggestion (heuristic): Sign(M) = $f^{-1}(M)$ where (SK,VK) = (f^{-1},f) , a Trapdoor OWP pair. Verify(M, σ) = 1 iff $f(\sigma)$ =M.
 - \odot Attack: pick σ , let M=f(σ) (Existential forgery)
- Fix: Sign(M) = $f^{-1}(Hash(M))$
 - Secure? Adversary gets to choose M and hence Hash(M), and so the signing oracle gives adversary access to f⁻¹ oracle. But T-OWP gives no guarantees when adversary is given f⁻¹ oracle.

- © Diffie-Hellman suggestion (heuristic): Sign(M) = $f^{-1}(M)$ where (SK,VK) = (f^{-1},f) , a Trapdoor OWP pair. Verify(M, σ) = 1 iff $f(\sigma)$ =M.
 - \odot Attack: pick σ , let M=f(σ) (Existential forgery)
- Fix: Sign(M) = $f^{-1}(Hash(M))$
 - Secure? Adversary gets to choose M and hence Hash(M), and so the signing oracle gives adversary access to f⁻¹ oracle. But T-OWP gives no guarantees when adversary is given f⁻¹ oracle.
 - If Hash(.) modeled as a random oracle then adversary can't choose Hash(M), and hence doesn't have access to f⁻¹ oracle. Then indeed secure [coming up]

- © Diffie-Hellman suggestion (heuristic): Sign(M) = $f^{-1}(M)$ where (SK,VK) = (f^{-1},f) , a Trapdoor OWP pair. Verify(M, σ) = 1 iff $f(\sigma)$ =M.
 - \odot Attack: pick σ , let M=f(σ) (Existential forgery)
- Fix: Sign(M) = $f^{-1}(Hash(M))$
 - Secure? Adversary gets to choose M and hence Hash(M), and so the signing oracle gives adversary access to f⁻¹ oracle. But T-OWP gives no guarantees when adversary is given f⁻¹ oracle.
 - If Hash(.) modeled as a random oracle then adversary can't choose Hash(M), and hence doesn't have access to f⁻¹ oracle. Then indeed secure [coming up]
 - "Standard schemes" like RSA-PSS are based on this

To prove that if T-OWP secure, then $Sign(M) = f^{-1}(Hash(M))$ is a secure digital signature in the RO Model, if Hash is a random oracle

- To prove that if T-OWP secure, then Sign(M) = f⁻¹(Hash(M)) is a secure digital signature in the RO Model, if Hash is a random oracle
 - Intuition: adversary only sees (x,f⁻¹(x)) where x is random, which it could have obtained anyway, by picking f⁻¹(x) first

- To prove that if T-OWP secure, then $Sign(M) = f^{-1}(Hash(M))$ is a secure digital signature in the RO Model, if Hash is a random oracle
 - Intuition: adversary only sees (x,f⁻¹(x)) where x is random, which it could have obtained anyway, by picking f⁻¹(x) first
- Modeling as an RO: RO randomly initialized to a random function H from {0,1}* to {0,1}k

- To prove that if T-OWP secure, then $Sign(M) = f^{-1}(Hash(M))$ is a secure digital signature in the RO Model, if Hash is a random oracle
 - Intuition: adversary only sees $(x,f^{-1}(x))$ where x is random, which it could have obtained anyway, by picking $f^{-1}(x)$ first

H an infinite object

Modeling as an RO: RO randomly initialized to a random function H from {0,1}* to {0,1}k

- To prove that if T-OWP secure, then Sign(M) = f⁻¹(Hash(M)) is a secure digital signature in the RO Model, if Hash is a random oracle
 - Intuition: adversary only sees $(x,f^{-1}(x))$ where x is random, which it could have obtained anyway, by picking $f^{-1}(x)$ first

H an infinite object

- Modeling as an RO: RO randomly initialized to a random function H from {0,1}* to {0,1}k
 - Signer and verifier (and forger) get oracle access to H(.)

