

Introduction

markets vs. voting (similarities and distinctions)
complete information (film critics) vs. genuine uncertainty (jury)

How should we produce a single ranking from the conflicting opinions provided by multiple voters?

Is some version of majority voting a good mechanism? Is there a better one?

And ultimately, what does it even mean for a voting system to be good?

Preferences

(2,
(2,

(2x)
5
5maxamas

A group of people is evaluating

a finite set of possible alternatives

These alternatives could correspond to political

 candidates, possible verdicts in a trial, amounts of money to spend on national defense, nominees for an award, or anyother set of options in a decision.

The people involved wish to

 produce a single group ranking that orders the alternatives from best toworst and that in some sense reflects the collective opinion of the group.

Individual i prefers X to Y

What might explain intransitivity?

we'll assume completeness and transitivity
complete and

三

 transitive preference relation
2.

1.
3.

A voting system

Any method that takes a collection of complete and transitive individual preference relations-or equivalently, a collection of individual rankings-and produces a group ranking.

Majority Rule

Let us assume an odd number of participants

Things get remarkably complicated with more than two alternatives

Let's try by aggregating pairwise preferences

For every X and Y
 $X>Y$ or $Y>X$

that is, group pairwise preferences are complete

But, aggregate preferences may violate transitivity even if all individual preferences
 are transitive!

$$
\begin{aligned}
& X>_{1} Y>_{1} Z \\
& Y>_{2} Z>_{2} X \\
& Z>_{3} X>_{3} Y
\end{aligned}
$$

does the aggregate preserve transitivity?
Condorcet paradox

also arises in individual decisions!

here, the criteria function as individual voters

College	National Ranking	Average Class Size	Scholarship Money Offered
X	4	40	$\$ 3,000$
Y	8	18	$\$ 1,000$
Z	12	24	$\$ 8,000$

Figure 23.2. When a single individual is making decisions based on multiple criteria, the Condorcet Paradox can lead to nontransitive preferences. Here, if a college applicants wants a school with a high ranking, small average class size, and a large scholarship offer, it is possible for each option to be defeated by one of the others on a majority of the criteria.

why not arrange the alternatives in some order and eliminate?

susceptible to agenda setting
 the order matters!

Positional Voting

rather than look at pairs,

positional systems produce group ranking
 from the individual
 > rankings

 rankings

 rankings
 in this system, each
 alternative receives a weight
 based on its position

Borda count

used to determine Heisman trophy winners

> If there are k alternatives, the weight to the top ranked preference is $k-1$, a weight of $k-2$ to the second alternative and so on.
the total weight of each alternative is the sum of the weights from individual rankings

The Borda count always produces a complete, transitive ranking for a set of alternatives

Pathologies in positional voting systems

Assume that a magazine asks a group of critics to identify" the greatest movie of all time,' so that the magazine can run a story on that movie

The group of five critics start with Citizen Kane and The Godfather

now the cretics feel that perhaps they should add a more modern option

they decide to add "Pulp Fiction"

three critics produce

two critics produce

odd results?

without "Pulp fiction," "Citizen Kane" wins
Pairwise, both "Citizen Kane"
and "The Godfather" are preferred to "Pulp Fiction"

This seems to imply that strategic misreporting can change the outcome

This is an issue in presidential elections too

Arrow's impossibility theorem

is there any voting

system that produces a
group ranking for three or more alternatives and
avoids all of the
pathologies we've seen
thus far?
what would we like a voting system to satisfy?

First, if there is any pair of alternatives X and Y for which $X>_{i} Y$ in the rankings of every
individual i, then the
group ranking should
also have $X>Y$

Unanimity

Second, we require that, for

 each pair of alternatives, the ordering of X and Y in the group ranking should depend only on how each individual ranks X and Y relative toeach other.

With two alternatives, majority voting satisfies unanimity and IIA.

with three or more alternatives, dictatorship satisfies unanimity and IIA

$$
\begin{aligned}
& \text { If there are at least } \\
& \text { three alternatives, then } \\
& \text { there is no voting } \\
& \text { system that satisfies } \\
& \text { Unanimity, IIA, and Non- } \\
& \text { dictatorship. }
\end{aligned}
$$

Single peakedpreferences

Are there special cases when majority voting works with more than three alternatives?
assume that the choices correspond to amounts of money to spend (say on education)
voter 1
voter 2

$$
X>_{1} Y>_{1} Z
$$

voter 3

$$
Z>_{3} X>_{3} Y
$$

voter 3 is a bit odd!

all three preferences are singly peaked: no case where neighbors are ranked above an option

If all individual rankings are single-peaked, then majority rule applied to all pairs of alternatives produces a group preference relation > that is complete and
transitive.

With single-peaked rankings, the median individual favorite defeats every other alternative in a
 pairwise majority vote.
 median voter theorem

Figure 23.6. The proof that the median individual favorite X_{m} defeats every other alternative X_{t} in a pairwise majority vote: if X_{t} is to the right of X_{m}, then X_{m} is preferred by all voters whose peak is on X_{m} or to its left. (The symmetric argument applies when X_{t} is to the left of X_{m}.)

Ranked choice voting, quadratic voting

voting as information aggregation

what if the purpose of voting was to figure out true ranking?

Jury decisions

simultaneous, sincere decisions

assume equally likely priors
assume that everyone
receives an independent, private signal
X-signal is observed

$$
\begin{aligned}
& P\left(S_{X} \mid X=T\right)=q \\
& P\left(S_{Y} \mid Y=T\right)=q
\end{aligned}
$$

X-signal is observed

$$
P\left(X=T \mid S_{X}\right)
$$

$$
P\left(X=T \mid S_{X}\right)=\frac{P\left(S_{X} \mid X=T\right) P(X=T)}{P\left(S_{X}\right)}
$$

$P\left(S_{X}\right)=P\left(S_{X} \mid X=T\right) P(X=T)+P\left(S_{X} \mid Y=T\right) P(Y=T)$

$$
P\left(S_{X}\right)=q \frac{1}{2}+(1-q) \frac{1}{2}
$$

$$
P\left(X=T \mid S_{X}\right)=\frac{P\left(S_{X} \mid X=T\right) P(X=T)}{P\left(S_{X}\right)}
$$

$$
P\left(X=T \mid S_{X}\right)=q
$$

So what?

The probability that the voters will make the right decision goes to 1 as the number of voters
becomes large.

Insincere voting

Are there situations in which an individual should actually choose to vote insincerely?

That is, she favors the

 alternative she believes to be worse, even though her goal is to maximize the probability that the group as a whole selects the best alternative.

Imagine three people are asked to determine what kind of an urn they are picking balls from if a majority guesses correctly, all win a reward.

Imagine you pick a ball and it turns out to be white. What should you report? Assume that you know that the other two will report sincerely.

What you report only matters when the other two disagree

Sincere reporting is not a Nash equilibrium!

a key methodological point in this analysis - the underlying principle in which you evaluate the consequences of your actions only in the cases where they actually affect the outcome.
insincere reporting is also an outcome in "the winner's curse"

$$
X>_{i} Y
$$

summary

completeness transitivity
Condorcet paradox

Singly peaked preferences
Positional Systems
Borda Count

Arrow's theorem

Voting as information aggregation

