
Quantifying Voter Biases in Online Platforms: An Instrumental Variable Approach

Himel Dev University of Illinois at Urbana-Champaign, IL, USA hdev3@illinois.edu

Karrie Karahalios University of Illinois at Urbana-Champaign, IL, USA kkarahal@illinois.edu Hari Sundaram University of Illinois at Urbana-Champaign, IL, USA hs1@illinois.edu

Sidan & Wanjun

9

Do black holes move through space?

Asked yesterday Active today Viewed 3k times

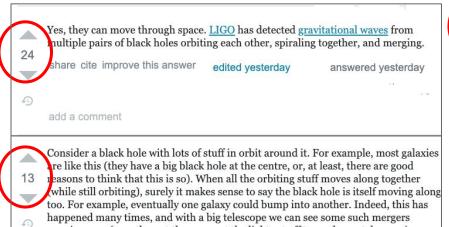
I know it was already asked here: Does a black hole move through space? What happens to other things around it? And it might be a very stupid question, but here it is:

From a relativistic perspective, do black holes move through space, or is it the space around them that is curved in such a way that for us they seem to move?

I know there is no absolute frame of reference in relativity, but let's say the standpoint of one blackhole, I would think time is frozen, so without time how can things move?

Aggregate Votes Thus Far

black-holes


Reputation Score and Badges

Which answer would you vote?

Do black holes move through spaces?

ongoing now (or rather, at the moment the light set off towards our telescope).

share cite improve this answer

answered 23 h

Yes. Here is a geometric perspective. Take e.g. the Schwarzschild metric in coordinates $x^{\mu} = (t, r, \phi, \theta)$:

 $g_{\mu\nu}dx^{\mu}dx^{\nu} = -(1 - rS/r)dt^{2} + (1 - rS/r)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$ (Schwarzschild)

where r_S is the Schwarzschild radius. The geometry as $r \to +\infty$ will look like Minkowski space in spherical coordinates (for the spacelike part):

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2) \qquad (\text{Minkowski}) \,.$$

Consider changing to Cartesian coordinates $(r, \phi, \theta) \rightarrow (x, y, z)$, doing a boost (say along the *x* direction), and changing back to spherical coordinates. The Minkowski geometry will look exactly the same.

However, doing the same for the Schwarzschild geometry will give you a different geometry! (Which I will not write down...) The new geometry corresponds to a boosted Schwarzschild black hole, one which moves at constant velocity relative to the distant observer at $r \rightarrow \infty$.

In fact, the same argument tells you that any *asymptotically flat* black hole can move relative to an observer far away from the black hole. (Of course they don't all have to move at constant speeds; it's just that one can construct constantly moving black hole geometries from the immobile ones by the above argument without actually calculating anything.)

Do black holes move through spaces?

Whose answer would you vote?

Yes, they can move through space. LIGO has detected <u>gravitational waves</u> from multiple pairs of black holes orbiting each other, spiraling together, and merging.

share cite improve this answer

edited y

add a comment

Consider a black hole with lots of stuff in orbit around it. For example, most galaxies are like this (they have a big black hole at the centre, or, at least, there are good reasons to think that this is so). When all the orbiting stuff moves along together (while still orbiting), surely it makes sense to say the black hole is itself moving along too. For example, eventually one galaxy could bump into another. Indeed, this has happened many times, and with a big telescope we can see some such mergers ongoing now (or rather, at the moment the light set off towar).

share cite improve this answer

Yes. Here is a geometric perspective.

Take e.g. the Schwarzschild metric in coordinates $x^{\mu} = (t, r, \phi, \theta)$:

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -(1 - r_S/r)dt^2 + (1 - r_S/r)^{-1}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

(Schwarzschild)

where r_S is the Schwarzschild radius. The geometry as $r \to +\infty$ will look like Minkowski space in spherical coordinates (for the spacelike part):

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2) \qquad (\text{Minkowski})\,.$$

Consider changing to Cartesian coordinates $(r, \phi, \theta) \rightarrow (x, y, z)$, doing a boost (say along the x direction), and changing back to spherical coordinates. The Minkowski geometry will look exactly the same.

However, doing the same for the Schwarzschild geometry will give you a different geometry! (Which I will not write down...) The new geometry corresponds to a boosted Schwarzschild black hole, one which moves at constant velocity relative to the distant observer at $r \rightarrow \infty$.

In fact, the same argument tells you that any *asymptotically flat* black hole can move relative to an observer far away from the

observer far away from the just that one can construct above argument without a

share cite improve this answ

Voter Bias

- Reputation Bias
 - inferring content quality in terms of user reputation
 - user with a higher reputation will receive more upvotes

• Social Influence Bias

- decision is influenced by the prior decision of peers
- the content with higher aggregate vote will receive more upvotes
- Position Bias
 - present content using a list-style format : Reddit, Stack Exchange
 - Content at the higher position will receive more votes

	Yes, they can move through space. <u>LIGO</u> has detected <u>gravitational waves</u> from nultiple pairs of black holes orbiting each other, spiraling together, and merging.
24	hare cite improve this answer edited yesterday answered yesterday
Ð	add a comment
	Consider a black hole with lots of stuff in orbit around it. For example, most galaxies are like this (they have a big black hole at the centre, or, at least, there are good reasons to think thit his is so). When all the orbiting stuff moves along together (shile still orbiting), surely it makes sense to say the black hole is itself moving along hos. For example, eventually one galaxy could bump into another. Indeed, this has happened many times, and with a big telescope we can see some such mergers ongoing now (or rather, at the moment the light set off towards our telescope).
	share cite improve this answer answered 23 hours ago
	I don't understand why the galaxies bumping into eachother is relevant or what it means for the answer. – Parotmaster 14 hours ago
	9 @Parrotmaster - It proves the key point. If you look at any single object from the referential frame tied to that same object, you'll be able to think that the object is never moving - instead, that the remaining objects in the universe are fying toward it, away from it, around it, sometimes crashing into it. But if you take two objects that eventually collide and perhaps scatter or merge as a result, then there's no way how you could think of both of them as stationary in the universe. Black holes are in no way special in this argument. — Jrida Hanking 14 hours ago
	add a comment
	Yes. Here is a geometric perspective.
4	Take e.g. the Schwarzschild metric in coordinates $x^{\mu} = (t,r,\phi,\theta)$
	$g_{\mu} \psi dx^{\mu} dx^{\nu} = -(1 - r\mathcal{G}r)dt^{2} + (1 - r\mathcal{G}r)^{-\frac{1}{2}} dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \qquad (\text{Schwarzschild})$
Ð	where r_S is the Schwarzschild radius. The geometry as $r \to +\infty$ will look like Minkowski space in spherical coordinates (for the spacelike part):
	$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{L} + dr^{L} + r^{2}(d\theta^{L} + \sin^{L}\theta d\phi^{L}) \qquad ({\rm Minkowski}). \label{eq:generalized_eq}$
	Consider changing to Cartesian coordinates $(r, \phi, \theta) \rightarrow (x, y, z)$ doing a boost (say along the x direction), and changing back to spherical coordinates. The Minkowski geometry will look exactly the same.

