Groups for PKE: A Quick Primer

Discrete Log and DDH Assumptions, Candidate Trapdoor One-Way Permutations

A set G (for us finite, unless otherwise specified)

- A set G (for us finite, unless otherwise specified)
- A binary operation *: $G \times G \rightarrow G$

- A set G (for us finite, unless otherwise specified)
- A binary operation *: $G \times G \rightarrow G$

- A set G (for us finite, unless otherwise specified)
- \bullet A binary operation *: $G \times G \rightarrow G$

Abuse of notation: G instead of (G,*)

Sometimes called addition, sometimes called multiplication (depending on the set/operation)

- A set G (for us finite, unless otherwise specified)
- \bullet A binary operation *: $G \times G \rightarrow G$

- Sometimes called addition, sometimes called multiplication (depending on the set/operation)
- Properties:

- A set G (for us finite, unless otherwise specified)
- \bullet A binary operation *: $G \times G \rightarrow G$

- Sometimes called addition, sometimes called multiplication (depending on the set/operation)
- Properties: Associativity,

- A set G (for us finite, unless otherwise specified)
- \bullet A binary operation *: $G \times G \rightarrow G$

- Sometimes called addition, sometimes called multiplication (depending on the set/operation)
- Properties: Associativity, Existence of identity,

- A set G (for us finite, unless otherwise specified)
- lacktriangle A binary operation \star : $G \times G \rightarrow G$

- Sometimes called addition, sometimes called multiplication (depending on the set/operation)
- Properties: Associativity, Existence of identity, Invertibility

- A set G (for us finite, unless otherwise specified)
- \bullet A binary operation *: $G \times G \rightarrow G$

- Sometimes called addition, sometimes called multiplication (depending on the set/operation)
- Properties: Associativity, Existence of identity, Invertibility
 - Also for us (unless specified otherwise) Commutativity

- A set G (for us finite, unless otherwise specified)
- \bullet A binary operation *: $G \times G \rightarrow G$

- Sometimes called addition, sometimes called multiplication (depending on the set/operation)
- Properties: Associativity, Existence of identity, Invertibility
 - Also for us (unless specified otherwise) Commutativity
- Examples: \mathbb{Z} (integers, with addition operation; infinite group), \mathbb{Z}_N (integers modulo N), G^n (G group; coordinate-wise op)

© Computation with groups

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k
 - Some compact representation of the elements (poly(k) bits)

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k
 - Some compact representation of the elements (poly(k) bits)
 - Efficient algorithms for:

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k
 - Some compact representation of the elements (poly(k) bits)
 - Efficient algorithms for:
 - Checking if an element (in standard rep.) is in the group

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k
 - Some compact representation of the elements (poly(k) bits)
 - Efficient algorithms for:
 - Checking if an element (in standard rep.) is in the group
 - Group operation (on elements in standard rep.)

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k
 - Some compact representation of the elements (poly(k) bits)
 - Efficient algorithms for:
 - Checking if an element (in standard rep.) is in the group
 - Group operation (on elements in standard rep.)
 - Inverting

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k
 - Some compact representation of the elements (poly(k) bits)
 - Efficient algorithms for:
 - Checking if an element (in standard rep.) is in the group
 - Group operation (on elements in standard rep.)
 - Inverting
 - Sampling a random element (almost) uniformly

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k
 - Some compact representation of the elements (poly(k) bits)
 - Efficient algorithms for:
 - Checking if an element (in standard rep.) is in the group
 - Group operation (on elements in standard rep.)
 - Inverting
 - Sampling a random element (almost) uniformly
 - Group itself represented by these algorithms

- Computation with groups
 - For us, finite, but typically large: i.e., exponential in k
 - Some compact representation of the elements (poly(k) bits)
 - Efficient algorithms for:
 - Checking if an element (in standard rep.) is in the group
 - Group operation (on elements in standard rep.)
 - Inverting
 - Sampling a random element (almost) uniformly
 - Group itself represented by these algorithms
- For collection of groups: GroupGen, an algorithm to select a group

Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

g⁰

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$
 - \circ e.g. \mathbb{Z}_N , with say g=1 (additive group)

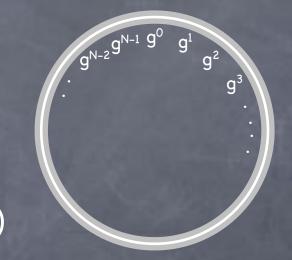
- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$
 - \circ e.g. \mathbb{Z}_N , with say g=1 (additive group)
 - or any g s.t. gcd(g,N) = 1

Groups, a primer

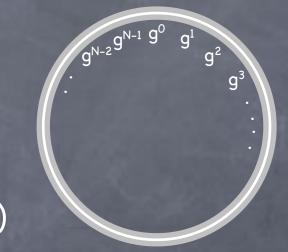
- Additive notation: X+Y, identity denoted as 0, X+X denoted by 2X
- Multiplicative notation: XY, identity 1, XX denoted as X²
- Order of a group G: |G| = number of elements in G
- © Cyclic group (finite, in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$
 - \circ e.g. \mathbb{Z}_N , with say g=1 (additive group)
 - or any g s.t. gcd(g,N) = 1
 - \odot Number of generators of $\mathbb{Z}_N =: \varphi(N)$

 \mathbb{Z}_N^* = (generators of \mathbb{Z}_N , multiplication mod N)

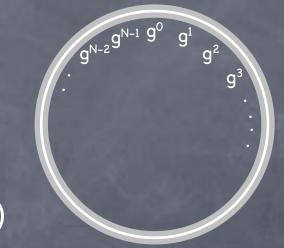
- - Numbers which have multiplicative inverse mod N



- - Numbers which have multiplicative inverse mod N



- - Numbers which have multiplicative inverse mod N
 - - e.g. $\mathbb{Z}_5^* = \{1,2,3,4\}$ is generated by 2 (as $\{1,2,4,3\}$), and by 3 (as $\{1,3,4,2\}$)



- - Numbers which have multiplicative inverse mod N
 - \odot If N is prime, \mathbb{Z}_N^* is a cyclic group, of order N-1
 - e.g. $\mathbb{Z}_5^* = \{1,2,3,4\}$ is generated by 2 (as $\{1,2,4,3\}$), and by 3 (as $\{1,3,4,2\}$)
 - (Also cyclic for certain other values of N)

Discrete Log (w.r.t g) in a (multiplicative) group G generated by g: $DL_g(X) = unique \times such that X = g^{\times} (x \in \{0,1,...,|G|-1\})$

- Discrete Log (w.r.t g) in a (multiplicative) group G generated by g: $DL_g(X) = unique \times such that X = g^{\times} (x \in \{0,1,...,|G|-1\})$
 - This could be used as a compact representation of elements in G

- Discrete Log (w.r.t g) in a (multiplicative) group G generated by g: $DL_g(X) = unique \times such that X = g^{\times} (x \in \{0,1,...,|G|-1\})$
 - This could be used as a compact representation of elements in G
 - \odot Group operation is given by $\mathbb{Z}_{|G|}$ operations on the discrete logs

- Discrete Log (w.r.t g) in a (multiplicative) group G generated by g: $DL_g(X) = unique \times such that X = g^{\times} (x \in \{0,1,...,|G|-1\})$
 - This could be used as a compact representation of elements in G
 - \odot Group operation is given by $\mathbb{Z}_{|G|}$ operations on the discrete logs
 - But may also consider the group with a different representation (e.g. natural representation for \mathbb{Z}_p^*)

- Discrete Log (w.r.t g) in a (multiplicative) group G generated by g: $DL_g(X) = unique \times such that X = g^{\times} (x \in \{0,1,...,|G|-1\})$
 - This could be used as a compact representation of elements in G
 - \odot Group operation is given by $\mathbb{Z}_{|G|}$ operations on the discrete logs
 - ${\color{red} @}$ But may also consider the group with a different representation (e.g. natural representation for ${{\mathbb Z}_p}^*$)
- In a computational group, given standard representation of g and x, can efficiently find the standard representation of X=g^x (How?)

