# Applied Cryptography

Lecture 1

# Applied Cryptography

Lecture 1

Our first encounter with secrecy: Secret-Sharing



© Cryptography is all about "controlling access to information"

Access to learning and/or influencing information



Cryptography is all about "controlling access to information"

Access to learning and/or influencing information

One of the aspects of access control is secrecy



A "dealer" and two "players" Alice and Bob

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits m<sub>1</sub>m<sub>2</sub>

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits m<sub>1</sub>m<sub>2</sub>
- She wants to "share" it among the two players so that neither player by itself learns anything about the message, but together they can find it

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits m<sub>1</sub>m<sub>2</sub>
- She wants to "share" it among the two players so that neither player by itself learns anything about the message, but together they can find it
- Bad idea: Give m<sub>1</sub> to Alice and m<sub>2</sub> to Bob

- A "dealer" and two "players" Alice and Bob
- Dealer has a message, say two bits m<sub>1</sub>m<sub>2</sub>
- She wants to "share" it among the two players so that neither player by itself learns anything about the message, but together they can find it
- Bad idea: Give m<sub>1</sub> to Alice and m<sub>2</sub> to Bob
- Other ideas?

To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
  - Bob learns nothing (b is a random bit)

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
  - Bob learns nothing (b is a random bit)
  - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p.  $\frac{1}{2}$ , 1 w.p.  $\frac{1}{2}$ )

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
  - Bob learns nothing (b is a random bit)
  - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p.  $\frac{1}{2}$ , 1 w.p.  $\frac{1}{2}$ )
    - Her view is <u>independent</u> of the message

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
  - Bob learns nothing (b is a random bit)
  - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p.  $\frac{1}{2}$ , 1 w.p.  $\frac{1}{2}$ )
    - Her view is independent of the message
  - Together they can recover m as a⊕b

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
  - Bob learns nothing (b is a random bit)
  - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p.  $\frac{1}{2}$ , 1 w.p.  $\frac{1}{2}$ )
    - Her view is <u>independent</u> of the message
  - Together they can recover m as a⊕b
- Multiple bits can be shared independently: as,  $m_1m_2 = a_1a_2⊕b_1b_2$

- To share a bit m, Dealer picks a uniformly <u>random</u> bit b and gives a := m⊕b to Alice and b to Bob
  - Bob learns nothing (b is a random bit)
  - Alice learns nothing either: for each possible value of m (0 or 1), a is a random bit (0 w.p.  $\frac{1}{2}$ , 1 w.p.  $\frac{1}{2}$ )
    - Her view is <u>independent</u> of the message
  - Together they can recover m as a⊕b
- Multiple bits can be shared independently: as,  $m_1m_2 = a_1a_2⊕b_1b_2$
- Note: one share can be chosen before knowing the message [why?]



Is the message m really secret?

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability  $\frac{1}{2}$ , by randomly guessing

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability  $\frac{1}{2}$ , by randomly guessing
  - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability  $\frac{1}{2}$ , by randomly guessing
  - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability  $\frac{1}{2}$ , by randomly guessing
  - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares
- The shares did not leak any <u>additional</u> information to either party

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability  $\frac{1}{2}$ , by randomly guessing
  - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares
- The shares did not leak any <u>additional</u> information to either party
- Secrecy: view is independent of the message

- Is the message m really secret?
- Alice or Bob can correctly find the bit m with probability  $\frac{1}{2}$ , by randomly guessing
  - Worse, if they already know something about m, they can do better (Note: we didn't say m is random!)
- But this they could have done without obtaining the shares
- The shares did not leak any additional information to either party
- Secrecy: view is independent of the message
  - i.e., for all possible values of the message, view is distributed the same way

More general secret-sharing

- More general secret-sharing
  - Allow more than two parties (how?)

- More general secret-sharing
  - Allow more than two parties (how?)
  - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)

- More general secret-sharing
  - Allow more than two parties (how?)
  - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful

- More general secret-sharing
  - Allow more than two parties (how?)
  - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
  - Direct applications (distributed storage of data or keys)

- More general secret-sharing
  - Allow more than two parties (how?)
  - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
  - Direct applications (distributed storage of data or keys)
  - Important component in other cryptographic constructions

- More general secret-sharing
  - Allow more than two parties (how?)
  - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
  - Direct applications (distributed storage of data or keys)
  - Important component in other cryptographic constructions
    - Amplifying secrecy of various primitives

- More general secret-sharing
  - Allow more than two parties (how?)
  - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
  - Direct applications (distributed storage of data or keys)
  - Important component in other cryptographic constructions
    - Amplifying secrecy of various primitives
    - Secure multi-party computation

# Secret-Sharing

- More general secret-sharing
  - Allow more than two parties (how?)
  - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
  - Direct applications (distributed storage of data or keys)
  - Important component in other cryptographic constructions
    - Amplifying secrecy of various primitives
    - Secure multi-party computation
    - Attribute-Based Encryption

# Secret-Sharing

- More general secret-sharing
  - Allow more than two parties (how?)
  - Privileged <u>subsets</u> of parties should be able to reconstruct the secret (not necessarily just the entire set of parties)
- Very useful
  - Direct applications (distributed storage of data or keys)
  - Important component in other cryptographic constructions
    - Amplifying secrecy of various primitives
    - Secure multi-party computation
    - Attribute-Based Encryption
    - Leakage resilience ...