Related Work

- Voting Behavior
 - Users do not make independent voting decisions
 - Context \rightarrow Decision to vote, Polarity of vote [6] -- Sipos et al.
- Reputation Bias
 - Past reputation may be useful in predicting current success[7]
 - Reddit: user with higher comment karma tend to have higher ratings -- Liang et al.
- Social Influence Bias
 - Randomized Experiment: simulation via Amazon Mechanical Turk (AMT)
 - Observation Study
 - Statistical models for quantifying social influence bias:
 - Poisson regression[5]
 - Logistic regression[6]
 - etc.
- Position Bias
 - Abeliuk et al. [1] showed that the unpredictability of voting outcome is a consequence of the ordering policy.

- Reputation Bias
 - Only show the evidence of reputation bias, they do not provide any bias quantification
- Social Influence Bias
 - Randomized experiments: ethical issues, cost+ unfeasible
 - Observation Study:
 - Lack causal validation
 - Measure only the magnitude of association, rather than the magnitude and direction of causation
- Social Influence Bias VS. Position Bias
 - In many platforms, the presentation order of content depends on the aggregate user feedback. (Quora, StackOverflow.etc)
 - Hard for researchers to estimate the causal effects of social influence signal and position signal.

Why Stack Exchange?

Complete

- Same governing rules for all sites
- Get to a correct answer v.s invoke a discussion

Table 2. Descriptive statistics for the selected Stack Exchange sites.

Site	Category	# Users	# Questions	# Answers
English	Culture	169,037	87,679	210,338
Superuser	Technology	547,175	356,866	529,214
Math	Science	356,699	822,059	1,160,697

Stack Exchange

Why English, Superuser, Math sites?

• High Coverage: culture [English],

technology[Superuser], and science [Math].

- Large sites in their category according to #answers
- Vary in susceptibility to voter biases

	ID Variable Description
	V1 Site The Stack Exchange site in consideration
Variable	V2 T The limiting time of bias formation specific to the question V3 QuestionViewCount Number of users who viewed the question V4 QuestionFavoriteCount Number of users who favorited the question V5 QuestionScore Aggregate vote (total upvotes - total downotes) on the question V6 QuestionScoreT- Aggregate vote on the question after time T V7 QuestionCommentCount Number of comments on the question
Variables falls into 4 groups	V9 QuestionCommentCountT- Number of comments on the question before time T V10 QuestionCommentCountT+ Number of comments on the question after time T V11 QuestionAnswerCount Number of answers to the question V12 QuestionAnswerCountT- Number of answers to the question before time T V13 QuestionAnswerCountT+ Number of answers to the question after time T
 Site The Stack Exchange site Question the question that has been referred by the answer Answer The answer in consideration 	Via AnswerDayOfWeek The day of answer creation Via AnswerTimeOfDay The time of answer creation Via AnswerTimeOfDay The time of answer creation Via AnswerTimeIness Time gap between the usetion and the answer Via AnswerTimeliness Time gap between the question and the answer Via AnswerOrder Chronological order of the answer Via AnswerScore Aggregate vote on the answer Via AnswerScoreT- Aggregate vote on the answer after time T Via AnswerScoreT+ Aggregate vote on the answer after time T Via AnswerPosition Position of the answer based on the aggregate vote e Via AnswerPositionT- Position of the answer based on the aggregate vote after time T Via AnswerPositionT- Position of the answer based on the aggregate vote after time T Via AnswerCommentCount Number of comments on the answer Via AnswerCommentCountT- Number of comments on the answer after time T Via AnswerCommentCountT+ Number of comments on the answer after time T
 Answerer The user who created the answer 	V28 AnswererPostCount Number of posts (questions and answers) written by the answerer V29 AnswererAnswerCount Number of answers written by the answerer V30 AnswererAnswerCount Number of answers written by the answerer V31 AnswererActiveAge Time gap between between the answerer's 1st post and the answer V31 AnswererReputation Total score of questions and answers written by the answerer V32 AnswererReputationViaAnswer Total score of answers written by the answerer V33 AnswererGoldCount Number of gold badges acquired by the answerer V34 AnswererSolverCount Number of silver badges acquired by the answerer V35 AnswererBadgeDistribution [AnswererGoldCount, AnswererSilverCount, AnswererBronzeCount] V36 AnsweredQuestionFavoriteTotal Total number of users who iewed past questions answered by the answerer V39 AnsweredQuestionScoreTotal Total number of post questions answered by the answerer V30 AnsweredQuestionCommentTotal Total number of comments on past questions answered by the answerer V40 AnsweredQuestionAnswerTotal Total number of answers to past questions answered by the answerer

Method Overview

• Goal: Quantify the degree of voter bias in online platform.

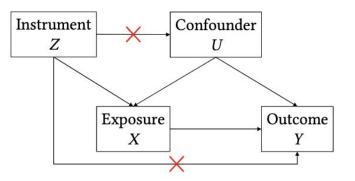
* To determine bias, we need to estimate causal effects of different impression signals on observed votes.

• Methodology - Ordinary Least Square(OLS) VS Instrumental Variable(IV)

OLS:

• Captures correlations among variables, non-causal

IV:


• Reason underlying causal structure

Limitation of OLS:

- Neglect the effect of hidden cofounder.
- E.g. Education → Earning Hidden confounder: the unobserved ability of individual Affect both education level and earning

Why Instrumental Variable Model?

- Existence of hidden confounder prevents standard regression method from causal effect
- Identify candidate instruments correlate only with independent variable
- Eliminate instrument that could affect hidden cofounder
- Estimating causal effect in the presence of hidden confounder

Example: the causal effect of education on earnings

- Confounder the unobserved ability of individuals
- Exposure level of education that an individual attains
- Outcome the wage he/she receives
- Instrument proximity to college (variables which affect education but do not affect earnings either directly or indirectly)

Instrumental variable Estimation

Instrument Z- A variable to eliminate the effects of confounders

- **Relevance condition**: Z is correlated with the exposure X
- **Exclusion restriction:** Z does not affect outcome directly, except through exposure X
- Marginal Exchangeability:

instrument Z and outcome don't share cause

Aim: identify instrument

that has a strong correlation with impression signal(exposure).

The parallels between voter bias quantification and instrumental variable method

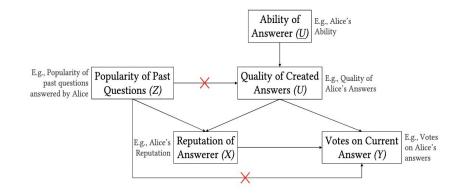
IV Terminology	Bias Terminology	Example
Outcome	Aggregate Feedback	Mean of votes on content
Exposure	Impression Signal	Reputation of the contributing user
Confounder	Unobserved Quality	What a voter assesses the quality of the content to be
Regression Coefficient	Voter Bias	How the reputation of the contributing user affects the mean vote

IV model for Reputation Bias

Outcome: Aggregate vote of the answer

Exposure: Reputation of answer, based on the reputation and badge system on stackExchange.