- Discrete Log (w.r.t g) in a (multiplicative) group G generated by g: $DL_g(X) = unique \times such that X = g^{\times} (x \in \{0,1,...,|G|-1\})$
 - This could be used as a compact representation of elements in G
 - lacktriangle Group operation is given by $oldsymbol{\mathbb{Z}}_{|\mathsf{G}|}$ operations on the discrete logs
 - ${\color{red} @}$ But may also consider the group with a different representation (e.g. natural representation for ${{\mathbb Z}_p}^*$)
- In a computational group, given standard representation of g and x, can efficiently find the standard representation of X=g^x (How?)
 - But given X and g, may not be easy to find x (depending on G)

In several groups, PPT adversaries are assumed to have negligible probability of solving the discrete logarithm problem

- In several groups, PPT adversaries are assumed to have negligible probability of solving the discrete logarithm problem
 - Probability over choice of the group (from a collection), of a generator, and a random group element X

- In several groups, PPT adversaries are assumed to have negligible probability of solving the discrete logarithm problem
 - Probability over choice of the group (from a collection), of a generator, and a random group element X
 - □ DL Expt: (G,g) ← GroupGen; X ← G; Adv(G,g,X) → z; $g^z = X$?

- In several groups, PPT adversaries are assumed to have negligible probability of solving the discrete logarithm problem
 - Probability over choice of the group (from a collection), of a generator, and a random group element X
 - □ DL Expt: (G,g) ← GroupGen; X ← G; Adv(G,g,X) → z; $g^z = X$?
 - If Eve could solve the discrete logarithm (DL) problem, then Diffie-Hellman key-exchange is no good

- In several groups, PPT adversaries are assumed to have negligible probability of solving the discrete logarithm problem
 - Probability over choice of the group (from a collection), of a generator, and a random group element X
 - □ DL Expt: (G,g) ← GroupGen; X ← G; Adv(G,g,X) → z; $g^z = X$?
 - If Eve could solve the discrete logarithm (DL) problem, then Diffie-Hellman key-exchange is no good
 - Eve gets x, y from gx, gy and can compute gxy herself

- In several groups, PPT adversaries are assumed to have negligible probability of solving the discrete logarithm problem
 - Probability over choice of the group (from a collection), of a generator, and a random group element X
 - □ DL Expt: (G,g) ← GroupGen; X ← G; Adv(G,g,X) → z; $g^z = X$?
 - If Eve could solve the discrete logarithm (DL) problem, then Diffie-Hellman key-exchange is no good
 - Eve gets x, y from gx, gy and can compute gxy herself
 - A "key-recovery" attack

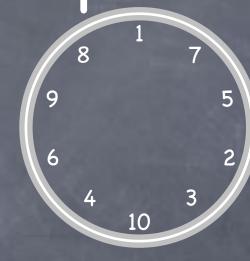
The cyclic group \mathbb{Z}_P^* (P prime)

- The cyclic group \mathbb{Z}_{P}^{*} (P prime)
 - Has N=P-1 elements

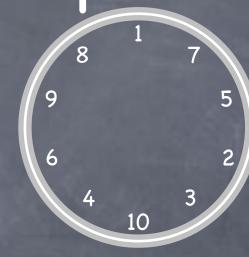
- The cyclic group \mathbb{Z}_{P}^{*} (P prime)
 - Has N=P-1 elements
 - Isomorphic to \mathbb{Z}_N (Isomorphism: discrete log w.r.t a generator. A different isomorphism for each generator)

- The cyclic group \mathbb{Z}_{P}^{*} (P prime)
 - Has N=P-1 elements
 - Isomorphic to \mathbb{Z}_N (Isomorphism: discrete log w.r.t a generator. A different isomorphism for each generator)

- The cyclic group \mathbb{Z}_{P}^{*} (P prime)
 - Has N=P-1 elements
 - Isomorphic to \mathbb{Z}_N (Isomorphism: discrete log w.r.t a generator. A different isomorphism for each generator)
 - Discrete Logarithm problem (given "std rep.") considered hard



- The cyclic group \mathbb{Z}_{P}^{*} (P prime)
 - Has N=P-1 elements
 - Isomorphic to \mathbb{Z}_N (Isomorphism: discrete log w.r.t a generator. A different isomorphism for each generator)
 - Discrete Logarithm problem (given "std rep.") considered hard
 - i.e., the isomorphism from \mathbb{Z}_P^* (in "std rep.") to \mathbb{Z}_N is hard to evaluate



Assumption that implies CPA security of El Gamal encryption

- Assumption that implies CPA security of El Gamal encryption

- Assumption that implies CPA security of El Gamal encryption
- At least as strong as DLA

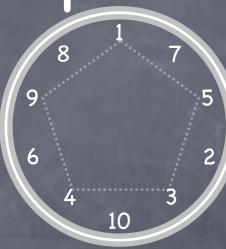
- Assumption that implies CPA security of El Gamal encryption
- At least as strong as DLA
 - If DDH assumption holds, then DLA holds [Exercise]

- Assumption that implies CPA security of El Gamal encryption
- At least as strong as DLA
 - If DDH assumption holds, then DLA holds [Exercise]
- But possible that DLA holds and DDH assumption doesn't

- Assumption that implies CPA security of El Gamal encryption
- At least as strong as DLA
 - If DDH assumption holds, then DLA holds [Exercise]
- But possible that DLA holds and DDH assumption doesn't
 - e.g.: DLA is widely assumed to hold in \mathbb{Z}_p^* (p prime), but DDH assumption doesn't hold there!

Quadratic (QR): "even" elements

Quadratic (QR): "even" elements

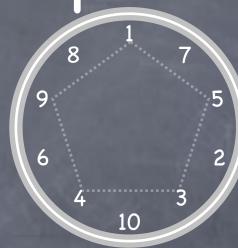


- Quadratic (QR): "even" elements
 - Does not change with the generator (why?)

- Quadratic (QR): "even" elements
 - Does not change with the generator (why?)
- Easy to check if an element is a QR or not

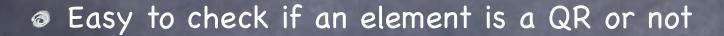
- Quadratic (QR): "even" elements
 - Does not change with the generator (why?)
- Easy to check if an element is a QR or not
 - Enough to check if raising to N/2 gives 1 (identity element) (Why?)

- Quadratic (QR): "even" elements
 - Does not change with the generator (why?)
- Easy to check if an element is a QR or not
 - Enough to check if raising to N/2 gives 1 (identity element) (Why?)
- lacksquare DDH does not hold in ${\mathbb{Z}_P}^*$



- Quadratic (QR): "even" elements
 - Does not change with the generator (why?)
- Easy to check if an element is a QR or not
 - Enough to check if raising to N/2 gives 1 (identity element) (Why?)
- \circ DDH does not hold in \mathbb{Z}_P^*
 - g^{xy} is a QR w/ prob. 3/4; g^z only w/ prob. 1/2.

- Quadratic (QR): "even" elements
 - Does not change with the generator (why?)

