
HULA: Scalable Load Balancing Using
Programmable Data Planes

Naga Katta*, Mukesh Hira†, Changhoon Kim‡, Anirudh Sivaraman+, Jennifer Rexford*

*Princeton University, †VMware, ‡Barefoot Networks, +MIT CSAIL
{nkatta, jrex}@cs.princeton.edu, mhira@vmware.com, chang@barefootnetworks.com, anirudh@csail.mit.edu

ABSTRACT

Datacenter networks employ multi-rooted topologies (e.g., Leaf-
Spine, Fat-Tree) to provide large bisection bandwidth. These topolo-
gies use a large degree of multipathing, and need a data-plane load-
balancing mechanism to effectively utilize their bisection band-
width. The canonical load-balancing mechanism is equal-cost multi-
path routing (ECMP), which spreads traffic uniformly across mul-
tiple paths. Motivated by ECMP’s shortcomings, congestion-aware
load-balancing techniques such as CONGA have been developed.
These techniques have two limitations. First, because switch mem-
ory is limited, they can only maintain a small amount of congestion-
tracking state at the edge switches, and do not scale to large topolo-
gies. Second, because they are implemented in custom hardware,
they cannot be modified in the field.

This paper presents HULA, a data-plane load-balancing algo-
rithm that overcomes both limitations. First, instead of having
the leaf switches track congestion on all paths to a destination,
each HULA switch tracks congestion for the best path to a destina-
tion through a neighboring switch . Second, we design HULA for
emerging programmable switches and program it in P4 to demon-
strate that HULA could be run on such programmable chipsets,
without requiring custom hardware. We evaluate HULA exten-
sively in simulation, showing that it outperforms a scalable exten-
sion to CONGA in average flow completion time (1.6× at 50%
load, 3× at 90% load).

CCS Concepts

•Networks→ Programmable networks;

Keywords

In-Network Load Balancing; Programmable Switches; Network
Congestion; Scalability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSR’16, March 14–15, 2016, Santa Clara, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4211-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2890955.2890968

1 Introduction

Data-center networks today have multi-rooted topologies (Fat-Tree,
Leaf-Spine) to provide large bisection bandwidth. These topologies
are characterized by a large degree of multipathing, where there are
several routes between any two endpoints. Effectively balancing
traffic load across multiple paths in the data plane is critical to fully
utilizing the available bisection bandwith. Load balancing also pro-
vides the abstraction of a single large output-queued switch for the
entire network [1–3], which in turn simplifies bandwidth allocation
across tenants [4, 5], flows [6], or groups of flows [7].

The most commonly used data-plane load-balancing technique
is equal-cost multi-path routing (ECMP), which spreads traffic by
assigning each flow to one of several paths at random. However,
ECMP suffers from degraded performance [8–12] if two long-running
flows are assigned to the same path. ECMP also doesn’t react well
to link failures and leaves the network underutilized or congested in
asymmetric topologies. CONGA [13] is a recent data-plane load-
balancing technique that overcomes ECMP’s limitations by using
link utilization information to balance load across paths. Unlike
prior work such as Hedera [8], SWAN [14], and B4 [15], which use
a central controller to balance load every few minutes, CONGA is
more responsive because it operates in the data plane, permitting it
to make load-balancing decisions every few microseconds.

This responsiveness, however, comes at a significant implemen-
tation cost. First, CONGA is implemented in custom silicon on a
switching chip, requiring several months of hardware design and
verification effort. Consequently, once implemented, the CONGA
algorithm cannot be modified. Second, memory on a switching
chip is at a premium, implying that CONGA’s technique of main-
taining per-path congestion state at the leaf switches limits its us-
age to topologies with a small number of paths. This hampers
CONGA’s scalability and as such, it is designed only for two-tier
Leaf-Spine topologies.

This paper presents HULA (Hop-by-hop Utilization-aware Load
balancing Architecture), a data-plane load-balancing algorithm that
addresses both issues.

First, HULA is more scalable relative to CONGA in two ways.
One, each HULA switch only picks the next hop, in contrast to
CONGA’s leaf switches that determine the entire path, obviating
the need to maintain forwarding state for a large number of tunnels
(one for each path). Two, because HULA switches only choose the
best next hop along what is globally the instantaneous best path to a
destination, HULA switches only need to maintain congestion state
for the best next hop per destination, not all paths to a destination.

Second, HULA is specifically designed for a programmable switch
architecture such as the RMT [16], FlexPipe [17], or XPliant [18]

1

http://dx.doi.org/10.1145/2890955.2890968

architectures. To illustrate this, we prototype HULA in the re-
cently proposed P4 language [19] that explicitly targets such pro-
grammable data planes. This allows the HULA algorithm to be
inspected and modified as desired by the network operator, without
the rigidity of a silicon implementation.