Variables: AnswererReputation AnswererReputationViaAnswer AnswererGoldCount AnswererSilverCount AnswererBronzeCount Assumption: all voters observe same state of reputation



IV model for Reputation Bias

Instrument:

Answerer's activity --violate marginal exchangeability

Popularity of past questions responded by the answerer —

Instrument Variables:

Confounder:

Ability of Answerer

AnsweredQuestionViewTotal, AnsweredQuestionFavoriteTotal, AnsweredQuestionScoreTotal, AnsweredQuestionCommentTotal, AnsweredQuestionAnswerTotal Control: Site, QuestionViewCount, QuestionFavoriteCount, QuestionScore, QuestionCommentCoun, QuestionAnswerCount

Joint IV Model for Social Influence Bias and Position Bias

Why Joint Model?

The presentation order of answers at Stack Exchange is the aggregate vote so far. Two signal vary together. Hard to isolate.

Estimate the causal effects of initial votes and resultant position on subsequent votes

	swers	active oldest votes
	The mistake happens on this line:	
	Let $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots = x$	
~	the mistake is assuming that there exists some $x \in \mathbb{R}$ for which the does not exist, because the series is divergent (see <u>here</u> for at least tw	
	Since the line highlighted above is false, everything that follows this statements from a false assumption (and thus trivially possible; ever statement).	
	share cite improve this answer	answered 3 hours ago 5xum 99.6k ● 5 ■ 104 ▲ 170
	add a comment	
h.	Infinity is not a well-defined number: if infinity were a number, it we principles of mathematics.	ould contradict with the existing
3	Therefore this line:	
	Therefore this line: Let $1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots = x$	
	Let $1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots = x$	answered 3 hours ago
	Let $1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots = x$ does not make sense if <i>x</i> is assumed to be a finite number.	
	Let $1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots = x$ does not make sense if x is assumed to be a finite number. share cite improve this answer edited 2 hours ago	Toby Mak $7,035 \bullet 2 \equiv 16 \blacktriangle 31$ gn x to a divergent series, but
	Let $1 + 1/2 + 1/3 + 1/4 + 1/5 + \dots = x$ does not make sense if x is assumed to be a finite number. share cite improve this answer edited 2 hours ago add a comment The others have correctly pointed out the first error in trying to assig	Toby Mak $7,035 \bullet 2 \equiv 16 \blacktriangle 31$ gn x to a divergent series, but

Joint IV Model for Social Influence Bias and Position Bias

Outcome: aggregate vote on the answer after an initial bias formation period.

Exposure: initial votes and resultant position of answer.

(1). AnswerScoreT- $\langle V20\rangle$ - captures the aggregate vote on answer based on the votes before time T;

(2). AnswerPositionT- $\langle V23 \rangle$ - captures the position of answer based on the aggregate vote before time T.

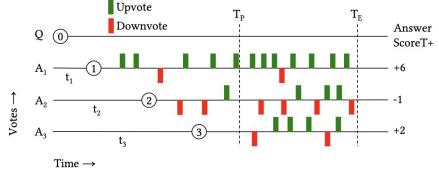
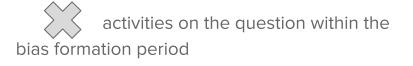
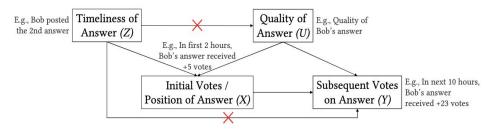



illustration of Bias information period


Joint IV Model for Social Influence Bias and Position Bias

Instrument:

actual time of answer

relative timeliness of answer

Variable: AnswerTimeliness, AnswerOrder

Control: Site, AnswererReputationViaAnswer

Two-Stage Least Squares (2SLS) Method VS OLS at English, Math, and Superuser

Quantifying reputation bias

Causal Effect of Reputation Score: the causal effect of reputation score on the aggregate vote is small

Causal Effect of Badges: high effect for gold badges, a moderate effect for silver badges, and low effect for bronze badges Two-Stage Least Squares (2SLS) :

- First stage: regress each exposure variable on all instrumental and control variables in the model and obtain the predicted values from the regressions.
- Second stage, regress the outcome variable on the predicted exposures from the first stage, along with the control variables.

Table 5. Causal effects (regression coefficients) of answerer's reputation score and badges on the aggregate vote in Excussu. All results presented in this table are statistically significant—validated via two-tailed t-tests—with p < 0.001. The results suggest that OLS and IV provide similar estimates for reputation score, whereas they differ a lot in estimating the effects of badges. Notably, *OLS tends to assign equal weights to all badges, whereas IV assigns more weights to gold badges*.

	Instrument and Control	$Y = AnswerScore \langle V_{19} \rangle$						
	(for estimating the effect of Exposure)	X = AnswererF	eputation (V ₃₁)	$X =$ AnswererReputationViaAnswer $\langle V_3 \rangle$				
Site	Z + C	OLS	IV	OLS	IV			
English	AnsweredQuestionViewTotal (V37)	0.092 (± 0.001)	0.089 (± 0.001)	0.090 (± 0.002)	0.088 (± 0.002)			
	V37 + QuestionViewCount (V3)	$0.101(\pm 0.002)$	$0.098(\pm 0.001)$	0.099 (± 0.002)	0.097 (± 0.002)			
	AnsweredQuestionFavoriteTotal (V18)	$0.092(\pm 0.001)$	$0.088 (\pm 0.002)$	0.090 (± 0.002)	0.086 (± 0.001)			
	V38 + QuestionFavoriteCount (V4)	$0.101(\pm 0.002)$	$0.093(\pm 0.001)$	0.099 (± 0.001)	0.092 (± 0.002)			
	AnsweredQuestionScoreTotal (V39)	$0.092(\pm 0.001)$	$0.086 (\pm 0.002)$	0.090 (± 0.002)	0.084 (± 0.001)			
	V39 + QusestionScore (V5)	0.100 (± 0.001)	0.092 (± 0.001)	0.099 (± 0.002)	0.090 (± 0.001)			
	AnsweredQuestionCommentTotal (V40)	$0.092(\pm 0.001)$	$0.070 (\pm 0.002)$	0.090 (± 0.002)	0.068 (± 0.001)			
	V40 + QuestionCommentCount (V8)	$0.093(\pm 0.001)$	$0.070(\pm 0.001)$	0.091 (± 0.002)	0.069 (± 0.002)			
	AnsweredQuestionAnswerTotal (V41)	$0.092(\pm 0.001)$	$0.076(\pm 0.001)$	0.090 (± 0.002)	0.075 (± 0.002)			
	V41 + QuestionAnswerCount (V11)	0.100 (± 0.001)	$0.084(\pm 0.001)$	0.098 (± 0.001)	0.083 (± 0.002)			
	V37, V38, V39, V40, V41	$0.092(\pm 0.001)$	$0.081 (\pm 0.001)$	0.090 (± 0.002)	0.079 (± 0.002)			
	V37, V38, V39, V40, V41 + V3, V4, V5, V8, V11	$0.098 (\pm 0.002)$	$0.087 (\pm 0.001)$	0.096 (± 0.001)	0.085 (± 0.001)			