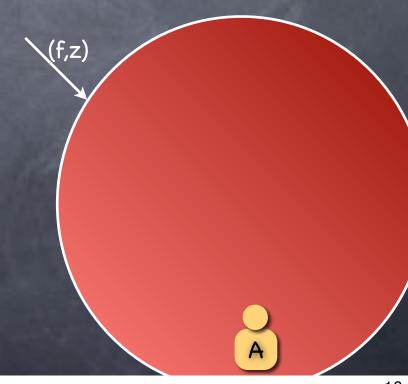
- To prove that if T-OWP secure, then Sign(M) = f⁻¹(Hash(M)) is a secure digital signature in the RO Model, if Hash is a random oracle
 - Intuition: adversary only sees $(x,f^{-1}(x))$ where x is random, which it could have obtained anyway, by picking $f^{-1}(x)$ first

H an infinite object

- Modeling as an RO: RO randomly initialized to a random function H from {0,1}* to {0,1}k
 - Signer and verifier (and forger) get oracle access to H(.)
 - All probabilities also over the initialization of the RO

Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$ with (f,f^{-1}) from TOWP and H an RO), then A^* that can break T-OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). $A^*(f,z)$ runs A internally.

Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$) with (f,f^{-1}) from TOWP and H an RO), then A^* that can break T-OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). $A^*(f,z)$ runs A internally.



Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$) with (f,f^{-1}) from TOWP and H an RO), then A^* that can break T-OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). $A^*(f,z)$ runs A internally.

A expects f, access to the RO and a signing oracle f⁻¹(Hash(.))

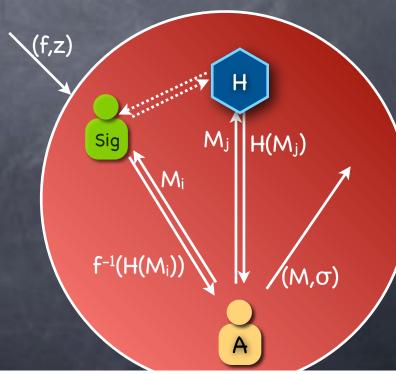
(f,z)

and outputs (M,σ) as forgery

Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$ with (f,f^{-1}) from TOWP and H an RO), then A^* that can break T-OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). $A^*(f,z)$ runs A internally.

A expects f, access to the RO and a signing oracle f⁻¹(Hash(.))

and outputs (M,σ) as forgery

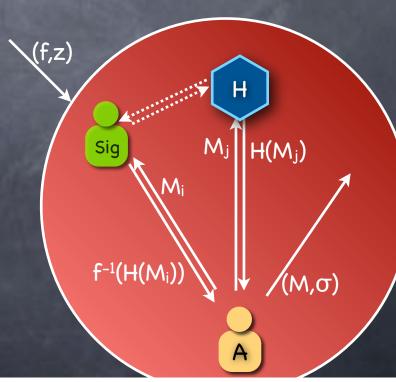


Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$) with (f,f^{-1}) from TOWP and H an RO), then A^* that can break T-OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). $A^*(f,z)$ runs A internally.

A expects f, access to the RO and a signing oracle f⁻¹(Hash(.))

and outputs (M,σ) as forgery

A* can implement RO: a random response to each new query!



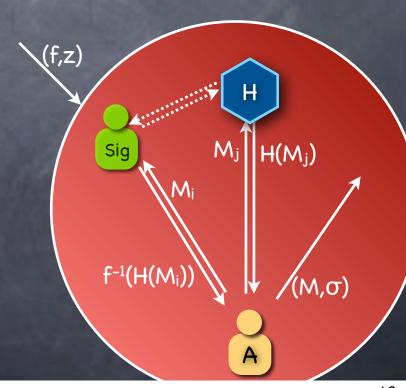
Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$ with (f,f^{-1}) from TOWP and H an RO), then A^* that can break T-OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). $A^*(f,z)$ runs A internally.

A expects f, access to the RO and a signing oracle f-1(Hash(.))

and outputs (M,σ) as forgery

A* can implement RO: a random response to each new query!