(n,t)-secret-sharing

- (n,t)-secret-sharing
  - Divide a message m into n shares s<sub>1</sub>,...,s<sub>n</sub>, such that any t shares are enough to reconstruct the secret

- (n,t)-secret-sharing
  - $\odot$  Divide a message m into n shares  $s_1,...,s_n$ , such that any t shares are enough to reconstruct the secret
  - Up to t-1 shares should have no information about the secret

- (n,t)-secret-sharing
  - Divide a message m into n shares s<sub>1</sub>,...,s<sub>n</sub>, such that any t shares are enough to reconstruct the secret
  - Up to t-1 shares should have no information about the secret
    - $\odot$  i.e., say,  $(s_1,...,s_{t-1})$  identically distributed for every m in the message space

- (n,t)-secret-sharing
  - Divide a message m into n shares s<sub>1</sub>,...,s<sub>n</sub>, such that any t shares are enough to reconstruct the secret
  - Up to t-1 shares should have no information about the secret
    - @ i.e., say,  $(s_1,...,s_{t-1})$  identically distributed for every m in the message space
    - our previous example: (2,2) secret-sharing

© Construction: (n,n) secret-sharing in a group

- © Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group

- Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group
    - $\odot$  e.g.  $G = \mathbb{Z}_2^d$  (group of d-bit strings)

- Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group
    - $\odot$  e.g.  $G = \mathbb{Z}_2^d$  (group of d-bit strings)

- Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group
    - $_{\odot}$  e.g. G =  $\mathbb{Z}_2$  d (group of d-bit strings)
    - o or,  $G = \mathbb{Z}_p$  (group of integers mod p)
  - Share(M):

- Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group
    - $\odot$  e.g.  $G = \mathbb{Z}_2^d$  (group of d-bit strings)
  - Share(M):
    - Ø Pick s₁,...,s<sub>n-1</sub> uniformly random from G

- Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group
    - $\odot$  e.g.  $G = \mathbb{Z}_2^d$  (group of d-bit strings)
    - $or, G = \mathbb{Z}_p$  (group of integers mod p)
  - Share(M):
    - Pick s<sub>1</sub>,...,s<sub>n-1</sub> uniformly random from G

- Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group
    - $\odot$  e.g.  $G = \mathbb{Z}_2^d$  (group of d-bit strings)
    - o or,  $G = \mathbb{Z}_p$  (group of integers mod p)
  - Share(M):
    - Pick s<sub>1</sub>,...,s<sub>n-1</sub> uniformly random from G
    - $\bullet$  Let  $s_n = M (s_1 + ... + s_{n-1})$
  - Reconstruct( $s_1,...,s_n$ ): M =  $s_1 + ... + s_n$

- Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group
    - $\odot$  e.g.  $G = \mathbb{Z}_2^d$  (group of d-bit strings)
    - $\odot$  or, G =  $\mathbb{Z}_p$  (group of integers mod p)
  - Share(M):
    - Pick s<sub>1</sub>,...,s<sub>n-1</sub> uniformly random from G
    - $\bullet$  Let  $s_n = M (s_1 + ... + s_{n-1})$
  - Reconstruct( $s_1,...,s_n$ ): M =  $s_1 + ... + s_n$
  - Claim: This is an (n,n) secret-sharing scheme [Why?]

- Construction: (n,n) secret-sharing in a group
  - Message-space = share-space = G, a group
    - $\odot$  e.g.  $G = \mathbb{Z}_2^d$  (group of d-bit strings)
  - Share(M):
    - Pick s<sub>1</sub>,...,s<sub>n-1</sub> uniformly random from G
    - $\bullet$  Let  $s_n = M (s_1 + ... + s_{n-1})$
  - Reconstruct( $s_1,...,s_n$ ): M =  $s_1 + ... + s_n$
  - Claim: This is an (n,n) secret-sharing scheme [Why?]

Additive Secret Sharing

 $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )

- © Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)

- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - $\odot$  Share(M): pick random r;  $s_i = r i + M$  (for i=1,...,n < p)

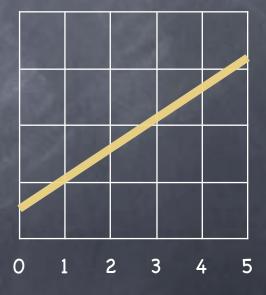
- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)
  - @ Reconstruct( $s_i$ ,  $s_j$ ):  $r = (s_i-s_j)/(i-j)$ ;  $M = s_i r_i$

- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)
  - @ Reconstruct( $s_i$ ,  $s_j$ ):  $r = (s_i-s_j)/(i-j)$ ;  $M = s_i r_i$
  - Each s<sub>i</sub> by itself is uniformly distributed, irrespective of M (Why?)