Concretely, HULA uses special probes (separate from the data
packets) to gather global link utilization information. These probes
travel periodically throughout the network and cover all desired
paths for load balancing. This information is summarized and stored
at each switch as a table that gives the best next hop towards any
destination. Subsequently, each switch updates the HULA probe
with its view of the best downstream path (where the best path is
the one that minimizes the maximum utilization of all links along
a path) and sends it to other upstream switches. This leads to the
dissemination of best path information in the entire network similar
to a distance vector protocol. In order to avoid packet reordering,
HULA load balances at the granularity of flowlets [11]— bursts of
packets separated by a significant time interval.

To compare HULA with other load-balancing algorithms, we im-
plemented HULA in the network simulator ns-2 [20]. We find that
HULA is effective in reducing switch state and in obtaining bet-
ter flow-completion times compared to alternative schemes on a 3-
tier topology. We also introduce asymmetry by bringing down one
of the core links and study how HULA adapts to these changes.
Our experiments show that HULA performs better than compara-
tive schemes in both symmetric and asymmetric topologies.

In summary, we make the following two key contributions.

• We propose HULA, a scalable data-plane load-balancing scheme.
To our knowledge, HULA is the first load balancing scheme
to be explicitly designed for a programmable switch data
plane.
• We implement HULA in the ns-2 packet-level simulator and

evaluate it on a Fat-Tree topology [21] to show that it delivers
between 1.6 to 3.3 times better flow completion times than
state-of-the-art congestion-aware load balancing schemes at
high network load.

2 Design Challenges for HULA

Large datacenter networks [22] are designed as multi-tier Fat-Tree
topologies. These topologies typically consist of 2-tier Leaf-Spine
pods connected by additional tiers of spines. These additional lay-
ers connecting the pods can be arbitrarily deep depending on the
datacenter bandwidth capacity needed. Load balancing in such
large datacenter topologies poses scalability challenges because the
explosion of the number of paths between any pair of Top of Rack
switches (ToRs) causes three important challenges.

Large path utilization matrix: Table 1 shows the number of
paths between any pair of ToRs as the radix of a Fat-Tree topology
increases. If a sender ToR needs to track link utilization on all de-
sired paths1 to a destination ToR in a Fat-Tree topology with radix
k, then it needs to track k2 paths for each destination ToR. If there
are m such leaf ToRs, then it needs to keep track of m∗ k2 entries ,
which can be prohibitively large. For example, CONGA [13] main-
tains around 48K bits of memory (512 ToRs, 16 uplinks, and 3 bits
for utilization) to store the path-utilization matrix. In a topology
with 10K ToRs and with 10K paths between each pair, the ASIC
would require 600M bits of memory, which is prohibitively expen-
sive (by comparison the packet data buffer of a shallow-buffered
1A path’s utilization is the maximum utilization across all its links.

Topology # Paths between
pair of ToRs

Max forwarding
entries per switch

Fat-Tree (8) 16 944
Fat-Tree (16) 64 15,808
Fat-Tree (32) 256 257,792
Fat-Tree (64) 1024 4,160,512

Table 1: Number of paths and forwarding entries in 3-tier Fat-Tree
topologies [24]
switch such as the Broadcom Trident [23] is 96 Mbits). For the
ASIC to be viable and scale with large topologies, it is impera-
tive to reduce the amount of congestion-tracking state stored in any
switch.

Large forwarding state: In addition to maintaining per-path
utilization at each ToR, existing approaches also need to maintain
large forwarding tables in each switch to support a leaf-to-leaf tun-
nel for each path that it needs to route packets over. In particular,
a Fat-Tree topology with radix 64 supports a total of 70K ToRs
and requires 4 million entries [24] per switch as shown in Table 1.
The situation is equally bad [24] in other topologies like VL2 [25]
and BCube [26]. To remedy this, recent techniques like Xpath [24]
have been designed to reduce the number of entries using compres-
sion techniques that exploit symmetry in the network. However,
since these techniques rely on the control plane to update and com-
press the forwarding entries, they are slow to react to failures and
topology asymmetry, which are common in large topologies.

Discovering uncongested paths: If the number of paths is
large, when new flows enter, it takes time for reactive load bal-
ancing schemes to discover an uncongested path especially when
the network utilization is high. This increases the flow completion
times of short flows because these flows finish before the load bal-
ancer can find an uncongested path. Thus, it is useful to have the
utilization information conveyed to the sender in a proactive man-
ner, before a short flow even commences.

Programmability: In addition to these challenges, implement-
ing data-plane load-balancing schemes in hardware can be a tedious
process that involves significant design and verification effort. The
end product is a one-size-fits-all piece of hardware that network
operators have to deploy without the ability to modify the load bal-
ancer. The operator has to wait for the next product cycle (which
can be a few years) if she wants a modification or an additional
feature in the load balancer. An example of such a modification
is to load balance based on queue occupancy as in backpressure
routing [27, 28] as opposed to link utilization.