A* gets f, but doesn't have f-1 to sign



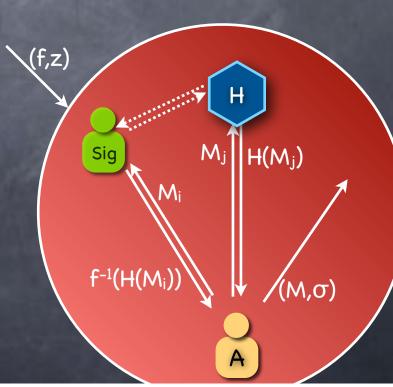
Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$ with (f,f^{-1}) from TOWP and H an RO), then A^* that can break T-OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). $A^*(f,z)$ runs A internally.

A expects f, access to the RO and a signing oracle f-1(Hash(.))

and outputs (M,σ) as forgery

A* can implement RO: a random response to each new query!

- A* gets f, but doesn't have f-1 to sign
 - But x = H(M) is a random value that A^* can pick!



Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$ with (f,f^{-1}) from TOWP and H an RO), then A^* that can break T-OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). $A^*(f,z)$ runs A internally.

A expects f, access to the RO and a signing oracle f-1(Hash(.))

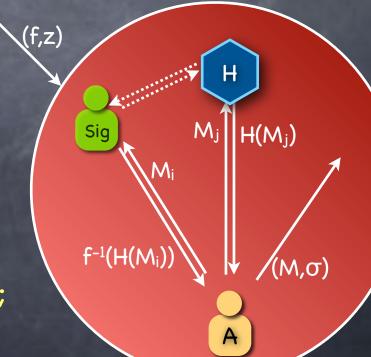
and outputs (M,σ) as forgery

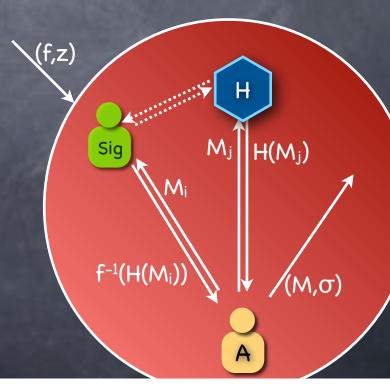
A* can implement RO: a random response to each new query!

A* gets f, but doesn't have f-1 to sign

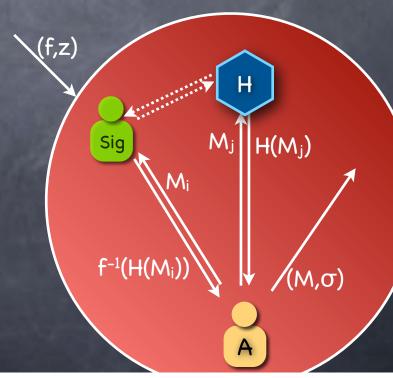
But x = H(M) is a random value that A^* can pick!

A* picks H(M) as x=f(y) for random y; then Sign(M) = $f^{-1}(x) = y$

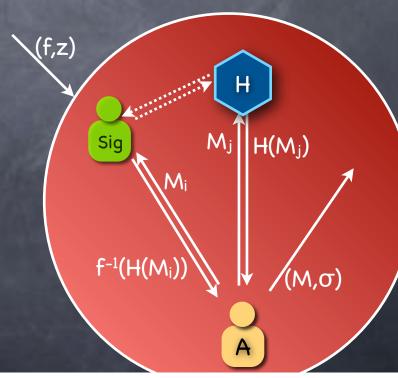




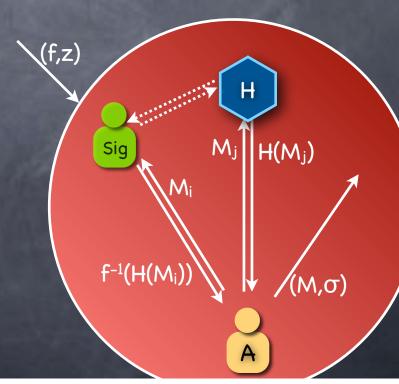
A* such that if A forges signature, then A* can break T-OWP