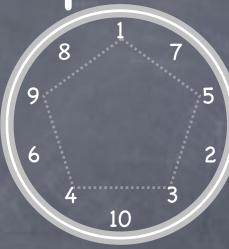


- Enough to check if raising to N/2 gives 1 (identity element) (Why?)
- \circ DDH does not hold in \mathbb{Z}_P^*
 - g^{xy} is a QR w/ prob. 3/4; g^z only w/ prob. 1/2.
- \bullet How about in a subgroup of \mathbb{Z}_{P}^{*} such that all are QRs?



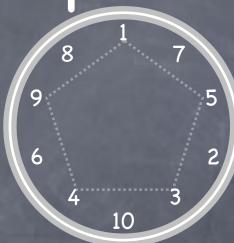


QRp*: All QRs in Zp*

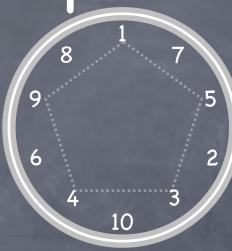


- QRp*: All QRs in Zp*
 - Is a (computational) cyclic group of order (P-1)/2 (Why?)

- QRp*: All QRs in Zp*
 - Is a (computational) cyclic group of order (P-1)/2 (Why?)
 - DDH potentially hard?



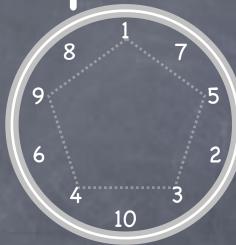
- QRp*: All QRs in Zp*
 - Is a (computational) cyclic group of order (P-1)/2 (Why?)
 - DDH potentially hard?
 - Could check if cubic residue!



- QRp*: All QRs in Zp*
 - Is a (computational) cyclic group of order (P-1)/2 (Why?)
- 9 1 7 9 5 6 2 4 3 10

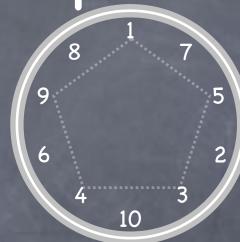
- DDH potentially hard?
- Could check if cubic residue!
 - But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues! (Why?)

- QRp*: All QRs in Zp*
 - Is a (computational) cyclic group of order (P-1)/2 (Why?)



- DDH potentially hard?
- Could check if cubic residue!
 - But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues! (Why?)
- Safe" if (P-1)/2 is also prime: P called a safe-prime

- QRp*: All QRs in Zp*
 - Is a (computational) cyclic group of order (P-1)/2 (Why?)



- DDH potentially hard?
- Could check if cubic residue!
 - But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues! (Why?)
- "Safe" if (P-1)/2 is also prime: P called a safe-prime
- DDH Candidate

- QRp*: All QRs in Zp*
 - Is a (computational) cyclic group of order (P-1)/2 (Why?)
- 9 8 7 9 5 6 2 4 3

- DDH potentially hard?
- Could check if cubic residue!
 - But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues! (Why?)
- "Safe" if (P-1)/2 is also prime: P called a safe-prime
- DDH Candidate
 - QRp* where P is a "safe prime"

Two candidates: RSA function and Rabin function

- Two candidates: RSA function and Rabin function
 - Over appropriate domains

- Two candidates: RSA function and Rabin function
 - Over appropriate domains
- Will rely on factorization as the trapdoor

- Two candidates: RSA function and Rabin function
 - Over appropriate domains
- Will rely on factorization as the trapdoor
 - Hence one-wayness will rely on hardness of factoring (and more)

Group operation: "multiplication modulo N"

- Group operation: "multiplication modulo N"
 - Has identity, is associative

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - e.g.: \mathbb{Z}_6^* has elements {1,5}, \mathbb{Z}_7^* has {1,2,3,4,5,6}

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - e.g.: \mathbb{Z}_6^* has elements $\{1,5\}$, \mathbb{Z}_7^* has $\{1,2,3,4,5,6\}$
- a has a multiplicative inverse modulo N

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - a e.g.: \mathbb{Z}_6^* has elements {1,5}, \mathbb{Z}_7^* has {1,2,3,4,5,6}
- a has a multiplicative inverse modulo N

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - a e.g.: \mathbb{Z}_6^* has elements {1,5}, \mathbb{Z}_7^* has {1,2,3,4,5,6}
- a has a multiplicative inverse modulo N

 - $\Leftrightarrow \gcd(a,N)=1$

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - e.g.: \mathbb{Z}_6^* has elements {1,5}, \mathbb{Z}_7^* has {1,2,3,4,5,6}
- a has a multiplicative inverse modulo N

 - $\Leftrightarrow \gcd(a,N)=1$

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - a e.g.: \mathbb{Z}_6^* has elements $\{1,5\}$, \mathbb{Z}_7^* has $\{1,2,3,4,5,6\}$
- a has a multiplicative inverse modulo N
 - $\Leftrightarrow \exists \text{ integers b, c s.t. ab} = 1+cN$
 - $\Leftrightarrow \gcd(a,N)=1$

- Group operation: "multiplication modulo N"
 - Has identity, is associative
- Group elements: all numbers (mod N) which have a multiplicative inverse modulo N
 - a e.g.: \mathbb{Z}_6^* has elements {1,5}, \mathbb{Z}_7^* has {1,2,3,4,5,6}
- a has a multiplicative inverse modulo N

 - $\Leftrightarrow \gcd(a,N)=1$

Euclidean algorithm to find (b,d) given (a,N). Used to efficiently invert elements in \mathbb{Z}_N^*

Extended

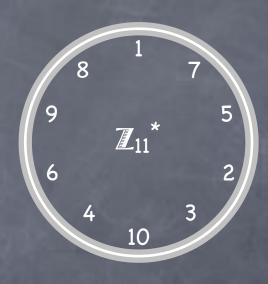
Zp*, P prime

Zp*, P prime

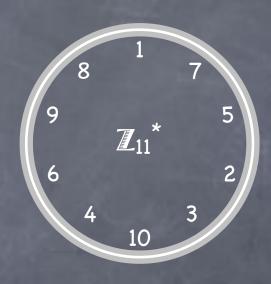
Recall Zp*

Zp*, P prime

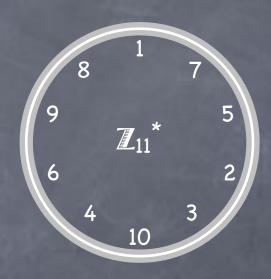
Recall Zp*



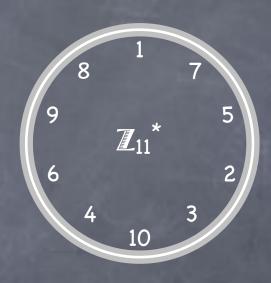
- \odot Recall \mathbb{Z}_{P}^{*}



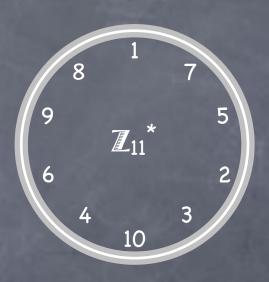
- Recall Z_P*



- Recall Z_P*
- \odot Cyclic: Isomorphic to \mathbb{Z}_{P-1}
 - \odot Has $\phi(P-1)$ different generators

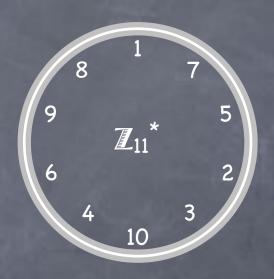


- Recall \mathbb{Z}_P^*
- \odot Cyclic: Isomorphic to \mathbb{Z}_{P-1}
 - \odot Has $\phi(P-1)$ different generators
- Discrete Log assumed to be hard



- \circ Recall \mathbb{Z}_{P}^{*}
- $| \mathbb{Z}_P^* | = P-1$ (all of them co-prime with P)
- \odot Cyclic: Isomorphic to \mathbb{Z}_{P-1}
 - \bullet Has $\phi(P-1)$ different generators
- Discrete Log assumed to be hard
- Quadratic Residues form a subgroup QRP*

- \circ Recall \mathbb{Z}_{P}^{*}
- \odot Cyclic: Isomorphic to \mathbb{Z}_{P-1}
 - \odot Has $\phi(P-1)$ different generators
- Discrete Log assumed to be hard
- Quadratic Residues form a subgroup QRP*
 - Candidate group for DDH assumption



 \circ e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$

- \circ e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$

- \circ e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$
- Ocyclic?