The recent rise of programmable packet-processing pipelines [16,
17] provides an opportunity to rethink this design process. These
data-plane architectures can be configured through a common pro-
gramming language like P4 [19], which allow operators to program
stateful data-plane packet processing at line rate. Once a load bal-
ancing scheme is written in P4, the operator can modify the pro-
gram so that it fits her deployment scenario and then compile it
to the underlying hardware. In the context of programmable data
planes, the load-balancing scheme must be simple enough so that
it can be compiled to the instruction set provided by a specific pro-
grammable switch.

3 HULA Overview: Scalable, Proactive, Adap-
tive, and Programmable

HULA combines distributed network routing with congestion-aware
load balancing thus making it tunnel-free, scalable, and adaptive.

2

Similar to how traditional distance-vector routing uses periodic mes-
sages between routers to update their routing tables, HULA uses
periodic probes that proactively update the network switches with
the best path to any given leaf ToR. However, these probes are pro-
cessed at line rate entirely in the data plane unlike how routers pro-
cess control packets. This is done frequently enough to reflect the
instantaneous global congestion in the network so that the switches
make timely and effective forwarding decisions for volatile dat-
acenter traffic. Also, unlike traditional routing, to achieve fine-
grained load balancing, switches split flows into flowlets [11] when-
ever an inter-packet gap of an RTT (network round trip time) is seen
within a flow. This minimizes receive-side packet-reordering when
a HULA switch sends different flowlets on different paths that were
deemed best at the time of their arrival respectively. HULA’s ba-
sic mechanism of probe-informed forwarding and flowlet switching
enables several desirable features, which we list below.

Maintaining compact path utilization: Instead of maintaining
path utilization for all paths to a destination ToR, a HULA switch
only maintains a table that maps the destination ToR to the best
next hop as measured by path utilization. Upon receiving multiple
probes coming from different paths to a destination ToR, a switch
picks the hop that saw the probe with the minimum path utiliza-
tion. Subsequently it sends its view of the best path to a ToR to its
neighbors. Thus, even if there are multiple paths to a ToR, HULA
does not need to maintain per-path utilization information for each
ToR. This reduces the utilization state on any switch to the order
of the number of ToRs (as opposed to the number of ToRs times
the number of paths to these ToRs from the switch), effectively re-
moving the pressure of path explosion on switch memory. Thus,
HULA distributes the necessary global congestion information to
enable scalable local routing.

Scalable and adaptive routing: HULA’s best hop table elimi-
nates the need for separate source routing in order to exploit multi-
ple network paths. This is because in HULA, unlike other source-
routing schemes such as CONGA [13] and XPath [24], the sender
ToR isn’t responsible for selecting optimal paths for data packets.
Each switch independently chooses the best next hop to the desti-
nation. This has the additional advantage that switches do not need
separate forwarding-table entries to track tunnels that are neces-
sary for source-routing schemes [24]. This switch memory could
be instead be used for supporting more ToRs in the HULA best hop
table. Since the best hop table is updated by probes frequently at
data-plane speeds, the packet forwarding in HULA quickly adapts
to datacenter dynamics, such as flow arrivals and departures.

Automatic discovery of failures: HULA relies on the peri-
odic arrival of probes as a keep-alive heartbeat from its neighboring
switches. If a switch does not receive a probe from a neighboring
switch for more than a certain threshold of time, then it ages the
network utilization for that hop, making sure that hop is not chosen
as the best hop for any destination ToR. Since the switch will pass
this information to the upstream switches, the information about
the broken path will reach all the relevant switches within an RTT.
Similarly, if the failed link recovers, the next time a probe is re-
ceived on the link, the hop will become a best hop candidate for
the reachable destinations. This makes for a very fast adaptive for-
warding technique that is robust to network topology changes and
an attractive alternative to slow routing schemes orchestrated by the
control plane.

Proactive path discovery: In HULA, probes are sent separately
from data packets instead of piggybacking on them. This lets con-
gestion information be propagated on paths independent of the flow
of data packets, unlike alternatives such as CONGA. HULA lever-

ages this to send periodic probes on paths that are not currently used
by any switch. This way, switches can instanteously pick an uncon-
gested path on the arrival of a new flowlet without having to first
explore congested paths. In HULA, the switches on the path con-
nected to the bottleneck link are bound to divert the flowlet onto
a less-congested link and hence a less-congested path. This en-
sures short flows quickly get diverted to uncongested paths without
spending too much time on path exploration.