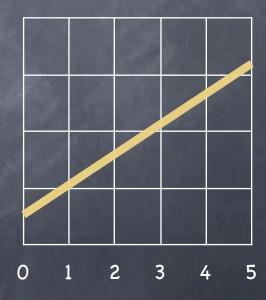
- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)
  - @ Reconstruct( $s_i$ ,  $s_j$ ):  $r = (s_i-s_j)/(i-j)$ ;  $M = s_i r_i$
  - Each s<sub>i</sub> by itself is uniformly distributed, irrespective of M (Why?)
  - "Geometric" interpretation

- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)
  - @ Reconstruct( $s_i$ ,  $s_j$ ):  $r = (s_i-s_j)/(i-j)$ ;  $M = s_i r_i$
  - Each s<sub>i</sub> by itself is uniformly distributed, irrespective of M (Why?)
  - "Geometric" interpretation
    - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares  $s_i = f(i)$ .

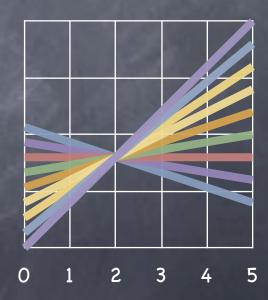
- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)
  - Reconstruct( $s_i$ ,  $s_j$ ):  $r = (s_i-s_j)/(i-j)$ ;  $M = s_i r_i$
  - Each s<sub>i</sub> by itself is uniformly distributed, irrespective of M (Why?)
  - "Geometric" interpretation
    - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares  $s_i = f(i)$ .



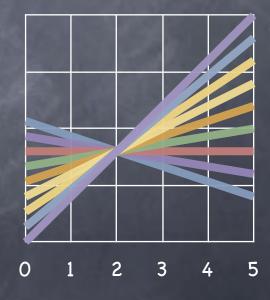
- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)
  - @ Reconstruct( $s_i$ ,  $s_j$ ):  $r = (s_i-s_j)/(i-j)$ ;  $M = s_i r_i$
  - Each s<sub>i</sub> by itself is uniformly distributed, irrespective of M (Why?)
  - "Geometric" interpretation
    - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares  $s_i = f(i)$ .
    - s<sub>i</sub> is independent of M: one line passing through (i,s<sub>i</sub>) and (0,M') for each secret M'



- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)
  - @ Reconstruct( $s_i$ ,  $s_j$ ):  $r = (s_i-s_j)/(i-j)$ ;  $M = s_i r_i$
  - Each s<sub>i</sub> by itself is uniformly distributed, irrespective of M (Why?)
  - "Geometric" interpretation
    - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares  $s_i = f(i)$ .
    - s<sub>i</sub> is independent of M: one line passing through (i,s<sub>i</sub>) and (0,M') for each secret M'



- $\odot$  Construction: (n,2) secret-sharing in a field (say  $\mathbb{F}_P$ )
  - Share(M): pick random r;  $s_i = r_i + M$  (for i=1,...,n < p)
  - @ Reconstruct( $s_i$ ,  $s_j$ ):  $r = (s_i-s_j)/(i-j)$ ;  $M = s_i r_i$
  - Each s<sub>i</sub> by itself is uniformly distributed, irrespective of M (Why?)
  - "Geometric" interpretation
    - Sharing picks a random "line" y = f(x), such that f(0)=M. Shares  $s_i = f(i)$ .
    - s<sub>i</sub> is independent of M: one line passing through (i,s<sub>i</sub>) and (0,M') for each secret M'
    - But can reconstruct the line from two points!



(n,t) secret-sharing in a field

- (n,t) secret-sharing in a field
  - Generalizing the geometric/algebraic view: instead of lines, use polynomials

- (n,t) secret-sharing in a field
  - Generalizing the geometric/algebraic view: instead of lines, use polynomials

- (n,t) secret-sharing in a field
  - Generalizing the geometric/algebraic view: instead of lines, use polynomials
    - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are  $s_i=f(i)$ .

#### Threshold Secret-Sharing

- (n,t) secret-sharing in a field
  - Generalizing the geometric/algebraic view: instead of lines, use polynomials
    - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are  $s_i=f(i)$ .

#### Threshold Secret-Sharing

- (n,t) secret-sharing in a field
  - Generalizing the geometric/algebraic view: instead of lines, use polynomials
    - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are  $s_i=f(i)$ .
      - ® Random polynomial with f(0)=M:  $c_0 + c_1X + c_2X^2 + ... + c_{t-1}X^{t-1}$  by picking  $c_0=M$  and  $c_1,...,c_{t-1}$  at random.
    - Reconstruct(s<sub>1</sub>,...,s<sub>t</sub>): Lagrange interpolation to find M=c<sub>0</sub>

#### Threshold Secret-Sharing

- (n,t) secret-sharing in a field
  - Generalizing the geometric/algebraic view: instead of lines, use polynomials
    - Share(m): Pick a random degree t-1 polynomial f(X), such that f(0)=M. Shares are  $s_i=f(i)$ .
      - Random polynomial with f(0)=M:  $c_0 + c_1X + c_2X^2 + ... + c_{t-1}X^{t-1}$  by picking  $c_0=M$  and  $c_1,...,c_{t-1}$  at random.
    - Reconstruct(s<sub>1</sub>,...,s<sub>t</sub>): Lagrange interpolation to find M=c<sub>0</sub>
      - Need t points to reconstruct the polynomial. Given t-1 points, there is exactly one polynomial passing through (0,M') for each M'

Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
  - ∅ t variables:  $c_0,...,c_{t-1}$ . t equations:  $1.c_0 + i.c_1 + i^2.c_2 + ... i^{t-1}.c_{t-1} = s_i$

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
  - $\circ$  t variables:  $c_0,...,c_{t-1}$ . t equations:  $1.c_0 + i.c_1 + i^2.c_2 + ... i^{t-1}.c_{t-1} = s_i$

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
  - ★ variables:  $c_0,...,c_{t-1}$ . † equations:  $1.c_0 + i.c_1 + i^2.c_2 + ... i^{t-1}.c_{t-1} = s_i$

  - W is a Vandermonde matrix: invertible

- Given t distinct points on a degree t-1 polynomial (univariate, over some field of more than t elements), reconstruct the entire polynomial (i.e., find all t co-efficients)
  - ★ variables:  $c_0,...,c_{t-1}$ . † equations:  $1.c_0 + i.c_1 + i^2.c_2 + ... i^{t-1}.c_{t-1} = s_i$

  - W is a Vandermonde matrix: invertible
    - $\circ$  c = W<sup>-1</sup>s

(n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret

- (n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret
  - i.e., "access structure"  $\mathcal{A} = \{S: |S| \ge t \}$ , is the set of all subsets of parties who can reconstruct the secret

- (n,t)-secret-sharing allowed any t (or more) parties to reconstruct the secret
  - i.e., "access structure"  $A = \{S: |S| \ge t \}$ , is the set of all subsets of parties who can reconstruct the secret
  - In general access structure could be any monotonic set of subsets

- (n,t)-secret-sharing allowed any t (or more) parties to If steff, then for all reconstruct the secret
  - o i.e., "access structure"  $A = \{S: |S| \ge t \}$ , is the set of all subsets of parties who can reconstruct the secret
  - In general access structure could be any monotonic set of subsets

- (n,t)-secret-sharing allowed any t (or more) parties to If steff, then for all reconstruct the secret
  - o i.e., "access structure"  $A = \{S: |S| \ge t \}$ , is the set of all subsets of parties who can reconstruct the secret
  - In general access structure could be any monotonic set of subsets
- Shamir's secret-sharing solves threshold secret-sharing. How about the others?

Idea: For arbitrary monotonic access structure  $\mathcal{A}$ , there is a "basis"  $\mathcal{B}$  of minimal sets in  $\mathcal{A}$ . For each S in  $\mathcal{B}$  generate an (|S|,|S|) sharing, and distribute them to the members of S.

- Idea: For arbitrary monotonic access structure  $\mathcal{A}$ , there is a "basis"  $\mathcal{B}$  of minimal sets in  $\mathcal{A}$ . For each S in  $\mathcal{B}$  generate an (|S|,|S|) sharing, and distribute them to the members of S.
  - Works, but very "inefficient"

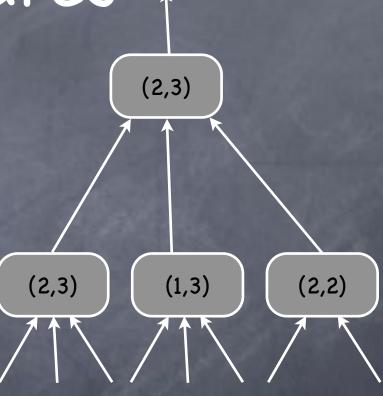
- Idea: For arbitrary monotonic access structure  $\mathcal{A}$ , there is a "basis"  $\mathcal{B}$  of minimal sets in  $\mathcal{A}$ . For each S in  $\mathcal{B}$  generate an (|S|,|S|) sharing, and distribute them to the members of S.
  - Works, but very "inefficient"
    - ${\it \odot}$  How big is  ${\it B}$ ? (Say when  ${\it A}$  is a threshold access structure; compare with Shamir's scheme.)

- Idea: For arbitrary monotonic access structure  $\mathcal{A}$ , there is a "basis"  $\mathcal{B}$  of minimal sets in  $\mathcal{A}$ . For each S in  $\mathcal{B}$  generate an (|S|,|S|) sharing, and distribute them to the members of S.
  - Works, but very "inefficient"
    - ${\it \odot}$  How big is  ${\it B}$ ? (Say when  ${\it A}$  is a threshold access structure; compare with Shamir's scheme.)
  - More efficient schemes known for large classes of access structures

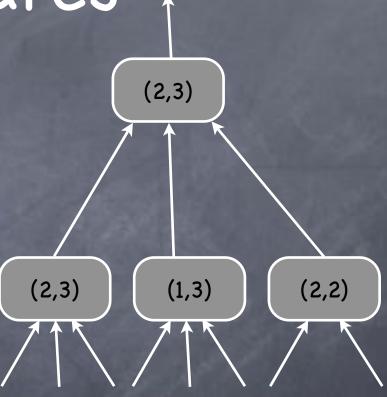
A simple generalization of threshold access structures