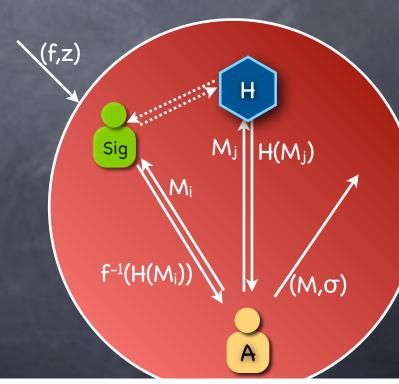
- A* such that if A forges signature, then A* can break T-OWP
 - A* implements H and Sign: For each new M queried to H or Sign, A* sets H(M)=f(y) for random y; then Sign(M) = y



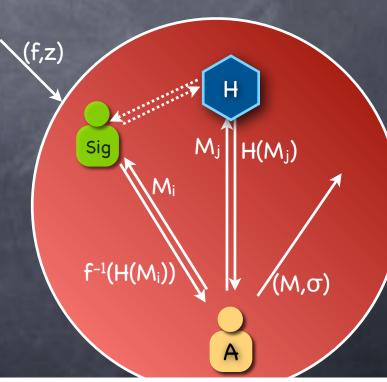
- A* such that if A forges signature, then A* can break T-OWP
 - A* implements H and Sign: For each new M queried to H or Sign, A* sets H(M)=f(y) for random y; then Sign(M) = y
 - But A* should force A to invert z



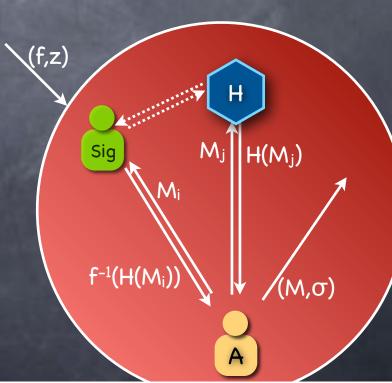
- A* such that if A forges signature, then A* can break T-OWP
 - A* implements H and Sign: For each new M queried to H or Sign, A* sets H(M)=f(y) for random y; then Sign(M) = y
 - But A* should force A to invert z
 - For a random (new) query to H (say jth) A* responds with z



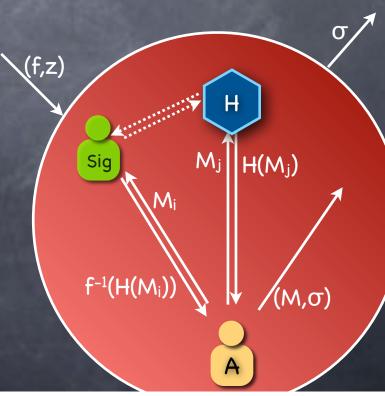
- A* such that if A forges signature, then A* can break T-OWP
 - A* implements H and Sign: For each new M queried to H or Sign, A* sets H(M)=f(y) for random y; then Sign(M) = y
 - But A* should force A to invert z
 - For a random (new) query to H (say jth) A* responds with z
 - Here queries to H includes the "last query," i.e., the one for verifying the forgery (may or may not be a new query)



- A* such that if A forges signature, then A* can break T-OWP
 - A* implements H and Sign: For each new M queried to H or Sign, A* sets H(M)=f(y) for random y; then Sign(M) = y
 - But A* should force A to invert z
 - For a random (new) query to H (say jth) A* responds with z
 - Here queries to H includes the "last query," i.e., the one for verifying the forgery (may or (f,z) may not be a new query)
 - If q a bound on the number of queries that A makes to Sign/H, then with probability at least 1/q, A* would have set H(M)=z, where M is the message in the forgery



- A* such that if A forges signature, then A* can break T-OWP
 - A* implements H and Sign: For each new M queried to H or Sign, A* sets H(M)=f(y) for random y; then Sign(M) = y
 - But A* should force A to invert z
 - For a random (new) query to H (say jth) A* responds with z
 - Here queries to H includes the "last query," i.e., the one for verifying the forgery (may or may not be a new query)
 - If q a bound on the number of queries that A makes to Sign/H, then with probability at least 1/q, A* would have set H(M)=z, where M is the message in the forgery
 - In that case forgery $\Rightarrow \sigma = f^{-1}(z)$



Consider a PRG which outputs a pseudorandom group element in some complicated group

- Consider a PRG which outputs a pseudorandom group element in some complicated group
 - A standard bit-string representation of a random group element may not be (pseudo)random

- Consider a PRG which outputs a pseudorandom group element in some complicated group
 - A standard bit-string representation of a random group element may not be (pseudo)random
 - Can we map it to a pseudorandom bit string? Depends on the group...