Programmability: Processing a packet in a HULA switch in-
volves switch state updates at line rate in the packet processing
pipeline. In particular, processing a probe involves updating the
best hop table and replicating the probe to neighboring switches.
Processing a data packet involves reading the best hop table and up-
dating a flowlet table if necessary. We demonstrate in section 5 that
these operations can be naturally expressed in terms of reads and
writes to match-action tables and register arrays in programmable
data planes [29].

Topology and transport oblivious: HULA is not designed for
a specific topology. It does not restrict the number of tiers in the
network topology nor does it restrict the number of hops or the
number of paths between any given pair of ToRs. However, as the
topology becomes larger, the probe overhead can also be high and
we discuss ways to minimize this overhead in section 4. Unlike
load-balancing schemes that work best with symmetric topologies,
HULA handles topology asymmetry very effectively as we demon-
strate in section 6. This also makes incremental deployment plau-
sible because HULA can be applied to either a subset of switches
or a subset of the network traffic. HULA is also oblivious to the
end-host application transport layer and hence does not require any
changes to the host TCP stack.

4 HULA Design: Probes and Flowlets

The probes in HULA help proactively disseminate network uti-
lization information to all switches. Probes originate at the leaf
ToRs and switches replicate them as they travel through the net-
work. This replication mechanism is governed by multicast groups
set up once by the control plane. When a probe arrives on an in-
coming port, switches update the best path for flowlets traveling in
the opposite direction. The probes also help discover and adapt to
topology changes. HULA does all this while making sure the probe
overhead is minimal.

In this section, we explain the probe replication mechanism (§4.1),
the logic behind processing probe feedback (§4.2), how the feed-
back is used for flowlet routing (§4.3), how HULA adapts to topol-
ogy changes (§4.4), and finally an estimate of the probe overhead
on the network traffic and ways to minimize it (§4.5).

We assume that the network topology has the notion of upstream
and downstream switches. Most datacenter network topologies
have this notion built in them (with switches laid out in multiple
tiers) and hence the notion can be exploited naturally. If a switch is
in tier i, then the switches directly connected to it in tiers less than
i are its downstream switches and the switches directly connected
to it in tiers greater than i are its upstream switches. For example,
in Figure 1, T 1, T 2 are the downstream switches for A1 and S1, S2
are its upstream switches.

4.1 Origin and Replication of HULA Probes

Every ToR sends HULA probes on all the uplinks that connect it to
the datacenter network. The probes can be generated by either the
ToR CPU, the switch data plane (if the hardware supports a packet

3

T1

A1

S1

A4

T4 T3

 S3 S2 S4

T2

Figure 1: HULA probe replication logic

generator), or a server attached to the ToR. These probes are sent
once every Tp seconds, which is referred to as the probe frequency
hereafter in this paper. For example, in Figure 1, probes are sent by
ToR T 1, one on each of the uplinks connecting it to the aggregate
switch A1.

Once the probes reach A1, it will forward the probe to all the
other downstream ToRs (T 2) and all the upstream spines (S1, S2).
The spine S1 replicates the received probe onto all the other down-
stream aggregate switches. However, when the switch A4 receives
a probe from S3, it replicates it to all its downstream ToRs (but not
to other upstream spines — S4). This makes sure that all paths in
the network are covered by the probes. This also makes sure that
no probe loops forever.2 Once a probe reaches another ToR, it ends
its journey.

The control plane sets up multicast group tables in the data plane
to enable the replication of probes. This is a one-time operation and
does not have to deal with link failures and recoveries. This makes
it easy to incrementally add switches to an existing set of multi-
cast groups for replication. When a new switch is connected to the
network, the control plane only needs to add the switch port to mul-
ticast groups on the adjacent upstream and downstream switches, in
addition to setting up the multicast mechanism on the new switch
itself.

4.2 Processing Probes to Update Best Path
A HULA probe packet is a minimum-sized packet of 64 bytes that
contains a HULA header in addition to the normal Ethernet and IP
headers. The HULA header has two fields:

• torID (24 bits): The leaf ToR at which the probe originated.
This is the destination ToR for which the probe is carrying
downstream path utilization in the opposite direction.

• minUtil (8 bits): The utilization of the best path if the
packet were to travel in the opposite direction of the probe.

Link Utilization: Every switch maintains a link utilization esti-
mator per switch port. This is based on an exponential moving av-
erage generator (EWMA) of the form U = D+U ∗ (1− ∆t

τ
) where

U is the link utilization estimator and D is the size of the outgoing
packet that triggered the update for the estimator. ∆t is the amount
of time passed since the last update to the estimator and τ is a time
constant that is at least twice the HULA probe frequency. In steady
2Where the notion of upstream/downstream switches is ambigu-
ous [30], mechanisms like TTL expiry can also be leveraged to
make sure HULA probes do not loop forever.