A simple generalization of threshold access structures

A threshold tree to specify the access structure



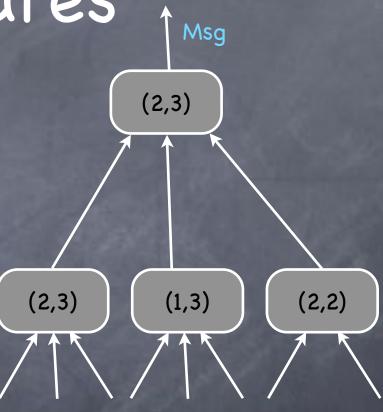
- A simple generalization of threshold access structures
  - A threshold tree to specify the access structure
  - © Can realize by recursively threshold secret-sharing the shares



A simple generalization of threshold access structures

A threshold tree to specify the access structure

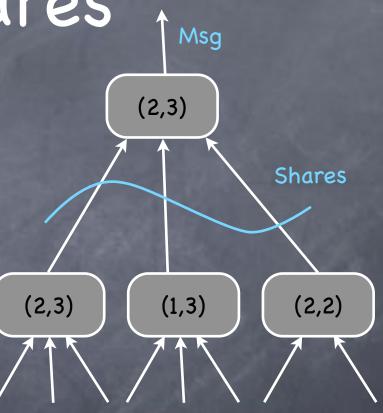
Can realize by recursively threshold secret-sharing the shares



A simple generalization of threshold access structures

A threshold tree to specify the access structure

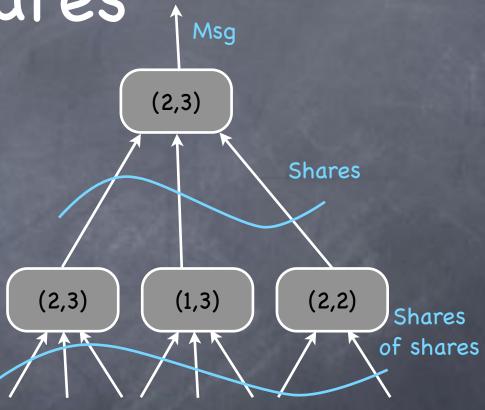
Can realize by recursively threshold secret-sharing the shares



A simple generalization of threshold access structures

A threshold tree to specify the access structure

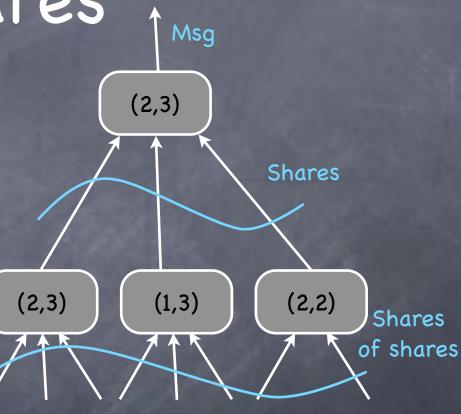
Can realize by recursively threshold secret-sharing the shares



A simple generalization of threshold access structures

A threshold tree to specify the access structure

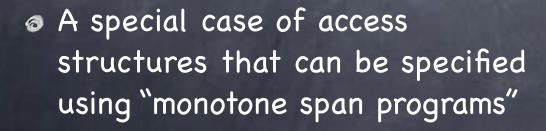
- Can realize by recursively threshold secret-sharing the shares
- A special case of access structures that can be specified using "monotone span programs"



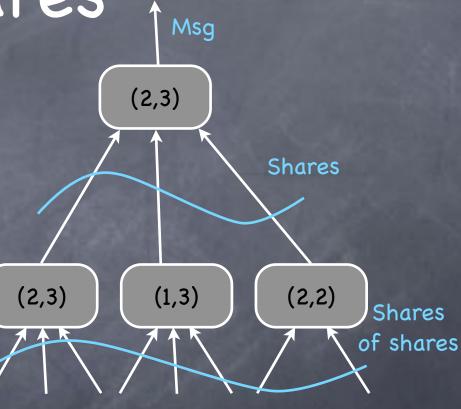
A simple generalization of threshold access structures

A threshold tree to specify the access structure

Can realize by recursively threshold secret-sharing the shares



Admits <u>linear</u> secret-sharing



### Linear Secret-Sharing

#### Linear Secret-Sharing

Share(M): For some fixed n x t matrix W, let shares be  $\mathbf{s} = W\mathbf{c}$ , where  $c_0 = M$  and other t-1 coordinates are random.

#### Linear Secret-Sharing

- Share(M): For some fixed n x t matrix W, let shares be  $\mathbf{s} = W\mathbf{c}$ , where  $c_0 = M$  and other t-1 coordinates are random.
  - The shares are subsets of coordinates of s

# Linear Secret-Sharing (Secretified in Secretified i

- Share(M): For some fixed n x t matrix W, let shares be s = Wc, where  $c_0 = M$  and other t-1 coordinates are random.
  - The shares are subsets of coordinates of s

### Linear Secret-Sharing (sharing)

- Share(M): For some fixed n x t matrix W, let shares be s = Wc, where  $c_0 = M$  and other t-1 coordinates are random.
  - The shares are subsets of coordinates of s
- Reconstruction: pool together all the available coordinates of s; can reconstruct if there are enough equations to solve for co