- Consider a PRG which outputs a pseudorandom group element in some complicated group
 - A standard bit-string representation of a random group element may not be (pseudo)random
 - Can we map it to a pseudorandom bit string? Depends on the group...
- Suppose a chip for producing random bits shows some complicated dependencies/biases, but still is highly unpredictable

- Consider a PRG which outputs a pseudorandom group element in some complicated group
 - A standard bit-string representation of a random group element may not be (pseudo)random
 - Can we map it to a pseudorandom bit string? Depends on the group...
- Suppose a chip for producing random bits shows some complicated dependencies/biases, but still is highly unpredictable
 - Can we purify it to extract <u>uniform</u> randomness? Depends on the specific dependencies...

- Consider a PRG which outputs a pseudorandom group element in some complicated group
 - A standard bit-string representation of a random group element may not be (pseudo)random
 - Can we map it to a pseudorandom bit string? Depends on the group...
- Suppose a chip for producing random bits shows some complicated dependencies/biases, but still is highly unpredictable
 - Can we purify it to extract <u>uniform</u> randomness? Depends on the specific dependencies...
- A general tool for purifying randomness: Randomness Extractor

Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)

- Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)
- 2-Universal Hash Functions

- Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)
- 2-Universal Hash Functions
 - "Optimal" in all parameters except seed length

- Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)
- 2-Universal Hash Functions
 - "Optimal" in all parameters except seed length
- Constructions with short seeds

- Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)
- 2-Universal Hash Functions
 - "Optimal" in all parameters except seed length
- Constructions with short seeds
 - e.g. Based on expander graphs

- Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)
- 2-Universal Hash Functions
 - "Optimal" in all parameters except seed length
- Constructions with short seeds
 - e.g. Based on expander graphs
- Pseudorandomness Extractors: output is guaranteed only to be pseudorandom if input has sufficient (pseudo)entropy

- Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)
- 2-Universal Hash Functions
 - "Optimal" in all parameters except seed length
- Constructions with short seeds
 - e.g. Based on expander graphs
- Pseudorandomness Extractors: output is guaranteed only to be pseudorandom if input has sufficient (pseudo)entropy
 - Can be based on iterated-hash functions or CBC-MAC

- Statistical guarantees (output not just pseudorandom, but truly random, if input has sufficient entropy)
- 2-Universal Hash Functions
 - "Optimal" in all parameters except seed length
- Constructions with short seeds
 - e.g. Based on expander graphs
- Pseudorandomness Extractors: output is guaranteed only to be pseudorandom if input has sufficient (pseudo)entropy
 - Can be based on iterated-hash functions or CBC-MAC
 - Statistical guarantee, if compression function/block-cipher is a random function/random permutation (not random oracle)