- \circ e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$
- Ocyclic?
 - No! In \mathbb{Z}_{15}^* , $2^4 = 4^2 = 7^4 = 8^4 = 11^2 = 13^4 = 14^2 = 1$ (i.e., each generates at most 4 elements, out of 8)

- \circ e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$
- Oyclic?
 - No! In \mathbb{Z}_{15}^* , $2^4 = 4^2 = 7^4 = 8^4 = 11^2 = 13^4 = 14^2 = 1$ (i.e., each generates at most 4 elements, out of 8)
- \circ "Product of two cycles": \mathbb{Z}_3^* and \mathbb{Z}_5^*

- \circ e.g. $\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$
- Oyclic?
 - No! In \mathbb{Z}_{15}^* , $2^4 = 4^2 = 7^4 = 8^4 = 11^2 = 13^4 = 14^2 = 1$ (i.e., each generates at most 4 elements, out of 8)
- \circ "Product of two cycles": \mathbb{Z}_3^* and \mathbb{Z}_5^*
 - Chinese Remainder Theorem

© Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5

- © Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$

 I_{15} I_3 I_5

- © Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$

<u></u>	13	<u></u>
0	0	О

- © Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$

 $a \mapsto (a \mod 3, a \mod 5)$

0	Consider	mapping	elements	in \mathbb{Z}_{15}	(all	15	of
	them) to	\mathbb{Z}_3 and \mathbb{Z}	, -5				

1 15	1 3	Z 5
0	0	О
1	1	1

© Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5

Z 15	Z 3	Z ₅
0	0	0
1	1	1
2	2	2

 $a \mapsto (a \mod 3, a \mod 5)$

- © Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$

Z 15	Z 3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
4 5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

- \circ Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$
- © CRT says that the pair (a mod 3, a mod 5) uniquely determines a (mod 15)!

1 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3 4
14	2	4

- \odot Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$
- © CRT says that the pair (a mod 3, a mod 5) uniquely determines a (mod 15)!
 - All 15 possible pairs occur, once each

1 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

- \odot Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$
- © CRT says that the pair (a mod 3, a mod 5) uniquely determines a (mod 15)!
 - All 15 possible pairs occur, once each
- In general for N=PQ (P, Q relatively prime), a → (a mod P, a mod Q) maps the N elements to the N distinct pairs

\mathbb{Z}_{15}	I_3	I_{5}
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6 7	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3 4
14	1 2	4

- $_{\odot}$ Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5
 - $a \mapsto (a \mod 3, a \mod 5)$
- © CRT says that the pair (a mod 3, a mod 5) uniquely determines a (mod 15)!
 - All 15 possible pairs occur, once each
- In general for N=PQ (P, Q relatively prime), a → (a mod P, a mod Q) maps the N elements to the N distinct pairs
 - In fact extends to product of more than two (relatively prime) numbers

1 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3 4
14	2	4

Chinese Remainder Theorem and \mathbb{Z}_{N}

Z 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3 4	0	3
	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem and \mathbb{Z}_{N}

© CRT representation of \mathbb{Z}_N : every element of \mathbb{Z}_N can be written as a unique element of $\mathbb{Z}_P \times \mathbb{Z}_Q$

Z 15	Z 3	I_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem and \mathbb{Z}_N

- © CRT representation of \mathbb{Z}_N : every element of \mathbb{Z}_N can be written as a unique element of $\mathbb{Z}_P \times \mathbb{Z}_Q$
 - Addition can be done coordinate-wise

Z 15	Z 3	I_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem and \mathbb{Z}_N

- © CRT representation of \mathbb{Z}_N : every element of \mathbb{Z}_N can be written as a unique element of $\mathbb{Z}_P \times \mathbb{Z}_Q$
 - Addition can be done coordinate-wise
 - (a,b) + (mod N) (a',b') = (a + (mod P) a',b + (mod Q) b')

1 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3 4
14	2	4

Chinese Remainder Theorem and \mathbb{Z}_{N}

- © CRT representation of \mathbb{Z}_N : every element of \mathbb{Z}_N can be written as a unique element of $\mathbb{Z}_P \times \mathbb{Z}_Q$
 - Addition can be done coordinate-wise
 - (a,b) + (mod N) (a',b') = (a + (mod P) a',b + (mod Q) b')

1 15	Z 3	\mathcal{I}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3 4
14	2	4

Z 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2 3
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

and \mathbb{Z}_N^*

 \odot Elements in \mathbb{Z}_N^*

Z 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	2	3
14	2	4

- \odot Elements in \mathbb{Z}_N^*
 - \odot No multiplicative inverse iff (0,x) or (x,0)

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

- \odot Elements in ${\mathbb{Z}_N}^*$
 - No multiplicative inverse iff (0,x) or (x,0)
 - Multiplication (and identity, inverse) also coordinate-wise

I_{15}	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7 8	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

- \odot Elements in \mathbb{Z}_N^*
 - No multiplicative inverse iff (0,x) or (x,0)
 - Multiplication (and identity, inverse) also coordinate-wise
 - \otimes Else in \mathbb{Z}_N^* : i.e., (x,y) s.t. $x \in \mathbb{Z}_P^*$, $y \in \mathbb{Z}_Q^*$

Z 15	Z ₃	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	2 3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3 4
14	2	4

and
$$\mathbb{Z}_N^*$$

- \odot Elements in \mathbb{Z}_N^*
 - No multiplicative inverse iff (0,x) or (x,0)
 - Multiplication (and identity, inverse) also coordinate-wise
 - \otimes Else in \mathbb{Z}_N^* : i.e., (x,y) s.t. $x \in \mathbb{Z}_P^*$, $y \in \mathbb{Z}_Q^*$

Z ₁₅	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	3 4

Chinese Remainder Theorem

and
$$\mathbb{Z}_N^*$$

- \odot Elements in \mathbb{Z}_N^*
 - No multiplicative inverse iff (0,x) or (x,0)
 - Multiplication (and identity, inverse) also coordinate-wise
 - \otimes Else in \mathbb{Z}_N^* : i.e., (x,y) s.t. $x \in \mathbb{Z}_P^*$, $y \in \mathbb{Z}_Q^*$
- Easy to compute the isomorphism (in both directions) if P, Q known [Exercise]

Z 15	Z 3	Z 5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

- - Where N=PQ, and $gcd(e,\phi(N)) = 1$

- - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \circ $f_{RSA[N,e]}: I_N \rightarrow I_N$

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: \mathbb{Z}_N \to \mathbb{Z}_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- f_{RSA[N,e]} is a permutation