### Linear Secret-Sharing (certety intering)

- Share(M): For some fixed n x t matrix W, let shares be s = Wc, where  $c_0 = M$  and other t-1 coordinates are random.
  - The shares are subsets of coordinates of s
- Reconstruction: pool together all the available coordinates of s; can reconstruct if there are enough equations to solve for co
  - If not reconstructible, shares independent of secret

### Linear Secret-Sharing (correttive this

- Share(M): For some fixed n x t matrix W, let shares be s = Wc, where  $c_0 = M$  and other t-1 coordinates are random.
  - The shares are subsets of coordinates of s
- Reconstruction: pool together all the available coordinates of s; can reconstruct if there are enough equations to solve for co
  - If not reconstructible, shares independent of secret
- May not correspond to a threshold access structure

# Linear Secret-Sharing (corrective this

- Share(M): For some fixed n x t matrix W, let shares be s = Wc, where  $c_0 = M$  and other t-1 coordinates are random.
  - The shares are subsets of coordinates of s
- Reconstruction: pool together all the available coordinates of s; can reconstruct if there are enough equations to solve for co
  - If not reconstructible, shares independent of secret
- May not correspond to a threshold access structure
- Reconstruction too is a linear combination of available shares (coefficients depending on which subset of shares available)

Linearity of linear secret-sharing:

- Linearity of linear secret-sharing:
  - If two secrets  $m_1$ ,  $m_2 \in \mathbb{F}$  have been shared and a set of parties get shares  $\{x_i\}$  and  $\{y_i\}$  (also  $\mathbb{F}$  elements) as shares, then each party can locally obtain sharing  $\{z_i\}$  of  $am_1+bm_2$

- Linearity of linear secret-sharing:
  - If two secrets  $m_1$ ,  $m_2 \in \mathbb{F}$  have been shared and a set of parties get shares  $\{x_i\}$  and  $\{y_i\}$  (also  $\mathbb{F}$  elements) as shares, then each party can locally obtain sharing  $\{z_i\}$  of  $am_1+bm_2$ 
    - $z_i = ax_i + by_i$

- Linearity of linear secret-sharing:
  - If two secrets  $m_1$ ,  $m_2 \in \mathbb{F}$  have been shared and a set of parties get shares  $\{x_i\}$  and  $\{y_i\}$  (also  $\mathbb{F}$  elements) as shares, then each party can locally obtain sharing  $\{z_i\}$  of  $am_1+bm_2$ 
    - $z_i = ax_i + by_i$
  - Useful in secure multiparty computation (later)

- Linearity of linear secret-sharing:
  - If two secrets  $m_1$ ,  $m_2 \in \mathbb{F}$  have been shared and a set of parties get shares  $\{x_i\}$  and  $\{y_i\}$  (also  $\mathbb{F}$  elements) as shares, then each party can locally obtain sharing  $\{z_i\}$  of  $am_1+bm_2$ 
    - $z_i = ax_i + by_i$
  - Useful in secure multiparty computation (later)
- Simple(st) example: from <u>additive</u> shares for two bits  $b_1$  and  $b_2$ , n parties can locally obtain an additive sharing of  $b_1 \oplus b_2$

- Linearity of linear secret-sharing:
  - If two secrets  $m_1$ ,  $m_2 \in \mathbb{F}$  have been shared and a set of parties get shares  $\{x_i\}$  and  $\{y_i\}$  (also  $\mathbb{F}$  elements) as shares, then each party can locally obtain sharing  $\{z_i\}$  of  $am_1+bm_2$ 
    - $z_i = ax_i + by_i$
  - Useful in secure multiparty computation (later)
- Simple(st) example: from <u>additive</u> shares for two bits  $b_1$  and  $b_2$ , n parties can locally obtain an additive sharing of  $b_1 \oplus b_2$ 
  - Gives a "private summation" protocol

Gives a "private summation" protocol

Gives a "private summation" protocol

Clients with inputs











Gives a "private summation" protocol

Clients with inputs

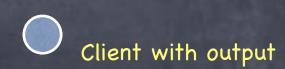












Gives a "private summation" protocol

Clients with inputs

















Servers

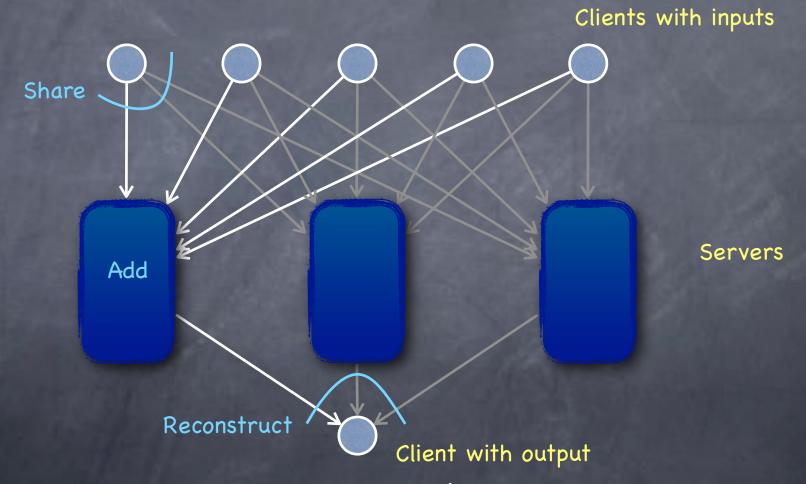


Client with output

Gives a "private summation" protocol

Clients with inputs Share Servers Add Reconstruct Client with output

Gives a "private summation" protocol



Secure against <u>passive</u> corruption (no set of parties learn more than what they must) if at least one server is uncorrupted