	Instrument and Control	$Y = \text{AnswerScore } \langle V_{19} \rangle$								
	(for estimating the effect of Exposure)	$X = \text{AnswererGoldCount} \left< V_{33} \right>$		$X = AnswererSilverCount \langle V_{34} \rangle$		X = AnswererBronzeCount (V ₃₅				
Site	Z + C	OLS	IV	OLS	IV	OLS	IV			
English	AnsweredQuestionViewTotal (V37)	0.184 (± 0.006)	0.712 (± 0.014)	0.138 (± 0.003)	$0.225 (\pm 0.004)$	0.157 (± 0.003)	0.178 (± 0.003)			
	V37 + QuestionViewCount (V3)	$0.219(\pm 0.005)$	$0.794 (\pm 0.014)$	0.158 (± 0.003)	$0.250 (\pm 0.004)$	0.183 (± 0.002)	0.198 (± 0.003)			
	AnsweredQuestionFavoriteTotal (V38)	0.184 (± 0.006)	$0.543 (\pm 0.009)$	$0.138 (\pm 0.003)$	$0.187 (\pm 0.003)$	0.157 (± 0.003)	0.175 (± 0.003)			
	V38 + QuestionFavoriteCount (V4)	0.206 (± 0.006)	0.579 (± 0.010)	0.153 (± 0.002)	0.200 (± 0.003)	0.176 (± 0.003)	0.186 (± 0.003)			
	AnsweredQuestionScoreTotal (V39)	0.184 (± 0.006)	$0.570 (\pm 0.010)$	0.138 (± 0.003)	$0.192 (\pm 0.003)$	0.157 (± 0.003)	0.170 (± 0.003)			
	V ₃₉ + QusestionScore (V ₅)	$0.199(\pm 0.005)$	$0.613 (\pm 0.010)$	$0.151(\pm 0.003)$	$0.207 (\pm 0.003)$	0.177 (± 0.003)	0.183 (± 0.003)			
	AnsweredQuestionCommentTotal (V40)	0.184 (± 0.006)	0.447 (± 0.010)	0.138 (± 0.003)	0.153 (± 0.003)	0.157 (± 0.003)	0.135 (± 0.003)			
	V40 + QuestionCommentCount (V8)	0.183 (± 0.006)	$0.448 (\pm 0.010)$	0.138 (± 0.003)	$0.154 (\pm 0.004)$	0.157 (± 0.002)	0.136 (± 0.003)			
	AnsweredQuestionAnswerTotal (V41)	0.184 (± 0.006)	$0.500 (\pm 0.011)$	0.138 (± 0.003)	$0.170 (\pm 0.003)$	0.157 (± 0.003)	0.149 (± 0.003)			
	V41 + QuestionAnswerCount (V11)	$0.201(\pm 0.006)$	$0.551 (\pm 0.010)$	$0.150 (\pm 0.003)$	$0.188(\pm 0.004)$	0.173 (± 0.003)	$0.165 (\pm 0.003)$			
	V37, V38, V39, V40, V41	0.184 (± 0.006)	0.338 (± 0.009)	0.138 (± 0.003)	0.143 (± 0.003)	0.157 (± 0.003)	0.145 (± 0.003)			
	V37, V38, V39, V40, V41 + V3, V4, V5, V8, V11	$0.195(\pm 0.005)$	$0.382 (\pm 0.008)$	$0.149 (\pm 0.003)$	0.157 (± 0.003)	0.176 (± 0.003)	0.167 (± 0.003)			

Table 6. Causal effects (regression coefficients) of answere's reputation score and badges on the aggregate vote in MATH. All results presented in this table are statistically significant—validated via two-tailed t-tests—with p < 0.001. The results suggest that OLS and IV provide similar estimates for reputation score, whereas they differ a lot in estimating the effects of badges. Notably, *OLS tends to assign equal weights to all badges, whereas IV assigns more weights to gold badges*.

	Instrument and Control				Y = Answe	erScore (V ₁₉)		$Y = \text{AnswerScore } \langle V_{19} \rangle$						
	(for estimating the effect of Exposure) Z + C		X = AnswererR	eputation (\	/31))	K = AnswererRe	eputatic	onViaAnswer (V	32>					
Site			OLS	IV		OLS	IV							
Math	AnsweredQuestionViewTota	$ \langle V_{37} \rangle$	0.056 (± 0.001)	0.055 (± 0.	001) 0	0.053 (± 0.001)	0.051	(± 0.001)						
	V37 + QuestionViewCount (V	3>	0.067 (± 0.001)	0.061 (± 0.	001) 0	0.063 (± 0.001)	0.057	(± 0.001)						
	AnsweredQuestionFavoriteTe	otal (V ₃₈)	0.056 (± 0.001)	0.057 (± 0.	001) 0	0.053 (± 0.001)	0.053	(± 0.001)						
	V38 + QuestionFavoriteCount	t (V ₄)	0.061 (± 0.001)	0.057 (± 0.	001) 0	0.058 (± 0.001)	0.053	(± 0.001)						
	AnsweredQuestionScoreTota	l (V ₃₉)	0.056 (± 0.001)	0.055 (± 0.	001) 0	0.053 (± 0.001)	0.051	(± 0.001)						
	V ₃₉ + QusestionScore (V ₅)		0.058 (± 0.001)	0.053 (± 0.001) 0		0.053 (± 0.001)	0.049 (± 0.001) 0.037 (± 0.001) 0.038 (± 0.001)							
	AnsweredQuestionCommentTotal $\langle V_{40} \rangle$ V ₄₀ + QuestionCommentCount $\langle V_8 \rangle$		0.056 (± 0.001)	0.040 (± 0.	040 (± 0.001)									
			0.057 (± 0.001)	$0.041(\pm 0.001)$	001) 0									
	AnsweredQuestionAnswerTo	(V_{41})	0.056 (± 0.001)	0.040 (± 0.	001) 0	0.053 (± 0.001)	0.037	(± 0.001)						
	V41 + QuestionAnswerCount	$\langle V_{11} \rangle$	$0.060 (\pm 0.001)$	0.043 (± 0.	001) 0	0.057 (± 0.001)	0.040	(± 0.001)						
	V37, V38, V39, V40, V41		0.056 (± 0.001)	0.048 (± 0.	001) 0	0.053 (± 0.001)	0.043	(± 0.001)						
	$V_{37},V_{38},V_{39},V_{40},V_{41}*V_3,V_{41}$	/4, V5, V8, V11	0.062 (± 0.001)	0.055 (± 0.	001) 0	0.059 (± 0.001)	0.050	(± 0.001)						
ument ar	nd Control				Y = Answe	erScore (V ₁₉)								
estimating	g the effect of Exposure)	X = Answere	ererGoldCount (V ₃₃)		X = AnswererSilverCo		SilverCount $\langle V_{34} \rangle$ X = Answer		rBronzeCount (V3					
2		OLS	IV	OLS		IV		OLS	IV					
veredQue	estionViewTotal (V37)	0.086 (± 0.001)	0.234 (± 0.00)	2) 0.07	6 (± 0.001)	0.104 (± 0.00	1)	0.090 (± 0.001)	0.112 (± 0.001)					
Questio	nViewCount (V3)	0.122 (± 0.002)	0.262 (± 0.00)	3) 0.094	4 (± 0.001)	$0.116(\pm 0.00)$	1)	0.117 (± 0.001)	$0.125(\pm 0.001)$					
veredQue	estionFavoriteTotal (V38)	0.086 (± 0.001)	0.217 (± 0.00)	2) 0.07	6 (± 0.001)	$0.099(\pm 0.00)$	1)	0.090 (± 0.001)	0.115 (± 0.001)					
Ouestio	nFavoriteCount (V ₄)	0.105 (± 0.002)	0.218 (± 0.00)	2) 0.08	3 (± 0.001)	$0.099(\pm 0.00)$	1)	0.103 (± 0.001)	$0.115(\pm 0.001)$					

