Signatures

CS/ECE 598MAN: Applied Cryptography

Nikita Borisov

December 4, 2009

Digital Signature Properties

Signature Properties

- Authentication
- Third-party verifiability
- Non-repudiation

Digital Signature Properties

Signature Properties

- Authentication
- Third-party verifiability
- Non-repudiation

But what if we don't want all of these properties?

- Designated Verifier Signatures
 - Designated Verifier Proofs
 - Trap-door commitments
- 2 Ring and Mesh Signatures
 - Ring Signatures
 - Mesh Signatures
- Group Signatures

Alice Bank

Bob

I'd like a mortgage

Alice Bank

Bob

I'd like a mortgage

You're pre-approved for \$100,000

Alice Bank Bob

I'd like a mortgage

Can I get that in You're pre-approved writing?

for \$100,000

Alice Bank

Bob

You're pre-approved for \$100,000

I'd like a mortgage Can I get that in writing?

 $\mathrm{Sign}_{\mathrm{Alice}}$ ("Bob is pre-approved for \$100,000")

Alice Bank	Bob	Charlie Financial
You're pre-approved for \$100,000	I'd like a mortgage Can I get that in writing?	
$\mathrm{Sign}_{\mathrm{Alice}}(\text{``Bob} \text{is} \\ \text{pre-approved} \text{for} \\ \$100,000\text{''})$	Charlie, can you do better?	

Alice Bank	Bob	Charlie Financial
You're pre-approved for \$100,000	I'd like a mortgage Can I get that in writing?	
${ m Sign}_{ m Alice}({ m `Bob} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Charlie, can you do better?	$\begin{array}{ll} \mathrm{Sign}_{\mathrm{Charlie}}(\text{``Bob}\\ \mathrm{is} & \text{pre-approved}\\ \$100,001") \end{array}$

Alice Bank Bob Charlie Financial I'd like a mortgage Can I get that in You're pre-approved writing? for \$100.000 Sign_{Alice}("Bob is Sign_{Charlie} ("Bob Charlie, can you do for pre-approved pre-approved better? \$100,000") \$100,001") Alice, can you beat that?

Alice Bank Bob Charlie Financial I'd like a mortgage Can I get that in You're pre-approved writing? for \$100.000 Sign_{Alice}("Bob is Sign_{Charlie} ("Bob Charlie, can you do for pre-approved pre-approved better? \$100,000") \$100,001") Alice, can you beat Sign_{Alice}("... that? \$100,002")

Alice Bank Bob Charlie Financial I'd like a mortgage Can I get that in You're pre-approved writing? for \$100.000 Sign_{Alice} ("Bob is Sign_{Charlie} ("Bob Charlie, can you do for pre-approved pre-approved better? \$100,000") \$100,001") Alice, can you beat Sign_{Alice}("... that? \$100,002") Sign_{Alice} ("Bob is pre-approved for \$1,000,000")

Alice Bank Bob Charlie Financial I'd like a mortgage Can I get that in You're pre-approved writing? for \$100,000 Sign_{Alice}("Bob Sign_{Charlie} ("Bob is Charlie, can you do for pre-approved pre-approved better? \$100,000") \$100,001") Alice, can you beat Sign_{Alice}("... that? \$100,002") Sign_{Alice}("Bob is pre-approved for \$1,000,000") How can Bob and Charlie prevent this?

Alice Bank Bob Charlie Financial I'd like a mortgage Can I get that in You're pre-approved writing? for \$100,000 Sign_{Alice}("Bob Sign_{Charlie} ("Bob is Charlie, can you do for pre-approved pre-approved better? \$100,000") \$100,001") Alice, can you beat Sign_{Alice}("... that? \$100,002") Sign_{Alice}("Bob is pre-approved for \$1,000,000") How can Bob and Charlie prevent this?

Alice sets up a verification website, run with SSL, that can be used only by realtors.

Alice sets up a verification website, run with SSL, that can be used only by realtors.

Alice Bank David's Realty Charlie Financial Is Bob pre-approved

for a mortgage?

Alice sets up a verification website, run with SSL, that can be used

only by realtors.

J, 2, . Jan.			_
Alice Bank	David's Realty	Charlie Financial	_
	Is Bob pre-approved		
	for a mortgage?		

Yes, \$100,000

Alice sets up a verification website, run with SSL, that can be used

only by realtors.

Alice Bank	David's Realty	Charlie Financial
	Is Bob pre-approved	
	for a mortgage?	
) /		

Yes, \$100,000

Is Bob pre-approved for a mortgage?

Alice sets up a verification website, run with SSL, that can be used

only by realtors.

offiny by realtors.		
Alice Bank	David's Realty Is Bob pre-approved	Charlie Financial
	is bob pic approved	
	for a mortgage?	
Yes, \$100,000		
, , , , , , , , , , , , , , , , , , , ,		
		Is Bob pre-approved
		for a mortgage?