Main measure: size of the shares (say, total of all shares)

- Main measure: size of the shares (say, total of all shares)
  - Shamir's: each share is as as big as the secret (a single field element)

- Main measure: size of the shares (say, total of all shares)
  - Shamir's: each share is as as big as the secret (a single field element)
  - $\odot$  Naive scheme for arbitrary monotonic access structure: if a party is in N sets in  $\mathcal{B}$ , N basic shares

- Main measure: size of the shares (say, total of all shares)
  - Shamir's: each share is as as big as the secret (a single field element)
  - $\odot$  Naive scheme for arbitrary monotonic access structure: if a party is in N sets in  $\mathcal{B}$ , N basic shares
    - $oldsymbol{\circ}$  N can be exponential in n (as  ${\mathcal B}$  can have exponentially many sets)

- Main measure: size of the shares (say, total of all shares)
  - Shamir's: each share is as as big as the secret (a single field element)
  - $\odot$  Naive scheme for arbitrary monotonic access structure: if a party is in N sets in  $\mathcal{B}$ , N basic shares
    - $oldsymbol{\varnothing}$  N can be exponential in n (as  ${\mathcal B}$  can have exponentially many sets)
  - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret

- Main measure: size of the shares (say, total of all shares)
  - Shamir's: each share is as as big as the secret (a single field element)
  - $\odot$  Naive scheme for arbitrary monotonic access structure: if a party is in N sets in  $\mathcal{B}$ , N basic shares
    - $\odot$  N can be exponential in n (as  $\mathcal B$  can have exponentially many sets)
  - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
    - Ideal: if all shares are only this big (e.g. Shamir's scheme)

- Main measure: size of the shares (say, total of all shares)
  - Shamir's: each share is as as big as the secret (a single field element)
  - $\odot$  Naive scheme for arbitrary monotonic access structure: if a party is in N sets in  $\mathcal{B}$ , N basic shares
    - $oldsymbol{\varnothing}$  N can be exponential in n (as  ${\mathcal B}$  can have exponentially many sets)
  - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
    - Ideal: if all shares are only this big (e.g. Shamir's scheme)
    - Not all access structures have ideal schemes

- Main measure: size of the shares (say, total of all shares)
  - Shamir's: each share is as as big as the secret (a single field element)
  - $\odot$  Naive scheme for arbitrary monotonic access structure: if a party is in N sets in  $\mathcal{B}$ , N basic shares
    - $\odot$  N can be exponential in n (as  $\mathcal B$  can have exponentially many sets)
  - Share size must be at least as big as the secret: "last share" in a minimal authorized set should contain all the information about the secret
    - Ideal: if all shares are only this big (e.g. Shamir's scheme)
    - Not all access structures have ideal schemes
  - Non-linear schemes can be more efficient than linear schemes

Guarding against possible malicious behavior by participants

- Guarding against possible malicious behavior by participants
  - Bad players: may substitute their shares to change the outcome (e.g., in additive sharing, can add to the outcome by adding to one's share)

- Guarding against possible malicious behavior by participants
  - Bad players: may substitute their shares to change the outcome (e.g., in additive sharing, can add to the outcome by adding to one's share)
  - Bad dealer: may distribute shares which do not have a consistent secret (e.g., in Shamir's, if dealer uses a higher degree polynomial); if participating in reconstruction, may be able to fix the secret at that time, or, even if enough good players get together, deny them ability to reconstruct

- Guarding against possible malicious behavior by participants
  - Bad players: may substitute their shares to change the outcome (e.g., in additive sharing, can add to the outcome by adding to one's share)
  - Bad dealer: may distribute shares which do not have a consistent secret (e.g., in Shamir's, if dealer uses a higher degree polynomial); if participating in reconstruction, may be able to fix the secret at that time, or, even if enough good players get together, deny them ability to reconstruct
- Privacy: if dealer is honest, adversary (who does not control an authorized set) learns nothing of the secret

- Guarding against possible malicious behavior by participants
  - Bad players: may substitute their shares to change the outcome (e.g., in additive sharing, can add to the outcome by adding to one's share)
  - Bad dealer: may distribute shares which do not have a consistent secret (e.g., in Shamir's, if dealer uses a higher degree polynomial); if participating in reconstruction, may be able to fix the secret at that time, or, even if enough good players get together, deny them ability to reconstruct
- Privacy: if dealer is honest, adversary (who does not control an authorized set) learns nothing of the secret
- Correctness: if dealer honest, reconstruction correct; even if dealer corrupt, a fixed consistent secret at the end of sharing

Access structure and "Adversary Structure"

- Access structure and "Adversary Structure"
  - Latter saying who all can be malicious