S1	

S2	

S3	

S4	

ToR	10	

Dst_ip	 Best	hop	 Path	u/l	

ToR	10	 1	 50%	

ToR	1	 2	 10%	

…	 …	

Flowlet_id	 Next	hop	

45	 1	

234	 2	

…	 …	

ToR		ID	=	10	
Max_u6l	=	50%	

ToR	1	

Flowlet table

Path Util table

Data

Probe

Figure 2: HULA probe processing logic

state, this estimator is equal to C× τ where C is the outgoing link
bandwidth. As discussed in section 5, this is a low pass filter sim-
ilar to the DRE estimator used in CONGA [13]. We assume that a
probe can access the TX (packets sent) utilization of the port that it
enters.

A switch uses the information on the probe header and the lo-
cal link utilization to update switch state in the data plane before
replicating the probe to other switches. Every switch maintains a
best path utilization table (pathUtil) and a best hop table bestHop
as shown in Figure 2. Both the tables are indexed by a ToR ID.
An entry in the pathUtil table gives the utilization of the best path
from the switch to a destination ToR. An entry in the bestHop ta-
ble is the next hop that has the minimum path utilization for the
ToR in the pathUtil table. When a probe with the tuple (torID,
probeUtil) enters a switch on interface i, the switch calculates the
min-max path utilization as follows:

• The switch calculates the maximum of probeUtil and the TX
link utilization of port i and assigns it to maxUtil.

• The switch then calculates the minimum of this maxUtil and
the pathUtil table entry indexed by torID.

• If maxUtil is the minimum, then it updates the pathUtil
entry with the newly determined best path utilization value
maxUtil and also updates the bestHop entry for torID to i.

• The probe header is updated with the latest pathUtil entry
for torID.

• The updated probe is then sent to the multicast table that
replicates the probe to the appropriate neighboring switches
as described earlier.

The above procedure carries out a distance-vector-like propaga-
tion of best path utilization information along all the paths destined
to a particular ToR (from which the probes originate). The proce-
dure involves each switch updating its local state and then propa-
gating a summary of the update to the neighboring switches. This
way any switch only knows the utilization of the best path that can
be reached via a best next hop and does not need to keep track of
the utilization of all the paths. The probe propagation procedure
ensures that if the best path changes downstream, then that infor-
mation will be propagated to all the relevant upstream switches on
that path.

Maintaining best hop at line rate: Ideally, we would want to
maintain a path utilization matrix that is indexed by both the ToR
ID and a next hop. This way, the best next hop for a destination

4

ToR can be calculated by taking the minimum of all the next hop
utilizations from this matrix. However, programmable data planes
cannot calculate the minimum or maximum over an array of entries
at line rate [31]. For this reason, instead of calculating the mini-
mum over all hops, we maintain a current best hop and replace it in
place when a better probe update is received.

This could lead to transient sub-optimal choices for the best hop
entries – since HULA only tracks the current best path utilization,
which could potentially go up in the future until a utilization update
for the current best hop is received, HULA has no way of tracking
other next hop alternatives with lower utilization that were also re-
ceived within this window of time. However, we observe that this
suboptimal choice can only be transient and will eventually con-
verge to the best choice within a few windows of probe circulation.
This approximation also reduces the amount of state maintained
per destination from the order of number of neighboring hops to
just one hop entry.

4.3 Flowlet Forwarding on Best Paths

HULA load balances at the granularity of flowlets in order to avoid
packet reordering in TCP. As discussed earlier, a flowlet is detected
by a switch whenever the inter-packet gap (time interval between
the arrival of two consecutive packets) in a flow is greater than a
flowlet threshold Tf . All subsequent packets, until a similar inter-
packet gap is detected, are considered part of a new flowlet. The
idea here is that the time gap between consecutive flowlets will ab-
sorb any delays caused by congested paths when the flowlets are
sent on different paths. This will ensure that the flowlets will still
arrive in order at the receiver and thereby not cause packet reorder-
ing. Typically, Tf is of the order of the network round trip time
(RTT). In datacenter networks, Tf is typically of the order of a few
hundreds of microseconds but could be larger in topologies with
many hops.

HULA uses a flowlet hash table to record two pieces of informa-
tion:the last time a packet was seen for the flowlet, and the best hop
assigned to that flowlet. When the first packet for a flow arrives at
a switch, it computes the hash of the flow’s 5-tuple and creates an
entry in the flowlet table indexed by the hash. In order to choose
the best next hop for this flowlet, the switch looks up the bestHop
table for the destination ToR of the packet. This best hop is stored
in the flowlet table and will be used for all subsequent packets of
the flowlet. For example, when the second packet of a flowlet ar-
rives, the switch looks up the flowlet entry for the flow and checks
that the inter-packet gap is below Tf . If that is the case, it will use
the best hop recorded in the flowlet table. Otherwise, a new flowlet
is detected and it replaces the old flowlet entry with the current best
hop, which will be used for forwarding the new flowlet.