I'm not telling you!

Alice sets up a verification website, run with SSL, that can be used

only by realtors.

offing by realtors.		
Alice Bank	David's Realty	Charlie Financial
	Is Bob pre-approved	
	for a mortgage?	
Yes, \$100,000		
, , ,		Is Bob pre-approved
		for a mortgage?

I'm not telling you!
But on closing day, Alice changes her mind and disavows any promises to David or Bob!

Undeniable Signatures

Undeniable signatures:

- Can only be verified with help of signer
- Cannot later be disavowed

Other applications: resisting blackmail.

[Chaum,van Antwerpen, CRYPTO'89; Chaum, EUROCRYPT'90]

Setup

Generate private key $x \in \mathbb{Z}_q^*$, public key $y = g^x \mod p$, where g is a generator of the group of order q in \mathbb{Z}_p .

A signature on a message m is $m^x \mod p$

[Chaum,van Antwerpen, CRYPTO'89; Chaum, EUROCRYPT'90]

Verification

Verifier has z, wants to check whether $z = m^x \mod p$

Signer Verifier
$$c \in_{R} \mathbb{Z}_{q}^{*}$$

$$\xrightarrow{m^{a}g^{b+c},(m^{a}g^{b+c})^{\times}}$$

$$\xrightarrow{c}$$

$$\xrightarrow{a,b}$$

Note:
$$(m^a g^{b+c})^x = m^{ax} g^{(b+c)x} = z^a y^{b+c}$$
.

[Chaum,van Antwerpen, CRYPTO'89; Chaum, EUROCRYPT'90]

Disavowal

Signer proves that $z \neq m^x \mod p$

Signer Verifier
$$s' = (m^{s}g^{a})^{x}/(z^{s}g^{xa})$$

$$s = \log_{(m/z)^{x}} s'$$

$$\xrightarrow{\text{Commit}(s,r)}$$

$$\xrightarrow{r}$$

$$\xrightarrow{r}$$
Verifier
$$a \in_{R} \mathbb{Z}_{q}, s \in_{R} \mathbb{Z}_{k}$$

$$\xrightarrow{m^{s}g^{a},z^{s}g^{xa}}$$

$$\xrightarrow{a}$$

Note: k must be small enough for a brute-force search. Can repeat protocol l times to get $1/(k+1)^l$ chance of cheating.

Man-in-the-middle Attack

Bob will want to verify Alice's protocol himself. Bob can *relay* messages to Charlie, letting Charlie pick the random numbers. Alice think she's talking with Bob. (Adaptation of [Desmedt et al., CRYPTO'87])

Man-in-the-middle Attack

Bob will want to verify Alice's protocol himself.

Bob can *relay* messages to Charlie, letting Charlie pick the random numbers. Alice think she's talking with Bob. (Adaptation of [Desmedt et al., CRYPTO'87])

Extensions:

xtensions

- Bob can mix in his own randomness, so that both are convinced
- n people can combine randomness to simultaneously verify a message through a single interaction with Alice ([Desmedt,Yung, EUROCRYPT'91])
- Alice does not know which message she is verifying ([Jakobsson, EUROCRYPT'94])

Man-in-the-middle Attack

Bob will want to verify Alice's protocol himself.

Bob can *relay* messages to Charlie, letting Charlie pick the random numbers. Alice think she's talking with Bob. (Adaptation of [Desmedt et al., CRYPTO'87])

Extensions:

- Bob can mix in his own randomness, so that both are convinced
- n people can combine randomness to simultaneously verify a message through a single interaction with Alice ([Desmedt,Yung, EUROCRYPT'91])
- Alice does not know which message she is verifying ([Jakobsson, EUROCRYPT'94])

Need to tie verification to verifier!

Designated Verifier Undeniable Signatures

Recall: verify protocol is a ZK-proof that $z = m^x$.

$$PK\{(\xi): y_{Alice} = g^{\xi} \wedge z = m^{\xi}\}$$

A designated verifier proof adds another clause to the proof:

$$PK\{(\xi,\xi'): (y_{\text{Alice}}=g^{\xi} \wedge z=m^{\xi}) \vee (y_{\text{Bob}}=g^{\xi'})\}$$

Bob can always build such a proof, so he cannot convince anyone else.

Trap-door Commitments

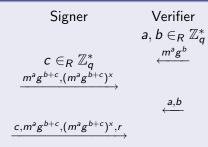
A trap-door commitment is defined over a public/private key pair. Given only public key, the commitment scheme is secure, but it can be broken given the secret key.