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation
 - In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]}

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation
 - In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]}
 - \circ d s.t. ed=1 (mod $\phi(N)$), $x^{ed} = x \pmod{N}$

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation
 - In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]}
 - \bullet d s.t. ed=1 (mod $\phi(N)$), $x^{ed} = x \pmod{N}$
 - \circ For \mathbb{Z}_N^* because order is $\varphi(N)$

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - $f_{RSA[N,e]}: \mathbb{Z}_N \to \mathbb{Z}_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation
 - In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]}
 - \bullet d s.t. ed=1 (mod $\phi(N)$), $x^{ed} = x \pmod{N}$
 - \circ For \mathbb{Z}_N^* because order is $\varphi(N)$
 - For \mathbb{Z}_N ? By CRT, and because multiplication is coordinate-wise (and it holds in \mathbb{Z}_P and \mathbb{Z}_Q . note: $O^{ed} = O$) [Exercise]

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation with a trapdoor (namely (N,d))
 - In fact, there exists d s.t. f_{RSA[N,d]} is the inverse of f_{RSA[N,e]}
 - \circ d s.t. ed=1 (mod $\phi(N)$), $x^{ed} = x \pmod{N}$
 - \circ For \mathbb{Z}_N^* because order is $\varphi(N)$
 - For \mathbb{Z}_N ? By CRT, and because multiplication is coordinate-wise (and it holds in \mathbb{Z}_P and \mathbb{Z}_Q . note: $O^{ed} = O$) [Exercise]

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- f_{RSA[N,e]} is a permutation with a trapdoor (namely (N,d))

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation with a trapdoor (namely (N,d))
- RSA Assumption: $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. $gcd(e,\phi(N))=1$ (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*)

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation with a trapdoor (namely (N,d))
- **RSA Assumption**: $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. $gcd(e,\phi(N))=1$ (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*)
 - Alternate version: e=3, P, Q restricted so that gcd(3,φ(N))=1

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation with a trapdoor (namely (N,d))
- **RSA Assumption**: $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. $gcd(e,\phi(N))=1$ (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*)
- RSA Assumption will be false if one can factorize N

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation with a trapdoor (namely (N,d))
- **RSA Assumption**: $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. $gcd(e,\phi(N))=1$ (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*)
 - Alternate version: e=3, P, Q restricted so that gcd(3, ϕ (N))=1
- RSA Assumption will be false if one can factorize N
 - Then knows $\varphi(N)$ and can find $d=e^{-1}$ in $\mathbb{Z}_{\varphi(N)}^*$

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation with a trapdoor (namely (N,d))
- **RSA Assumption**: $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. $gcd(e,\phi(N))=1$ (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*)
 - Alternate version: e=3, P, Q restricted so that gcd(3, ϕ (N))=1
- RSA Assumption will be false if one can factorize N
 - Then knows $\varphi(N)$ and can find $d=e^{-1}$ in $\mathbb{Z}_{\varphi(N)}^*$
 - Converse not known to hold

- $f_{RSA[N,e]}(x) = x^e \mod N$
 - Where N=PQ, and $gcd(e,\phi(N)) = 1$
 - \bullet $f_{RSA[N,e]}: I_N \rightarrow I_N$
 - \odot Alternately, $f_{RSA[N,e]}: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$
- fRSA[N,e] is a permutation with a trapdoor (namely (N,d))
- RSA Assumption: $f_{RSA[N,e]}$ is a OWF collection, when P, Q random k-bit primes and e < N random number s.t. $gcd(e,\phi(N))=1$ (with inputs uniformly from \mathbb{Z}_N or \mathbb{Z}_N^*)
 - Alternate version: e=3, P, Q restricted so that gcd(3, ϕ (N))=1
- RSA Assumption will be false if one can factorize N
 - Then knows $\varphi(N)$ and can find $d=e^{-1}$ in $\mathbb{Z}_{\varphi(N)}^*$
 - Converse not known to hold
- Trapdoor OWP Candidate

• $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4

- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Candidate OWF collection (indexed by N)

- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Candidate OWF collection (indexed by N)
 - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)

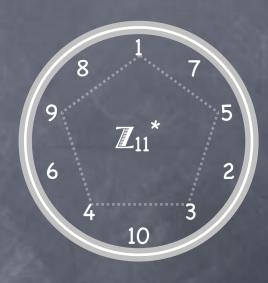
- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Candidate OWF collection (indexed by N)
 - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)
 - If can factor N, will see how to find square-roots

- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Candidate OWF collection (indexed by N)
 - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)
 - If can factor N, will see how to find square-roots
 - So (P,Q) a trapdoor to "invert"

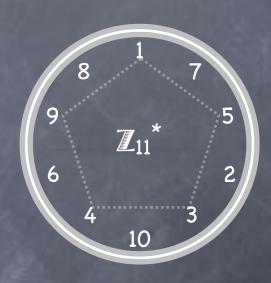
- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Candidate OWF collection (indexed by N)
 - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)
 - If can factor N, will see how to find square-roots
 - So (P,Q) a trapdoor to "invert"
 - If can take square-root mod N, can factor N [Exercise]

- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Candidate OWF collection (indexed by N)
 - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)
 - If can factor N, will see how to find square-roots
 - So (P,Q) a trapdoor to "invert"
 - If can take square-root mod N, can factor N [Exercise]
 - \odot Not a permutation in \mathbb{Z}_{N} or $\mathbb{Z}_{\mathsf{N}}^*$ [Why?]

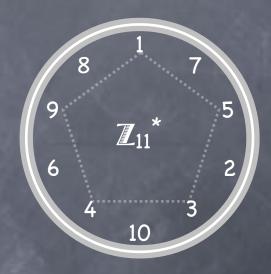
- $f_{Rabin[N]}(x) = x^2 \mod N$ where N=PQ, P,Q primes = 3 mod 4
 - Candidate OWF collection (indexed by N)
 - Equivalent to the assumption that f_{mult} is a OWF (for the appropriate distribution)
 - If can factor N, will see how to find square-roots
 - So (P,Q) a trapdoor to "invert"
 - If can take square-root mod N, can factor N [Exercise]
 - \bullet Not a permutation in \mathbb{Z}_N or \mathbb{Z}_N^* [Why?]
 - \bullet How about in \mathbb{QR}_N^* ?



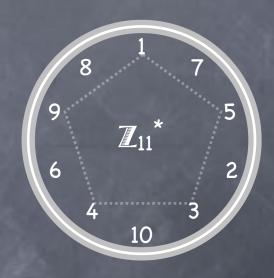
- - The late $y := (x^2)^{(P+1)/4}$ to get $y^2 = x^2$



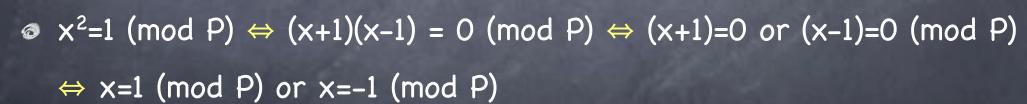
- - Set y := $(x^2)^{(P+1)/4}$ to get $y^2 = x^2$
- What are the square-roots?