Flowlet detection and path selection happens at every hop in the
network. Every switch selects only the best next hop for a flowlet.
This way, HULA avoids an explicit source routing mechanism for
forwarding of packets. The only forwarding state required is al-
ready part of the bestHop table, which itself is periodically updated
to reflect congestion in the entire network.

Bootstrapping forwarding: To begin with, we assume that the
path utilization is infinity (a large number in practice) on all paths
to all ToRs . This gets corrected once the initial set of probes are
processed by the switch. This means that if there is no probe from a
certain ToR on a certain hop, then HULA will always choose a hop
on which it actually received a probe. Thereafter, once the probes
begin circulating in the network before sending any data packets,
valid routes are automatically discovered.

4.4 Data-Plane Adaptation to Failures

In addition to learning the best forwarding routes from the probes,
HULA also learns about link failures from the absence of probes.
In particular, the data plane implements an aging mechanism for the
entries in the bestHop table. HULA tracks the last time bestHop
was updated using an updateTime table. If a bestHop entry for a
destination ToR is not refreshed within the last Tf ail (a threshold
for detecting failures), then any other probe that carries informa-
tion about this ToR (from a different hop) will simply replace the
bestHop and pathUtil entries for the ToR. When this information
about the change in the best path utilization is propagated further up
the path, the switches may decide to choose a completely disjoint
path if necessary to avoid the bottleneck link.

This way, HULA does not need to rely on the control plane
to detect and adapt to failures. Instead HULA’s failure-recovery
mechanism is much faster than control-plane-orchestrated recov-
ery, and happens at network RTT timescales. Also, note that this
mechanism is better than having pre-coded backup routes because
the flowlets immediately get forwarded on the next best alterna-
tive path as opposed to congestion-oblivious pre-installed backup
paths. This in turn helps avoid sending flowlets on failed network
paths and results in better network utilization and flow-completion
times.

4.5 Probe Overhead and Optimization

The ToRs in the network need to send HULA probes frequently
enough so that the network receives fine-grained information about
global congestion state. However, the frequency should be low
enough so that the network is not overwhelmed by probe traffic
alone.

Setting probe frequency: We observe that even though network
feedback is received on every packet, CONGA [13] makes flowlet
routing decisions with probe feedback that is stale by an RTT be-
cause it takes a round trip time for the (receiver-reflected) feedback
to reach the sender. In addition to this, the network switches only
use the congestion information to make load balancing decisions
when a new flowlet arrives at the switch. For a flow scheduled
between any pair of ToRs, the best path information between these
ToRs is used only when a new flowlet is seen in the flow, which hap-
pens at most once every Tf seconds. While it is true that flowlets
for different flows arrive at different times, any flowlet routing de-
cision is still made with probe feedback that is stale by at least an
RTT. Thus, a reasonable sweet spot is to set the probe frequency to
the order of the network RTT. In this case, the HULA probe infor-
mation will be stale by at most a few RTTs and will still be useful
for making quick decisions.

Optimization for probe replication: HULA also optimizes the
number of probes sent from any switch A to an adjacent switch B.
In the naive probe replication model, A sends a probe to neighbor B
whenever it receives a probe on another incoming interface. So in a
time window of length Tp (probe frequency), there can be multiple
probes from A to B carrying the best path utilization information
for a given ToR T , if there are multiple paths from T to A. HULA
suppresses this redundancy to make sure that for any given ToR
T , only one probe is sent by A to B within a time window of Tp.
HULA maintains a lastSent table indexed by ToR IDs. A replicates
a probe update for a ToR T to B only if the last probe for T was
sent more than Tp seconds ago. Note that this operation is similar
to the calculation of a flowlet gap and can be done in constant time

5

header_type hula_header {
 fields{
 dst_tor : 24;
 path_util : 8;

 }
}

header_type metadata{
fields{

 nxt_hop : 8;
self_id : 32;

dst_tor : 32;
}

}

control ingress {
apply(get_dst_tor)
apply(hula_logic)

if(ipv4.protocol == PROTO_HULA){
apply(hula_mcast);

}
else if(metadata.dst_tor

=== metadata.self_id) {
apply(send_to_host);

}

}	
	
	
	
	

(a) HULA header format and control flow

1  action hula_logic{
2  if(ipv4_header.protocol == IP_PROTOCOLS_HULA){

3  /*HULA Probe Processing
4  if(hula_hdr.path_util < tx_util)
5  hula_hdr.path_util = tx_util;
6  if(hula_hdr.path_util < min_path_util[hula_hdr.dst_tor] ||
7  curr_time - update_time[dst_tor] > KEEP_ALIVE_THRESH)
8  {