Strong extractor: output is random even when the seed for extraction is revealed

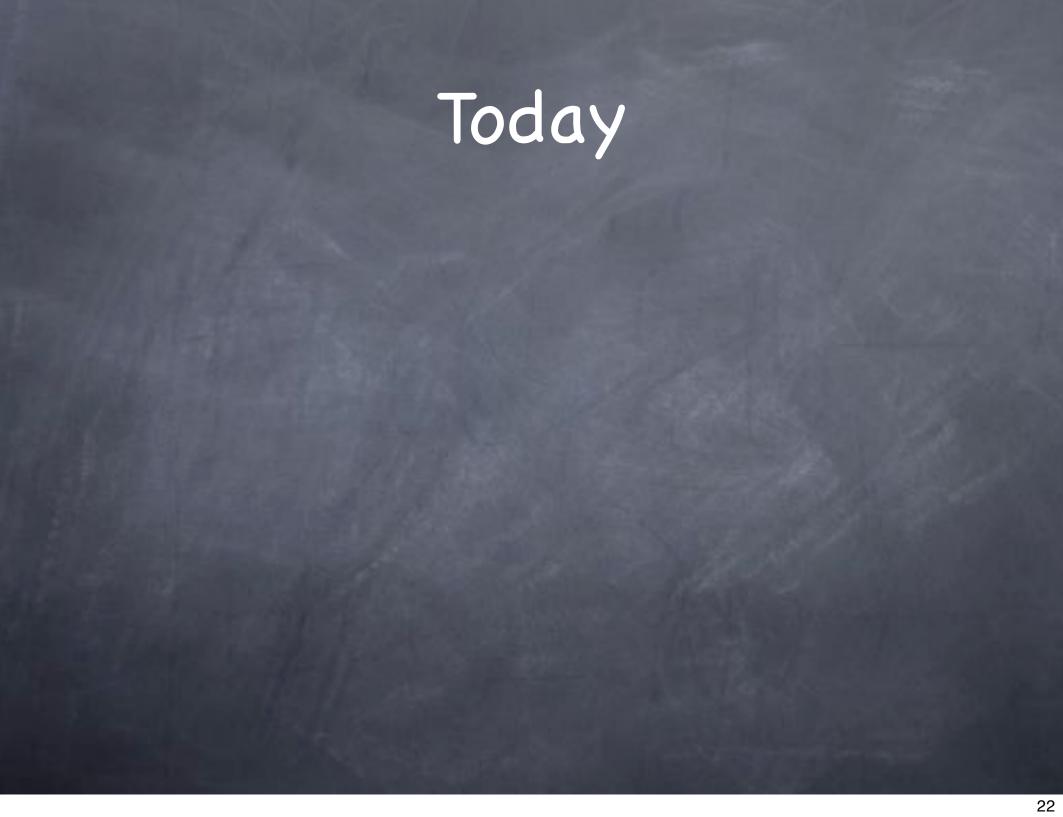
- Strong extractor: output is random even when the seed for extraction is revealed
 - 2-UHF is an example

- Strong extractor: output is random even when the seed for extraction is revealed
 - 2-UHF is an example
- Useful in key agreement

- Strong extractor: output is random even when the seed for extraction is revealed
 - 2-UHF is an example
- Useful in key agreement
 - Alice and Bob exchange a non-uniform key, with a lot of pseudoentropy for Eve (say, g^{xy})

- Strong extractor: output is random even when the seed for extraction is revealed
 - 2-UHF is an example
- Useful in key agreement
 - Alice and Bob exchange a non-uniform key, with a lot of pseudoentropy for Eve (say, g^{xy})
 - Alice sends a random seed for a strong extractor to Bob, in the clear

- Strong extractor: output is random even when the seed for extraction is revealed
 - 2-UHF is an example
- Useful in key agreement
 - Alice and Bob exchange a non-uniform key, with a lot of pseudoentropy for Eve (say, g^{xy})
 - Alice sends a random seed for a strong extractor to Bob, in the clear
 - Key derivation: Alice and Bob extract a new key, which is pseudorandom (i.e., indistinguishable from a uniform bit string)



Hash functions in action

- Hash functions in action
 - 2-UHF: for domain extension of one-time MAC, as a randomness extractor

- Hash functions in action
 - 2-UHF: for domain extension of one-time MAC, as a randomness extractor
 - Hash-then-MAC

- Hash functions in action
 - 2-UHF: for domain extension of one-time MAC, as a randomness extractor
 - Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF

- Hash functions in action
 - 2-UHF: for domain extension of one-time MAC, as a randomness extractor
 - Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF
 - Underlying HMAC/NMAC: compression function in an iterated-hash function assumed to be both a weak CRHF and a fixed input-length MAC

- Hash functions in action
 - 2-UHF: for domain extension of one-time MAC, as a randomness extractor
 - Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF
 - Underlying HMAC/NMAC: compression function in an iterated-hash function assumed to be both a weak CRHF and a fixed input-length MAC
 - UOWHF: for constructing digital signatures (based on OWF)

- Hash functions in action
 - 2-UHF: for domain extension of one-time MAC, as a randomness extractor
 - Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF
 - Underlying HMAC/NMAC: compression function in an iterated-hash function assumed to be both a weak CRHF and a fixed input-length MAC
 - UOWHF: for constructing digital signatures (based on OWF)
 - Random oracle and Trapdoor OWP for signatures