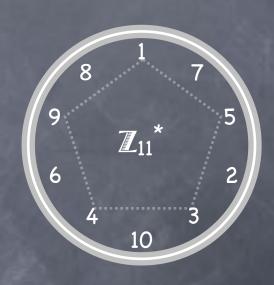


- - Let $y := (x^2)^{(P+1)/4}$ to get $y^2 = x^2$
- What are the square-roots?
 - $\sqrt{1 = \pm 1}$

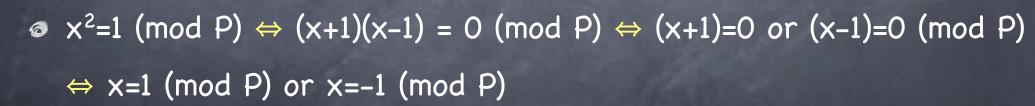


- - Let $y := (x^2)^{(P+1)/4}$ to get $y^2 = x^2$
- What are the square-roots?

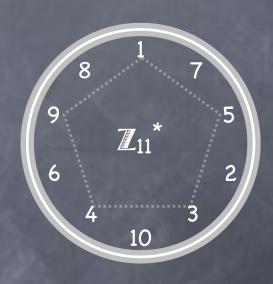




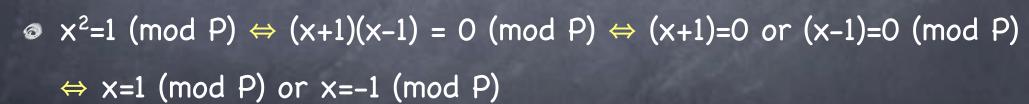
- - Let $y := (x^2)^{(P+1)/4}$ to get $y^2 = x^2$
- What are the square-roots?



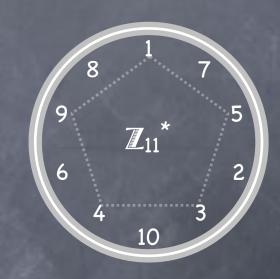
□ -1 = $g^{(P-1)/2}$ because $(g^{(P-1)/2})^2 = 1$ (and $g^{(P-1)/2} \neq 1$, as order(g) = P-1)



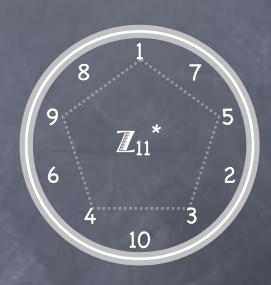
- - Let $y := (x^2)^{(P+1)/4}$ to get $y^2 = x^2$
- What are the square-roots?



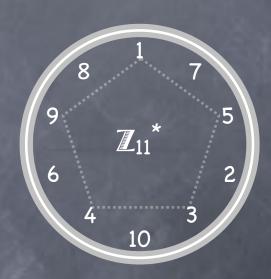
- □ -1 = $g^{(P-1)/2}$ because $(g^{(P-1)/2})^2 = 1$ (and $g^{(P-1)/2} \neq 1$, as order(g) = P-1)
- More generally $√(x^2) = \pm x$ (i.e., only x and -1*x) [Why?]



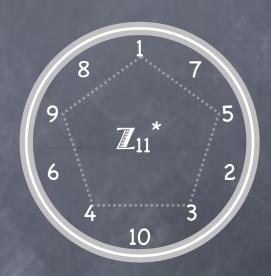
$$\circ$$
 In $\mathbb{Z}_{P}^{*} \sqrt{(x^2)} = \pm x$



- \bullet How many square-roots stay in \mathbb{QR}_{P}^* ?

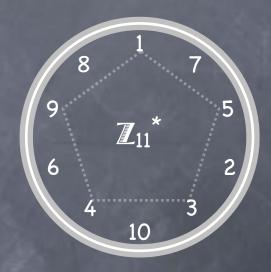


- \bullet How many square-roots stay in \mathbb{QR}_{P}^* ?
 - Depends on P!



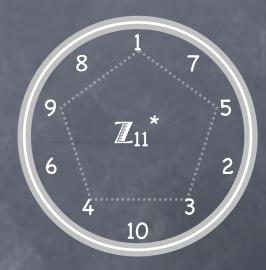
- \bullet How many square-roots stay in \mathbb{QR}_{P}^* ?
 - Depends on P!
 - \circ e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$

- \bullet How many square-roots stay in \mathbb{QR}_{P}^{*} ?
 - Depends on P!
 - \bullet e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$



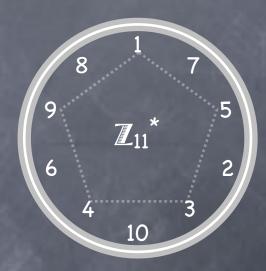
- \bullet How many square-roots stay in \mathbb{QR}_{P}^{*} ?
 - Depends on P!
 - \bullet e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$

 - \odot Since $-1 \in \mathbb{QR}_{13}^*$, $\mathsf{x} \in \mathbb{QR}_{13}^* \Rightarrow -\mathsf{x} \in \mathbb{QR}_{13}^*$



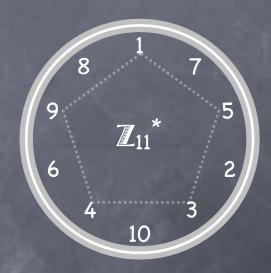
- \bullet How many square-roots stay in \mathbb{QR}_{P}^{*} ?
 - Depends on P!
 - \bullet e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$

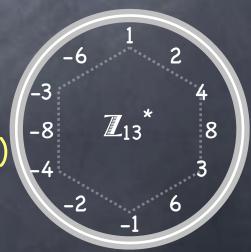
 - Since $-1 \in \mathbb{QR}_{13}^*$, $x \in \mathbb{QR}_{13}^* \Rightarrow -x \in \mathbb{QR}_{13}^*$
 - $\overline{\bullet} -1 \in \mathbb{QR}_{P}^* \text{ iff } (P-1)/2 \text{ even}$



- \bullet How many square-roots stay in \mathbb{QR}_{P}^{*} ?
 - Depends on P!
 - \bullet e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$

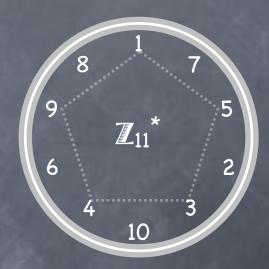
 - Since $-1 \in \mathbb{QR}_{13}^*$, $x \in \mathbb{QR}_{13}^* \Rightarrow -x \in \mathbb{QR}_{13}^*$
- If (P-1)/2 odd, exactly one of ±x in QR_P^* (for all x)



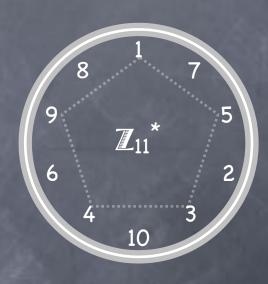


- \bullet How many square-roots stay in \mathbb{QR}_{P}^{*} ?
 - Depends on P!
 - \bullet e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$

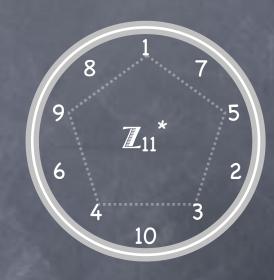
 - Since $-1 \in \mathbb{QR}_{13}^*$, $x \in \mathbb{QR}_{13}^* \Rightarrow -x \in \mathbb{QR}_{13}^*$
- If (P-1)/2 odd, exactly one of ±x in ℚℝ_P* (for all x)
 - \bullet Then, squaring is a permutation in \mathbb{QR}_{P}^{*}



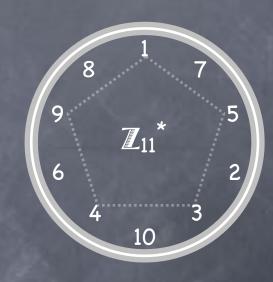
In
$$\mathbb{Z}_P^* \sqrt{(x^2)} = \pm x$$
 (i.e., x and $-1*x$)