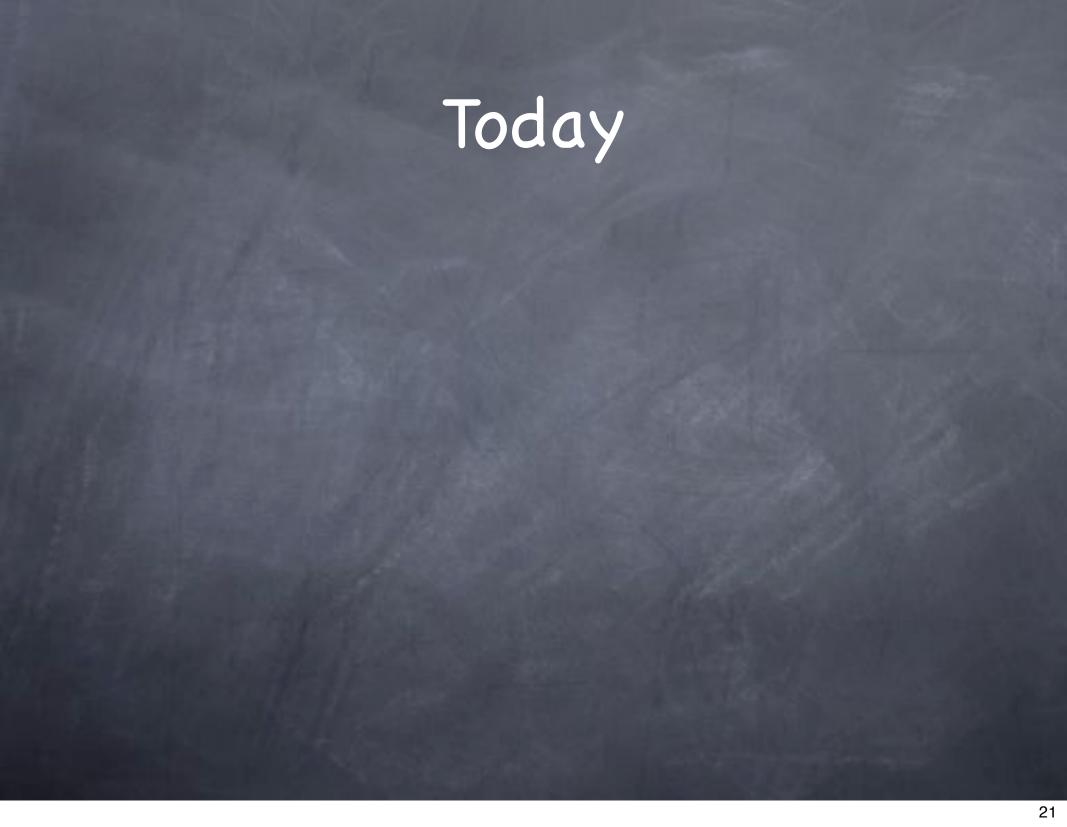
- Access structure and "Adversary Structure"
  - Latter saying who all can be malicious
  - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)

- Access structure and "Adversary Structure"
  - Latter saying who all can be malicious
  - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)
- Typically require that for admissible adversary structures, if dealer honest, honest players in an authorized set will reconstruct the secret (even if malicious players in the set try to sabotage)

- Access structure and "Adversary Structure"
  - Latter saying who all can be malicious
  - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)
- Typically require that for admissible adversary structures, if dealer honest, honest players in an authorized set will reconstruct the secret (even if malicious players in the set try to sabotage)
- A broadcast channel is very useful (to force each player to tell everyone the same story)

- Access structure and "Adversary Structure"
  - Latter saying who all can be malicious
  - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)
- Typically require that for admissible adversary structures, if dealer honest, honest players in an authorized set will reconstruct the secret (even if malicious players in the set try to sabotage)
- A broadcast channel is very useful (to force each player to tell everyone the same story)
  - Broadcast can be achieved on top of point-to-point channels if only a small fraction (<1/3) corrupted</p>

- Access structure and "Adversary Structure"
  - Latter saying who all can be malicious
  - VSS not possible unless some restrictions on the adversary structure (e.g., at most a minority of the parties can be corrupted)
- Typically require that for admissible adversary structures, if dealer honest, honest players in an authorized set will reconstruct the secret (even if malicious players in the set try to sabotage)
- A broadcast channel is very useful (to force each player to tell everyone the same story)
  - Broadcast can be achieved on top of point-to-point channels if only a small fraction (<1/3) corrupted</p>
    - Otherwise malicious players can cause denial-of-service



Secrecy: if view is independent from the message

- Secrecy: if view is independent from the message
  - Does not give unprivileged sets of parties any <u>additional</u> information about the message, than what they already had

- Secrecy: if view is independent from the message
  - Does not give unprivileged sets of parties any <u>additional</u> information about the message, than what they already had
  - Irrespective of their computational power

- Secrecy: if view is independent from the message
  - Does not give unprivileged sets of parties any <u>additional</u> information about the message, than what they already had
  - Irrespective of their computational power
- Such secrecy not always possible (e.g., no public-key encryption)

- Secrecy: if view is independent from the message
  - Does not give unprivileged sets of parties any <u>additional</u> information about the message, than what they already had
  - Irrespective of their computational power
- Such secrecy not always possible (e.g., no public-key encryption)
- Next: secrecy against computationally bounded players