AnsweredOuestionScoreTotal (V10) 0.086 (± 0.001) 0.214 (± 0.002) 0.076 (± 0.001) 0.098 (± 0.001) 0.090 (± 0.001) 0.112 (± 0.001) V39 + OusestionScore (V5) 0.100 (± 0.001) 0.206 (± 0.002) 0.078 (± 0.001) 0.094 (± 0.001) 0.098 (± 0.001) 0.107 (± 0.001) AnsweredQuestionCommentTotal (V40) 0.086 (± 0.001) 0.154 (± 0.002) 0.076 (± 0.001) 0.072 (± 0.001) 0.090 (± 0.001) 0.081 (± 0.001) V40 + QuestionCommentCount (V8) 0.089 (± 0.002) 0.157 (± 0.002) 0.077 (± 0.001) 0.073 (± 0.001) 0.092 (± 0.001) 0.083 (± 0.001) AnsweredQuestionAnswerTotal (V41) 0.086 (± 0.001) 0.153 (± 0.002) 0.076 (± 0.001) 0.072 (± 0.001) 0.090 (± 0.001) 0.081 (± 0.001) V41 + QuestionAnswerCount (V11) 0.094 (± 0.001) 0.165 (± 0.002) 0.081 (± 0.001) 0.077 (± 0.001) 0.098 (± 0.001) 0.087 (± 0.001) V37, V38, V39, V40, V41 0.086 (± 0.001) 0.133 (± 0.002) 0.076 (± 0.001) 0.079 (± 0.001) 0.090 (± 0.001) 0.092 (± 0.001) $V_{37}, V_{38}, V_{39}, V_{40}, V_{41} + V_3, V_4, V_5, V_8, V_{11} = 0.113 (\pm 0.002) = 0.179 (\pm 0.002)$ 0.085 (± 0.001) 0.090 (± 0.001) 0.108 (± 0.001) 0.110 (± 0.001)

Table 7. Causal effects (regression coefficients) of answerer's reputation score and badges on the aggregate vote in Surexiest. A nuclika presented in this table are statistically significant-validated via two-tailed treats-with p < 0.001. The results aggress than CUS and IV provides, animal estimates for reputation score, whereas they differ a lot in estimating the effects of badges. Notably, OLS tends to assign equal weights to all badges, whereas IV assigns more weights to gold badges.