- In $\mathbb{Z}_P^* \sqrt{(x^2)} = \pm x$ (i.e., x and -1*x)
- $_{\odot}$ If (P-1)/2 odd, squaring is a permutation in \mathbb{QR}_{P}^{*}



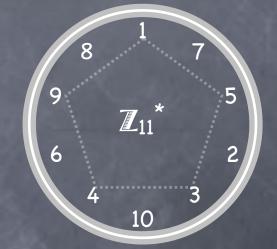
- $_{\odot}$ If (P-1)/2 odd, squaring is a permutation in \mathbb{QR}_{P}^{*}
- But easy to compute both ways



- ⊚ In \mathbb{Z}_{P}^{*} $\sqrt{(x^{2})} = \pm x$ (i.e., x and -1*x)
- $_{\odot}$ If (P-1)/2 odd, squaring is a permutation in \mathbb{QR}_{P}^{*}
- 8 7 9 5 11* 6 2 4 3

- But easy to compute both ways
 - ⊚ In fact $\sqrt{z} = z^{(P+1)/4} \in \mathbb{QR}_P^*$ (because (P+1)/2 even)

- ⊚ In \mathbb{Z}_{P}^{*} $\sqrt{(x^{2})} = \pm x$ (i.e., x and -1*x)
- $_{\odot}$ If (P-1)/2 odd, squaring is a permutation in \mathbb{QR}_{P}^{*}



- But easy to compute both ways
 - ⊚ In fact $\sqrt{z} = z^{(P+1)/4} \in \mathbb{QR}_P^*$ (because (P+1)/2 even)
- Rabin function defined in \mathbb{QR}_N^* and relies on keeping the factorization of N=PQ hidden

- \odot What do elements in \mathbb{QR}_N^* look like, for N=PQ?
 - \bullet By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - \circ CRT representation of a^2 is $(x^2, y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

- \odot What do elements in \mathbb{QR}_N^* look like, for N=PQ?
 - By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - \circ CRT representation of a^2 is $(x^2, y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

- \odot What do elements in \mathbb{QR}_N^* look like, for N=PQ?
 - \bullet By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - \circ CRT representation of a^2 is $(x^2, y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

 - If both P,Q≡3 (mod 4), then squaring is a permutation in \mathbb{QR}_N^*

- - \bullet By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - \circ CRT representation of a^2 is $(x^2, y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

 - If both P,Q≡3 (mod 4), then squaring is a permutation in QR_N^*
 - $(x^2,y^2) = (\pm x,\pm y)$ in $\mathbb{Z}_P^* \times \mathbb{Z}_Q^*$ but exactly one in $\mathbb{Q}_P^* \times \mathbb{Q}_Q^*$

- - By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - \circ CRT representation of a^2 is $(x^2, y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

 - If both P,Q≡3 (mod 4), then squaring is a permutation in QR_N^*
 - $(x^2,y^2) = (\pm x,\pm y)$ in $\mathbb{Z}_P^* \times \mathbb{Z}_Q^*$ but exactly one in $\mathbb{Q}_P^* \times \mathbb{Q}_Q^*$
 - © Can efficiently do this, if can compute (and invert) the isomorphism from \mathbb{QR}_N^* to $\mathbb{QR}_P^* \times \mathbb{QR}_Q^*$

- - By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - \circ CRT representation of a^2 is $(x^2, y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$
 - \circ $QR_N^* \simeq QR_P^* \times QR_Q^*$
 - - $(x^2,y^2) = (\pm x,\pm y)$ in $\mathbb{Z}_P^* \times \mathbb{Z}_Q^*$ but exactly one in $\mathbb{Q}_P^* \times \mathbb{Q}_Q^*$
 - © Can efficiently do this, if can compute (and invert) the isomorphism from \mathbb{QR}_N^* to $\mathbb{QR}_P^* \times \mathbb{QR}_Q^*$
 - (P,Q) is a trapdoor

WIN *

- - By CRT, can write $a \in \mathbb{Z}_N^*$ as $(x,y) \in \mathbb{Z}_P^* \times \mathbb{Z}_Q^*$
 - \circ CRT representation of a^2 is $(x^2, y^2) \in \mathbb{QR}_P^* \times \mathbb{QR}_Q^*$
 - \circ $QR_N^* \simeq QR_P^* \times QR_Q^*$
 - If both P,Q=3 (mod 4), then squaring is a permutation in \mathbb{QR}_N^*
 - $(x^2,y^2) = (\pm x,\pm y)$ in $\mathbb{Z}_P^* \times \mathbb{Z}_Q^*$ but exactly one in $\mathbb{Q}_P^* \times \mathbb{Q}_Q^*$
 - © Can efficiently do this, if can compute (and invert) the isomorphism from \mathbb{QR}_N^* to $\mathbb{QR}_P^* \times \mathbb{QR}_Q^*$
 - (P,Q) is a trapdoor
 - \odot Without trapdoor, OWF candidate (QRN* forms 1/4th of \mathbb{Z}_N^*)

• $f_{Rabin[N]}(x) = x^2 \mod N$

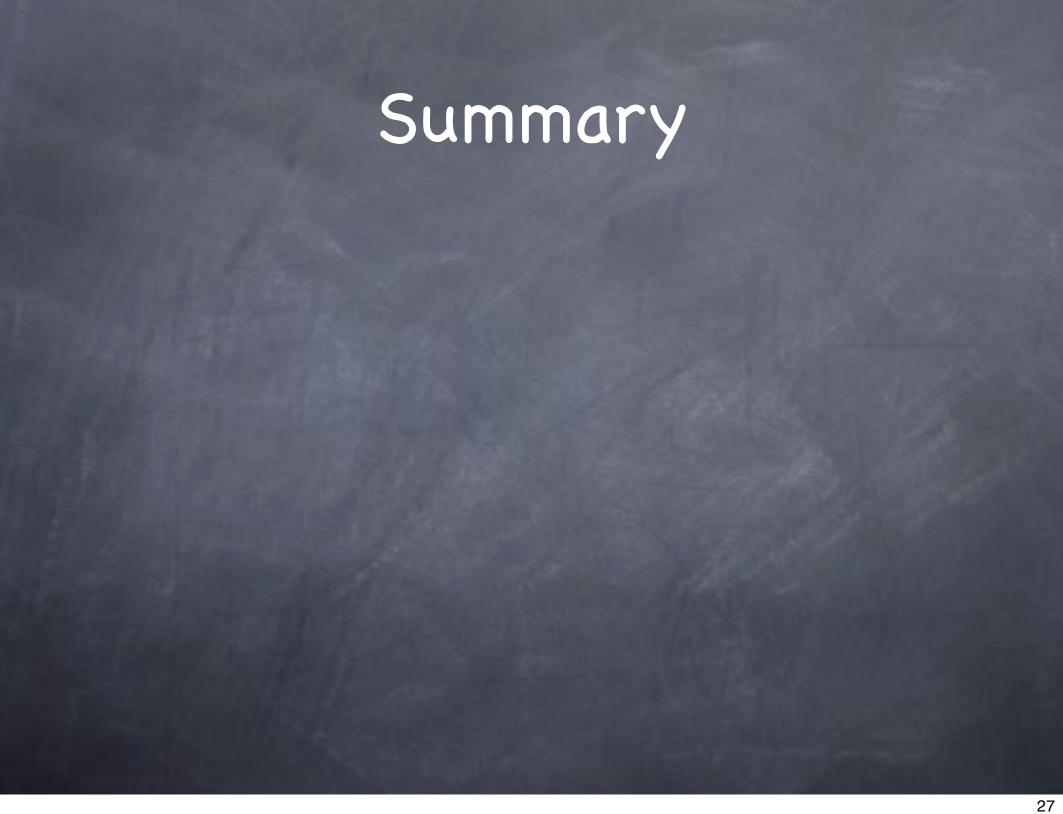
- $f_{Rabin[N]}(x) = x^2 \mod N$
 - Candidate OWF collection, with N=PQ (P,Q random k-bit primes)