9  min_path_util[dst_tor] = hula_hdr.path_util;
10  best_hop[dst_tor] = metadata.in_port;
11  update_time[dst_tor] = curr_time;
12  }
13  hula_header.path_util = min_path_util[hula_hdr.dst_tor];
14  }

15  else { /*Flowlet routing of data */
16  if(curr_time – flowlet_time[flow_hash]> FLOWLET_TOUT) {
17  flowlet_hop[flow_hash] = best_hop[metadata.dst_tor];
18  }
19  metadata.nxt_hop = flowlet_hop[flow_hash];
20  flowlet_time[flow_hash] = curr_time;
21  }

22  }

R

R

min_path_util

update_time

best_hop

Flowlet_hop

W	

W	

W	

Flowlet_time

R

W

W

R

R	

(b) HULA stateful packet process in P4

Figure 3: Various components of the P4 program for HULA

in the data plane.3 Thus, by making sure that on any link, only one
probe is sent per destination ToR within this time window, the total
number of probes that are sent on any link is proportional to the
number of ToRs in the network alone and is not dependent on the
number of possible paths the probes may take.

Overhead: Given the above parameter setting for the probe
frequency and the optimization for probe replication, the probe
overhead on any given network link is probeSize∗numToRs∗100

probeFreq∗linkBandwidth where
probeSize is 64 bytes, numTors is the total number of leaf ToRs
supported in the network and probeFreq is the HULA probe fre-
quency. Therefore, in a network with 40G links supporting a total
of 1000 ToRs, with probe frequency of 1ms, the overhead comes to
be 1.28%.

5 Programming HULA in P4

5.1 Introduction to P4

P4 is a packet-processing language designed for programmable data-
plane architectures like RMT [16], Intel Flexpipe [17], and Cav-
ium Xpliant [18]. The language is based on an abstract forwarding
model called protocol-independent switch archtecture (PISA) [32].
In this model, the switch consists of a programmable parser that
parses packets from bits on the wire. Then the packets enter an
ingress pipeline containing a series of match-action tables that mod-
ify packets if they match on specific packet header fields. The pack-
ets are then switched to the output ports. Subsequently, the packets
are processed by another sequence of match-action tables in the

3 If a probe arrives with the latest best path (after this bit is set), we
are still assured that this best path information will be replicated
(and propagated) in the next window assuming it still remains the
best path.

egress pipeline before they are serialized into bytes and transmit-
ted.

A P4 program specifies the the protocol header format, a parse
graph for the various headers, the definitions of tables with their
match and action formats and finally the control flow that defines
the order in which these tables process packets. This program de-
fines the configuration of the hardware at compile time. At run-
time, the tables are populated with entries by the control plane and
network packets are processed using these rules. The programmer
writes P4 programs in the syntax described by the P4 specifica-
tion [29].

Programming HULA in P4 allows a network operator to compile
HULA to any P4 supported hardware target. Additionally, network
operators have the flexibility to modify and recompile their HULA
P4 program as desired (changing parameters and the core HULA
logic) without having to invest in new hardware. The wide industry
interest in P4 [33] suggests that many switch vendors will soon
have P4 compilers from P4 to their switch hardware, permitting
operators to program HULA on such switches in the future.

5.2 HULA in P4

We describe the HULA packet processing pipeline using version
1.1 of P4 [29]. We make two minor modifications to the specifica-
tion for the purpose of programming HULA.

1. We assume that the link utilization for any output port is
available in the ingress pipeline. This link utilization can be
computed using a low-pass filter applied to packets leaving a
particular output port, similar to the Discounting Rate Esti-
mator (DRE) used by CONGA [13]. At the language level, a
link utilization object is syntactically similar to counter/me-
ter objects in P4.

6

2. Based on recent proposals [34] to modify P4, we assume sup-
port for the conditional operator within P4 actions.4

We now describe various components of the HULA P4 program
in Figure 3. The P4 program has two main components: one,
the HULA probe header format and parser specification, and two,
packet control flow, which describes the main HULA logic.

Header format and parsing: We define the P4 header for-
mat for the probe packet and the parser state machine as shown
in Figure 3(a). The header consists of two fields and is of size 4
bytes. The parser parses the HULA header immediately after the
IPv4 header based on the special HULA protocol number in the
IPv4 protocol field. Thereafter, the header fields are accessible in
the pipeline through the header instance. The metadata header is
used to access packet fields that have special meaning to a switch
pipeline (e.g., the next hop) and local variables to be carried across
multiple tables (e.g, a data packet’s destination ToR or the current
switch ID).

The control flow in Figure 3(a) shows that the processing pipeline
first finds the ToR that the incoming packet is destined to. This is
done by the get_dst_tor table that matches on the destination
IP address and retrieves the destination ToR ID. Then the packet is
processed by the hula_logic table whose actions are defined in
Figure 3(b). Subsequently, the probe is sent to the hula_mcast
table that matches on the in_port the probe came in and then assigns
the appropriate set of multicast ports for replication.