Site Math

		Instrument and Control			$Y = Ans^{*}$	werScore (V ₁₉)		
	Site	(for estimating the effect of Ex	posure)	X = AnswererRe	putation (V ₃₁)	X = AnswererRe	putationViaAnswer (V	32)
		Z + C	-		IV	OLS	IV	
	Superuser	AnsweredQuestionViewTotal	(V ₃₇)		0.045 (± 0.001)		0.043 (± 0.001)	
		V37 + QuestionViewCount (V	3)	0.067 (± 0.001)	0.062 (± 0.001)		0.060 (± 0.001)	
		AnsweredQuestionFavoriteTo	stal (V38)	0.054 (± 0.001)	0.054 (± 0.001) (0.052 (± 0.001)	0.052 (± 0.001)	
		V18 + QuestionFavoriteCount (V4)		0.065 (± 0.001)	0.062 (± 0.001) 0.	0.063 (± 0.001)	0.060 (± 0.001)	
		AnsweredOuestionScoreTotal	(V10)	$0.054(\pm 0.001)$		$0.052 (\pm 0.001)$	0.050 (± 0.001)	
		V10 + OusestionScore (V5)		0.065 (± 0.001)		$0.064 (\pm 0.001)$	0.059 (± 0.001)	
		AnsweredQuestionComment	Total (V40)	0.054 (± 0.001)	0.038 (± 0.001)	$0.052 (\pm 0.001)$	0.036 (± 0.001)	
		V40 + QuestionCommentCou	nt (V ₈)	$0.054(\pm 0.001)$	0.038 (± 0.001)	$0.052 (\pm 0.001)$	0.036 (± 0.001)	
		AnsweredOuestionAnswerTo	tal (V ₄₁)	0.054 (± 0.001)	0.045 (± 0.001)	$0.052 (\pm 0.001)$	0.044 (± 0.001)	
		V41 + QuestionAnswerCount	(Vii)	0.062 (± 0.001)	0.053 (± 0.001)	0.060 (± 0.001)	0.052 (± 0.001)	
		V37, V38, V39, V40, V41		0.054 (± 0.001)	0.048 (± 0.001)	$0.052 (\pm 0.001)$	0.046 (± 0.001)	
		V37, V38, V39, V40, V41 + V3, V		0.063 (± 0.001)	0.060 (± 0.001)	$0.062(\pm 0.001)$	0.057 (± 0.001)	
								_
	Instrument a		X = Answere	GoldCount (Vas)		werScore (V ₁₉)	X = AnswererBr	ronzeCount (V
		nd Control og the effect of Exposure)	X = Answeren	GoldCount (V ₃₃)		werScore (V ₁₉) rSilverCount (V ₃ ,	X = AnswererBr	ronzeCount (V
	(for estimatin Z + C	og the effect of Exposure)	OLS	IV	X = Answere OLS	rSilverCount (V ₃	OLS	IV
ser	(for estimatin Z + C AnsweredQu	eg the effect of Exposure)	OLS 0.106 (± 0.004)	IV 0.414 (± 0.009	X = Answere OLS) 0.081 (± 0.002	rSilverCount (V ₃ IV) 0.139 (± 0.00)	OLS 3) 0.082 (± 0.002)	IV 0.097 (± 0.00
ser	(for estimatin Z + C AnsweredQu V ₃₇ + Questi	estionViewTotal (V ₃₇)	OLS 0.106 (± 0.004) 0.175 (± 0.004)	IV 0.414 (± 0.009 0.591 (± 0.009	X = Answere OLS 0.081 (± 0.002 0.116 (± 0.002	rSilverCount (V ₃ IV) 0.139 (± 0.00)) 0.196 (± 0.00)	OLS 3) 0.082 (± 0.002) 3) 0.123 (± 0.001)	IV 0.097 (± 0.00 0.137 (± 0.00
ser	(for estimatin Z + C AnsweredQu V ₃₇ + Questi AnsweredQu	ag the effect of Exposure) mestionViewTotal $\langle V_{37} \rangle$ onViewCount $\langle V_{3} \rangle$ mestionFavoriteTotal $\langle V_{38} \rangle$	OLS 0.106 (± 0.004) 0.175 (± 0.004) 0.106 (± 0.004)	IV 0.414 (± 0.009 0.591 (± 0.009 0.399 (± 0.007	X = Answere OLS) 0.081 (± 0.002) 0.116 (± 0.002) 0.081 (± 0.002	SilverCount ⟨V ₃ , IV) 0.139 (± 0.00)) 0.196 (± 0.00)) 0.143 (± 0.00)	OLS 3) 0.082 (± 0.002) 3) 0.123 (± 0.001) 2) 0.082 (± 0.002)	IV 0.097 (± 0.00 0.137 (± 0.00 0.123 (± 0.00
ser	(for estimatin Z + C AnsweredQu V ₃₇ + Questi AnsweredQu V ₃₈ + Questi	the effect of Exposure) restionViewTotal $\langle V_{37} \rangle$ onViewCount $\langle V_3 \rangle$ restionFavoriteTotal $\langle V_{38} \rangle$ onFavoriteCount $\langle V_4 \rangle$	OLS 0.106 (± 0.004) 0.175 (± 0.004) 0.106 (± 0.004) 0.147 (± 0.004)	IV 0.414 (± 0.009 0.591 (± 0.009 0.399 (± 0.007 0.459 (± 0.006	X = Answere OLS) 0.081 (± 0.002) 0.116 (± 0.002) 0.081 (± 0.002) 0.103 (± 0.001	SilverCount ⟨V ₃ , IV) 0.139 (± 0.00)) 0.196 (± 0.00)) 0.143 (± 0.00)) 0.165 (± 0.00)	OLS 3) 0.082 (± 0.002) 3) 0.123 (± 0.001) 2) 0.082 (± 0.002) 2) 0.110 (± 0.002)	IV 0.097 (± 0.00 0.137 (± 0.00 0.123 (± 0.00 0.142 (± 0.00
ser	(for estimatin Z + C V ₃₇ + Questi AnsweredQu V ₃₈ + Questi AnsweredQu	the effect of Exposure) testionViewTotal $\langle V_{37} \rangle$ onViewCount $\langle V_{3} \rangle$ testionFavoriteTotal $\langle V_{38} \rangle$ onFavoriteCount $\langle V_{4} \rangle$ testionScoreTotal $\langle V_{39} \rangle$	OLS 0.106 (± 0.004) 0.175 (± 0.004) 0.106 (± 0.004) 0.147 (± 0.004) 0.106 (± 0.004)	IV 0.414 (± 0.009 0.591 (± 0.009 0.399 (± 0.007 0.459 (± 0.006 0.406 (± 0.007	X = Answere OLS) 0.081 (± 0.002) 0.116 (± 0.002) 0.081 (± 0.002) 0.03 (± 0.001) 0.081 (± 0.002	IV 0.139 (± 0.00) 0.139 (± 0.00) 0.143 (± 0.00) 0.143 (± 0.00) 0.165 (± 0.00) 0.144 (± 0.00)	OLS 0.082 (± 0.002) 0.123 (± 0.001) 0.082 (± 0.002) 0.110 (± 0.002) 0.110 (± 0.002) 0.082 (± 0.002)	IV 0.097 (± 0.00 0.137 (± 0.00 0.123 (± 0.00 0.142 (± 0.00 0.117 (± 0.00
ser	(for estimatin Z + C AnsweredQt V ₃₇ + Questi AnsweredQt V ₃₈ + Questi AnsweredQt V ₃₉ + Questi	the effect of Exposure) testionViewTotal $\langle V_{37} \rangle$ onViewCount $\langle V_{3} \rangle$ onViewCount $\langle V_{33} \rangle$ onFavoriteCount $\langle V_{43} \rangle$ cestionScoreTotal $\langle V_{39} \rangle$ ionScore $\langle V_{5} \rangle$	OLS 0.106 (± 0.004) 0.175 (± 0.004) 0.106 (± 0.004) 0.147 (± 0.004) 0.106 (± 0.004) 0.162 (± 0.003)	IV 0.414 (± 0.009 0.591 (± 0.009 0.399 (± 0.007 0.459 (± 0.006 0.406 (± 0.007 0.481 (± 0.006	X = Answere OLS 0.081 (± 0.002 0.081 (± 0.002 0.081 (± 0.002 0.013 (± 0.001 0.031 (± 0.002 0.031 (± 0.002 0.039 (± 0.001 0.039 (± 0.001	rSilverCount (V ₃ , IV) 0.139 (± 0.00)) 0.196 (± 0.00)) 0.143 (± 0.00)) 0.143 (± 0.00)) 0.144 (± 0.00)) 0.170 (± 0.00)	OLS 3) 0.082 (± 0.002) 3) 0.123 (± 0.001) 2) 0.082 (± 0.002) 0.110 (± 0.002) 0.110 (± 0.002) 5) 0.082 (± 0.002) 2) 0.116 (± 0.002)	IV 0.097 (± 0.00 0.137 (± 0.00 0.123 (± 0.00 0.142 (± 0.00 0.117 (± 0.00 0.139 (± 0.00