- $f_{Rabin[N]}(x) = x^2 \mod N$
 - Candidate OWF collection, with N=PQ (P,Q random k-bit primes)

- $f_{Rabin[N]}(x) = x^2 \mod N$
 - Candidate OWF collection, with N=PQ (P,Q random k-bit primes)
 - If P, Q = 3 (mod 4), then in QR_N^*
 - A permutation

- $f_{Rabin[N]}(x) = x^2 \mod N$
 - Candidate OWF collection, with N=PQ (P,Q random k-bit primes)
 - If P, Q = 3 (mod 4), then in QR_N^*
 - A permutation
 - Has a trapdoor for inverting (namely (P,Q))

- $f_{Rabin[N]}(x) = x^2 \mod N$
 - Candidate OWF collection, with N=PQ (P,Q random k-bit primes)
 - If P, Q = 3 (mod 4), then in QR_N^*
 - A permutation
 - Has a trapdoor for inverting (namely (P,Q))
- Candidate Trapdoor OWP



A DLA candidate: Z_P*

- A DLA candidate: Zp*
- A DDH candidate: QRP* where P is a safe prime

- A DLA candidate: Zp*
- A DDH candidate: QRP* where P is a safe prime
- Chinese Remainder Theorem

- A DLA candidate: Zp*
- A DDH candidate: QRP* where P is a safe prime
- Chinese Remainder Theorem

- A DLA candidate: Z_P*
- A DDH candidate: QRp* where P is a safe prime
- Chinese Remainder Theorem

- A DLA candidate: Zp*
- A DDH candidate: QRP* where P is a safe prime
- Chinese Remainder Theorem
 - $\begin{array}{ll} & & \mathbb{Z}_{N} \cong \mathbb{Z}_{P} \times \mathbb{Z}_{Q} \\ & & & \mathbb{Z}_{N}^{*} \cong \mathbb{Z}_{P}^{*} \times \mathbb{Z}_{Q}^{*} \\ & & & & \mathbb{Q}\mathbb{R}_{N}^{*} \cong \mathbb{Q}\mathbb{R}_{P}^{*} \times \mathbb{Q}\mathbb{R}_{Q}^{*} \end{array}$

- A DLA candidate: Zp*
- A DDH candidate: QRP* where P is a safe prime
- Chinese Remainder Theorem
 - $\begin{array}{ccccc}
 \hline
 & & & & & & & & & & \\
 \hline
 & & & & & & & & & & \\
 \hline
 & & & & & & & & & & \\
 \hline
 & & & & & & & & & \\
 \hline
 & & & & & & & & \\
 \hline
 & & & & & & & & \\
 \hline
 & & & & & & & \\
 \hline
 & & & & & & & \\
 \hline
 &$
- T-OWP candidates:

- A DLA candidate: Z_P*
- A DDH candidate: QRP* where P is a safe prime
- Chinese Remainder Theorem
 - $\begin{array}{lll}
 \bullet & \mathbb{Z}_{N} \cong \mathbb{Z}_{P} \times \mathbb{Z}_{Q} \\
 \bullet & \mathbb{Z}_{N}^{*} \cong \mathbb{Z}_{P}^{*} \times \mathbb{Z}_{Q}^{*} \\
 \bullet & \mathbb{Q}\mathbb{R}_{N}^{*} \cong \mathbb{Q}\mathbb{R}_{P}^{*} \times \mathbb{Q}\mathbb{R}_{Q}^{*}
 \end{array}$
- T-OWP candidates:
 - $f_{RSA[N,e]} = x^e \mod N$ where N=PQ and $gcd(e,\phi(N))=1$

- A DLA candidate:
 Zp*
- A DDH candidate: QRP* where P is a safe prime
- Chinese Remainder Theorem
 - $\begin{array}{ll} & \mathbb{Z}_{N} \cong \mathbb{Z}_{P} \times \mathbb{Z}_{Q} \\ & \mathbb{Z}_{N}^{*} \cong \mathbb{Z}_{P}^{*} \times \mathbb{Z}_{Q}^{*} \\ & \mathbb{Q} \mathbb{R}_{N}^{*} \cong \mathbb{Q} \mathbb{R}_{P}^{*} \times \mathbb{Q} \mathbb{R}_{Q}^{*} \end{array}$
- T-OWP candidates:
 - $f_{RSA[N,e]} = x^e \mod N$ where N=PQ and $gcd(e,\phi(N))=1$
 - Trapdoor: $(P,Q) \rightarrow \phi(N) \rightarrow d=e^{-1}$ in $\mathbb{Z}_{\phi(N)}^*$

- A DLA candidate: Z_P*
- A DDH candidate: QRP* where P is a safe prime
- Chinese Remainder Theorem
 - $\begin{array}{ll} & \mathbb{Z}_{\mathsf{N}} \cong \mathbb{Z}_{\mathsf{P}} \times \mathbb{Z}_{\mathsf{Q}} \\ & \mathbb{Z}_{\mathsf{N}}^{*} \cong \mathbb{Z}_{\mathsf{P}}^{*} \times \mathbb{Z}_{\mathsf{Q}}^{*} \\ & \mathbb{Q} \mathbb{R}_{\mathsf{N}}^{*} \cong \mathbb{Q} \mathbb{R}_{\mathsf{P}}^{*} \times \mathbb{Q} \mathbb{R}_{\mathsf{Q}}^{*} \end{array}$
- T-OWP candidates:
 - $f_{RSA[N,e]} = x^e \mod N$ where N=PQ and $gcd(e,\phi(N))=1$
 - Trapdoor: $(P,Q) \rightarrow \varphi(N) \rightarrow d=e^{-1}$ in $\mathbb{Z}_{\varphi(N)}^*$
 - $f_{Rabin[N]} = x^2 \mod N$ where N=PQ, where P,Q = 3 (mod 4)

- A DLA candidate:
 Zp*
- A DDH candidate: QRP* where P is a safe prime
- Chinese Remainder Theorem
 - $\begin{array}{ll} & \mathbb{Z}_{N} \cong \mathbb{Z}_{P} \times \mathbb{Z}_{Q} \\ & \mathbb{Z}_{N}^{*} \cong \mathbb{Z}_{P}^{*} \times \mathbb{Z}_{Q}^{*} \\ & \mathbb{Q} \mathbb{R}_{N}^{*} \cong \mathbb{Q} \mathbb{R}_{P}^{*} \times \mathbb{Q} \mathbb{R}_{Q}^{*} \end{array}$
- T-OWP candidates:
 - $f_{RSA[N,e]} = x^e \mod N$ where N=PQ and gcd(e, $\phi(N)$)=1
 - Trapdoor: (P,Q) → φ(N) → d=e⁻¹ in $\mathbb{Z}_{\phi(N)}^*$
 - $f_{Rabin[N]} = x^2 \mod N$ where N=PQ, where P,Q = 3 (mod 4)
 - Trapdoor: (P,Q)