Syntax

- $Gen(1^k)$: Generate(sk, pk)
- Commit(pk, w, r): Generate a commitment c to w
- Trapdoor(pk, sk, w, r, w'): Generate r' such that Commit(pk, w, r) = Commit(pk, w', r')

Example

[Brassard, Chaum, Crépeau, JCSS'88]


- Gen(1^k): Generate an ElGamal public private keypair $(x, y = g^x \mod p)$ (where g is the generator of the subgroup of order q in \mathbb{Z}_p).
- Commit $(y, w, r) = g^w y^r \mod p$
- Trapdoor $(x, y, w, r, w') = (w w')/x + r \mod q$

$$g^{w'}y^{(w-w')/x+r} = g^{w'+(w-w')+xr} = g^wg^{xr} = g^wy^r \mod p$$

Trap-door commitments

Designated Verifier Protocol [Jakobsson et al., EUROCRYPT'96]

Protocol

000000

Designated Verifier Protocol [Jakobsson et al., EUROCRYPT'96]

Protocol Signer Verifier $a,b \in_R \mathbb{Z}_q^*$ $m^a g^b$ $c \in_R \mathbb{Z}_q^*$ Commit($pk_{\text{Bob}}, (m^a g^{b+c})^x, r)$ a,b $c,m^ag^{b+c},(m^ag^{b+c})^x,r$

Alice uses a trapdoor commitment that Bob can break, and only opens it after seeing the challenges a, b.

Designated Verifier Non-interactive Proofs

Can use the same trick with non-interactive proofs.

- Three-move proof: (Commit, Challenge, Response) = (c, a, r)
- Fiat-Shamir: a' = H(c)
- Designated-Verifier: $a' = H(\mathsf{TD} \mathsf{Commit}(pk_{\mathrm{Bob}}, c, s)), r' = (r, s)$

Bob can break the commitment and generate new proof Note: can be used to generated designated-verifier signatures Ring Signatures

How to Leak a Secret [Rivest et al., ASIACRYPT'01]

Problem

Cabinet member wants to leak a story to a journalist. But journalist's editor must verify the source of the leak, and cabinet member does not want the editor to know his name.

Cannot solve this with DV signatures (why not?)

How to Leak a Secret [Rivest et al., ASIACRYPT'01]

Problem

Cabinet member wants to leak a story to a journalist. But journalist's editor must verify the source of the leak, and cabinet member does not want the editor to know his name.

Cannot solve this with DV signatures (why not?)

Ring Signatures

A ring signature on a message m shows that one of a set ("ring") of members has signed a message, but not which one.

Construction

Consider simple RSA:

RSA

$$Sign(m, n, d) = H(m)^d \mod n$$

Verify
$$(m, \sigma, n, e) : H(m) \stackrel{?}{=} \sigma^e \mod n$$

Ring signature

Set of public keys (n_i, e_i) and private keys d_i for i = 1, ... k. Assume wolog that the first person is actually signing.

- **1** Pick random values $\sigma_2, \ldots, \sigma_k \in \mathbb{Z}_n$
- 2 Compute $x_i = \sigma_i^{e_i} \mod n_i$

- **5** Signature: $(\sigma_1, \ldots, \sigma_n)$

Note

- \bullet A ring signature with ring $\{Alice,Bob\}$ is similar to a signature by Alice designated for Bob.
- Indeed, Commit $(pk, c, r) = E_{pk}(c) \oplus E_{pk}(r)$ is a trapdoor commitment scheme.

Mesh Signatures [Boyen, EUROCRYPT'07]

- Ring signatures prove that "Alice signed m" OR "Bob signed m" OR ...
- Mesh signatures extend this to more complicated clauses

Definition

Mesh Signatures

$$E ::= [VK : M]$$
 $|E_1 \lor E_2|$
 $|E_1 \land E_2|$
 $|\geq_t \{E_1, \dots, E_m\}$ (t out of m threshold)

Mesh Signature Examples

Ring signatures:

$$[VK_1:M] \vee [VK_2:M] \vee \dots [VK_k:M]$$

Messages can be different:

$$[VK_1:M_1]\vee [VK_2:M_2]$$

Threshold

Certificate chains

$$[VK_1: M_1] \vee ([VK_{CA}: VK_2] \wedge [VK_2: M_2])$$

Group Signatures

- Ring signatures are linear in size
- Ring signatures provide absolute anonymity

Group Signatures

- Ring signatures are linear in size
- Ring signatures provide absolute anonymity

Definition

Ring Signatures

- Gen(1^k): (gpk, gmsk, gsk[i]). gmsk is master secret key, gsk[i] is a secret key assigned to each member of group.
- Sign(gpk, gsk[i], M): Produce a signature σ on M using one of the group keys
- Verify(gpk, M, σ): Verify the signature, given a public key
- Open (gpk, gsk, M, σ) : Trace a signature to member i