ser	(for estimatin Z + C AnsweredQu V ₃₇ + Questi AnsweredQu V ₃₈ + Questi AnsweredQu V ₃₉ + Questi AnsweredQu	estionViewTotal (V ₃₇) estionViewTotal (V ₃₇) onViewCount (V ₃) estionFavoriteTotal (V ₃₈) onFavoriteCount (V ₄) estionScoreTotal (V ₃₉) ionScore (V ₅) estionCommentTotal (V ₄₀)	OLS 0.106 (± 0.004) 0.175 (± 0.004) 0.106 (± 0.004) 0.106 (± 0.004) 0.106 (± 0.004) 0.162 (± 0.003) 0.106 (± 0.004)	IV 0.414 (± 0.009 0.591 (± 0.009 0.399 (± 0.007 0.459 (± 0.006 0.406 (± 0.007 0.481 (± 0.006	X = Answere: OLS 0.081 (± 0.002 0.016 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002	rSilverCount ⟨V ₃ , IV () 0.139 (± 0.00) () 0.143 (± 0.00) () 0.143 (± 0.00) () 0.165 (± 0.00) () 0.144 (± 0.00) () 0.170 (± 0.00) () 0.099 (± 0.00)	OLS 3) 0.082 (± 0.002) 3) 0.123 (± 0.001) 2) 0.082 (± 0.002) 3) 0.123 (± 0.002) 3) 0.123 (± 0.002) 3) 0.123 (± 0.002) 3) 0.082 (± 0.002) 3) 0.082 (± 0.002) 3) 0.082 (± 0.002)	IV 0.097 (± 0.00 0.137 (± 0.00 0.123 (± 0.00 0.142 (± 0.00 0.117 (± 0.00 0.139 (± 0.00 0.082 (± 0.00
ser	(for estimatin Z + C AnsweredQu V ₃₇ + Questi AnsweredQu V ₃₈ + Questi AnsweredQu V ₃₉ + Questi AnsweredQu V ₄₀ + Questi	rg the effect of Exposure) testionViewTotal (V ₂₇) onViewCount (V ₃) onFavoriteCount (V ₄) onFavoriteCount (V ₄) testionScoreTotal (V ₃₉) ionScore (V ₅) testionCommentTotal (V ₄₀) onCommentCount (V ₄)	OLS 0.106 (± 0.004) 0.175 (± 0.004) 0.106 (± 0.004) 0.147 (± 0.004) 0.106 (± 0.004) 0.162 (± 0.003) 0.106 (± 0.004) 0.106 (± 0.004)	IV 0.414 (± 0.009 0.591 (± 0.009 0.399 (± 0.007 0.459 (± 0.006 0.406 (± 0.007 0.481 (± 0.006 0.266 (± 0.007	X = Answere: OLS 0.081 (± 0.002 0.081 (± 0.002 0.081 (± 0.002 0.081 (± 0.002 0.016 (± 0.002 0.0081 (± 0.002 0.0081 (± 0.002 0.0081 (± 0.002 0.0081 (± 0.002 0.0081 (± 0.002 0.0081 (± 0.002 0.0081 (± 0.002	$\begin{array}{c c} \text{rSilverCount} \langle V_{3i} \\ \hline IV \\ () & 0.139 (\pm 0.00) \\ () & 0.196 (\pm 0.00) \\ () & 0.143 (\pm 0.00) \\ () & 0.143 (\pm 0.00) \\ () & 0.144 (\pm 0.00) \\ () & 0.170 (\pm 0.00) \\ () & 0.099 (\pm 0.00) \\ ($	OLS 3) 0.082 (± 0.002) 3) 0.123 (± 0.001) 2) 0.082 (± 0.002) 3) 0.082 (± 0.002) 3) 0.082 (± 0.002) 3) 0.082 (± 0.002) 3) 0.082 (± 0.002) 3) 0.082 (± 0.002) 3) 0.081 (± 0.001)	IV 0.097 (± 0.00 0.137 (± 0.00 0.123 (± 0.00 0.142 (± 0.00 0.117 (± 0.00 0.139 (± 0.00 0.082 (± 0.00 0.082 (± 0.00
ser	(for estimatin Z + C AnsweredQt V ₃₇ + Questi AnsweredQt V ₃₉ + Questi AnsweredQt V ₃₉ + Questi AnsweredQt V ₄₀ + Questi AnsweredQt	rg the effect of Exposure) testionViewTotal (V ₃₅) onViewCount (V ₃) testionFavoriteTotal (V ₄₀) onFavoriteCount (V ₄) testionScoreTotal (V ₄₀) onCommentTotal (V ₄₀) onCommentTotal (V ₄)	OLS 0.106 (± 0.004) 0.175 (± 0.004) 0.106 (± 0.004) 0.147 (± 0.004) 0.162 (± 0.004) 0.166 (± 0.004) 0.106 (± 0.004) 0.106 (± 0.004)	IV 0.414 (± 0.009 0.591 (± 0.009 0.399 (± 0.007 0.459 (± 0.006 0.406 (± 0.007 0.481 (± 0.006 0.266 (± 0.007 0.349 (± 0.007)	X = Answere OLS 0.081 (± 0.002 0.081 (± 0.002 0.016 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002	$ \begin{array}{c} \mbox{rsilverCount} \langle V_3,\\ \hline V \\ \hline 0 & 0.139 (\pm 0.00) \\ 0 & 0.196 (\pm 0.00) \\ 0 & 0.163 (\pm 0.00) \\ 0 & 0.163 (\pm 0.00) \\ 0 & 0.170 (\pm 0.00) \\ 0 & 0.170 (\pm 0.00) \\ 0 & 0.099 (\pm 0.00) \\ 0 & 0.099 (\pm 0.00) \\ 0 & 0.124 (\pm 0.00) \\ \end{array} $	$\begin{tabular}{ c c c c c }\hline \hline OLS \\\hline \hline $0.82 (\pm 0.002)$ \\\hline $0.123 (\pm 0.001)$ \\\hline $0.82 (\pm 0.002)$ \\\hline $0.082 (\pm 0.002)$ \\\hline $0.082 (\pm 0.002)$ \\\hline $0.082 (\pm 0.002)$ \\\hline $0.082 (\pm 0.002)$ \\\hline $0.081 (\pm 0.001)$ \\\hline $0.081 (\pm 0.001)$ \\\hline $0.081 (\pm 0.001)$ \\\hline $0.082 (\pm 0.002)$ \\\hline $0.082 ($	IV 0.097 (± 0.00 0.137 (± 0.00 0.123 (± 0.00 0.142 (± 0.00 0.117 (± 0.00 0.139 (± 0.00 0.082 (± 0.00 0.082 (± 0.00 0.100 (± 0.00
ser	(for estimatin Z + C AnsweredQt V ₃₇ + Questi AnsweredQt V ₃₉ + Questi AnsweredQt V ₃₉ + Questi AnsweredQt V ₄₀ + Questi AnsweredQt	ing the effect of Exposure) institute of the effect of Exposure) onViewCount $\langle V_3 \rangle$ institute of the effect of the effect of the effect instance ($V_3 \rangle$) instance ($V_3 \rangle$) instance ($V_4 \rangle$) instance ($V_{41} \rangle$) onComment Out ($V_{41} \rangle$) onLawserCount ($V_{41} \rangle$)	OLS 0.106 (± 0.004) 0.175 (± 0.004) 0.106 (± 0.004) 0.147 (± 0.004) 0.106 (± 0.004) 0.162 (± 0.003) 0.106 (± 0.004) 0.106 (± 0.004)	IV 0.414 (± 0.009 0.591 (± 0.009 0.399 (± 0.007 0.459 (± 0.006 0.406 (± 0.007 0.481 (± 0.066 0.266 (± 0.007 0.349 (± 0.007 0.349 (± 0.007)	X = Answere OLS 0.081 (± 0.002 0.011 (± 0.002 0.016 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002 0.031 (± 0.002	$ \begin{aligned} & \text{rSilverCount} \langle V_{3,i} \\ \hline V \\ & 0.139 (\pm 0.00; \\ 0.0196 (\pm 0.00; \\ 0.0196 (\pm 0.00; \\ 0.0145 (\pm 0.00; \\ 0.0165 (\pm 0.00; \\ 0.0170 (\pm 0.00; \\ 0.0099 (\pm 0.00; \\ 0.0099 (\pm 0.00; \\ 0.0099 (\pm 0.00; \\ 0.0199 (\pm 0.00; \\ 0.0199 (\pm 0.00; \\ 0.0124 (\pm 0.00; \\ 0.0148 (\pm 0.00; \\ 0.0148$	$\begin{tabular}{ c c c c c }\hline \hline OLS \\\hline \hline OLS \\\hline $0.082 (\pm 0.002)$ \\\hline $0.123 (\pm 0.001)$ \\\hline $0.082 (\pm 0.002)$ \\\hline $0.081 (\pm 0.001)$ \\\hline $0.081 (\pm 0.001)$ \\\hline $0.082 (\pm 0.002)$ \\\hline $0.081 (\pm 0.001)$ \\\hline $0.082 (\pm 0.002)$ \\\hline $0.015 (\pm 0.002)$ $	IV 0.097 (± 0.00 0.137 (± 0.00 0.123 (± 0.00 0.142 (± 0.00 0.117 (± 0.00 0.119 (± 0.00 0.082 (± 0.00 0.082 (± 0.00

Result

Quantifying social influence and Position Bias

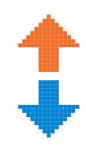
Causal Effect of Initial Vote: OLS assigns high weights to initial votes, 1.8–2.3xof IV weights (based on initial 5% votes)

Causal Effect of Initial Position: IV assigns high weights to initial position, at times 1.9xof OLS weights (based on initial 5%votes).

Effect of Bias Formation Period: increasing the bias formation period T leads to a decrease in causal effects for both initial votes and position

Table 8. The causal effects (IV estimates) of initial votes and position on subsequent votes in ENGLISH, SUPERUSER and MATH. All results presented in this table are statistically significant—validated via two-tailed t-tests—with p < 0.001. The results suggest that OLS and IV differ a lot in quantifying the effects of initial votes and position. Notably, *OLS underestimates reputation bias and overestimates social influence bias significantly*.

		Y = AnswerScore	reT+ $\langle V_{21} \rangle$, Z_1 = An	swerTimeliness $\langle V \rangle$	$ _{17}\rangle$, Z_2 = AnswerOrder $\langle V_{18}\rangle$	
		$X_1 = $ Answer	ScoreT- $\langle V_{20} \rangle$	$X_2 = \text{AnswerPositionT-} \left< V_{23} \right>$		
Site	Т	OLS	IV	OLS	IV	
English	$T_{0.05}$	0.803 (± 0.007)	0.442 (± 0.087)	0.215 (± 0.014)	0.401 (± 0.037)	
	$T_{0.10}$	0.821 (± 0.006)	0.403 (± 0.080)	0.205 (± 0.012)	0.337 (± 0.030)	
	$T_{0.15}$	$0.819 (\pm 0.005)$	0.385 (± 0.073)	$0.184 (\pm 0.010)$	$0.300 (\pm 0.025)$	
	$T_{0.20}$	$0.791(\pm 0.005)$	0.354 (± 0.067)	0.161 (± 0.009)	0.270 (± 0.022)	
	$T_{0.25}$	$0.752 (\pm 0.004)$	0.323 (± 0.061)	0.126 (± 0.008)	0.230 (± 0.018)	
	$T_{0.30}$	0.699 (± 0.004)	0.289 (± 0.057)	$0.100 (\pm 0.008)$	0.204 (± 0.016)	
Math	$T_{0.05}$	0.802 (± 0.003)	0.359 (± 0.037)	0.470 (± 0.007)	0.483 (± 0.010)	
	$T_{0.10}$	$0.880 (\pm 0.003)$	0.355 (± 0.036)	$0.446 (\pm 0.005)$	$0.445 (\pm 0.009)$	
	$T_{0.15}$	0.920 (± 0.003)	0.352 (± 0.035)	0.380 (± 0.005)	0.399 (± 0.008)	
	$T_{0.20}$	$0.921 (\pm 0.003)$	0.342 (± 0.034)	0.339 (± 0.004)	0.373 (± 0.007)	
	$T_{0.25}$	$0.885 (\pm 0.002)$	0.331 (± 0.034)	$0.284 (\pm 0.004)$	0.343 (± 0.007)	
	$T_{0.30}$	0.833 (± 0.002)	0.324 (± 0.033)	0.240 (± 0.003)	0.319 (± 0.006)	
Superuser	$T_{0.05}$	1.814 (± 0.010)	0.800 (± 0.122)	0.842 (± 0.025)	1.209 (± 0.058)	
	$T_{0.10}$	$1.939 (\pm 0.008)$	0.742 (± 0.108)	0.784 (± 0.021)	1.018 (± 0.045)	
	$T_{0.15}$	$1.983 (\pm 0.007)$	$0.689 (\pm 0.097)$	$0.705 (\pm 0.017)$	0.899 (± 0.037)	
	$T_{0.20}$	1.888 (± 0.005)	0.633 (± 0.087)	0.594 (± 0.014)	0.793 (± 0.030)	
	$T_{0.25}$	1.633 (± 0.004)	0.583 (± 0.076)	0.463 (± 0.012)	0.712 (± 0.025)	
	$T_{0.30}$	1.477 (± 0.003)	$0.526 (\pm 0.067)$	$0.363 (\pm 0.009)$	0.630 (± 0.021)	


Implication for Online Voting Behavior

- How Community Type Affects Voting.
- On Social Prestige of Badges.

Implications for User Interface Design

- Conceal Impression Signals.
- Delay the Votes.
- Randomize Presentation Order.

Informing Policy Design

- De-biasing Votes.
- Community Dependent Policy Design.

Strength & Limitation

Strength:

- Flow is clear
- Detail explanation
- Clear reasoning
- Complete Coverage of Related Work
- Easy to understand

Limitation:

- "Inflexible" Assumptions
 - \circ \quad All voters arrive observe the same state
- External influence
 - Twitter Promotion, etc.
- Untestifiable assumptions
 - exclusion restriction
 - marginal exchangeability

[1]. David Card. 1999. The causal effect of education on earnings. In Handbook of Labor Economics. Vol. 3. Elsevier,1801–1863.

[2]. Ruben Sipos, Arpita Ghosh, and Thorsten Joachims. 2014. Was this review helpful to you?: it depends! context and voting patterns in online content. InProceedings of the 23rd International Conference on World Wide Web (WWW).ACM, 337–348.

[3]. Andrés Abeliuk, Gerardo Berbeglia, Pascal Van Hentenryck, Tad Hogg, and Kristina Lerman. 2017. Taming the unpredictability of cultural markets with social influence. InProceedings of the 26th International Conference on World Wide Web (WWW). ACM, 745–754.

[4]. Kristina Lerman and Tad Hogg. 2014. Leveraging position bias to improve peer recommendation.PLOS One, 9, 6,e98914.

[5]. Greg Stoddard. 2015. Popularity dynamics and intrinsic quality in reddit and hacker news. In Proceedings of the Ninth International AAAI Conference on Web and Social Media (ICWSM), 416–425.
[6]. Keith Burghardt, Emanuel F Alsina, Michelle Girvan, William Rand, and Kristina Lerman. 2017. The myopia of crowds: cognitive load and collective evaluation of answers on stack exchange. PLOS One, 12, 3, e0173610.

[7]. Jean-Samuel Beuscart and Thomas Couronné. 2009. The distribution of online reputation: audience and influence of musicians on myspace. In Proceedings of the Third International AAAI Conference on Weblogs and Social Media (ICWSM).