HULA pipeline logic: Figure 3(b) shows the main HULA table
where a series of actions perform two important pieces of HULA
logic — (i) Processing HULA probes and (ii) Flowlet forwarding
for data packets. We briefly describe how these two are expressed
in P4. At a high level, the hula_logic table reads and writes to
five register data structures shown in Figure 3(b) — path_util,
best_hop, update_time, flowlet_hop and flowlet_-
time. The reads and writes performed by each action are color
coded in the figure. For example, the red colored write tagging line
9 indicates that the action makes a write access to the best_hop
register array.

1. Processing HULA probes: In step 1, the path utilization be-
ing carried by the HULA probe is updated (lines 4-5) with the the
maximum of the local link utilization (tx_util) and the probe
utilization. This gives the path utilization across all the hops includ-
ing the link connecting the switch to its next hop. Subsequently,
the current best path utilization value for the ToR is read from
the min_path_util register into a temporary metadata variable
(line 5).

In the next step, if either the probe utilization is less than the cur-
rent best path utilization (line 6) or if the best hop was not refreshed
in the last failure detection window (line 7), then three updates take
place - (i) The best path utilization is updated with the probe uti-
lization (line 9), (ii) the best hop value is updated with the incoming
interface of the probe (line 10), and (iii) the best hop refresh time
is updated with the current timestamp (line 11). Finally, the probe
utilization itself is updated with the final best hop utilization (line
13). Subsequently the probe is processed by the hula_mcast
match-action table that matches on the probe’s input port and then
assigns the appropriate multicast group for replication.

2. Flowlet Forwarding: If the incoming packet is a data packet
(line 15), first we detect new flowlets by checking if the inter-packet
gap for that flow is above the flowlet threshold (line 16). If that is

4For ease of exposition, we replace conditional operators with
equivalent if-else statements in Figure 3.

the case, then we use the current best hop to reach the destination
ToR (line 17). Subsequently, we populate the next hop metadata
with the final flowlet hop (line 19). Finally, the arrival time of the
packet is noted as the last seen time for the flowlet (line 20).

The benefits of programmability: Writing a HULA program
in P4 gives multiple advantages to a network operator compared
to a dedicated ASIC implementation. The operator could modify
the sizes of various registers according to her workload demands.
For example, she could change the sizes of the best_hop and
flowlet register arrays based on her requirements. More impor-
tantly, she could change the way the algorithm works by modifying
the HULA header to carry and process queue occupancy instead of
link utilization to implement backpressure routing [27, 28].

5.3 Feasibility of P4 Primitives at Line Rate

In the P4 program shown in Figure 3, we require both stateless
(i.e., operations that only read or write packet fields) and stateful
(i.e., operations that may also maniupulate switch state in addition
to packet fields) operations to program HULA’s logic. We briefly
comment on the hardware feasibility of each kind of operation be-
low.

The stateless operations used in the program (like the assignment
operation in line 4) are relatively easy to implement and have been
discussed before [16]. In particular, Table 1 of the RMT paper [16]
lists many stateless operations that are feasible on a programmable
switch architecture with forwarding performance competitive with
the highest-end fixed-function switches.

For determining the feasibility of stateful operations, we use tech-
niques developed in Domino [31], a recent system that allows state-
ful data-plane algorithms such as HULA to be compiled to line-rate
switches. The Domino compiler takes as inputs a data-plane algo-
rithm and a set of atoms, which represent a programmable switch’s
instruction set. Based on the atoms supported by a programmable
switch, Domino determines if a data-plane algorithm can be run on
a line-rate switch. The same paper also proposes atoms that are ex-
pressive enough for a variety of data-plane algorithms, while incur-
ring < 15% estimated chip area overhead. Table 3 of the Domino
paper [31] lists these atoms.

We now discuss how the stateful operations required by each
of HULA’s five state variables min_path_util, best_hop,
update_time, flowlet_hop, and flowlet_time, can be
supported by Domino’s atoms (the atom names used here are from
Table 3 of the Domino paper [31]).

1. Both flowlet_time and update_time track the last
time at which some event happened, and require only a sim-
ply read/write capability to a state variable (the Read/Write
atom).

2. The flowlet_hop variable is conditionally updated when-
ever the flowlet threshold is exceeded. This requires the abil-
ity to predicate a write to a state variable based on some con-
dition (the PRAW atom).

3. The variables min_path_util and best_hop are mutu-
ally dependent on one another: min_path_util (the uti-
lization on the best hop) needs to be updated if a new probe
is received for the current best_hop (the variable track-
ing the best next hop) ; conversely, the best_hop variable
needs to be updated if a probe for another path indicates a
utilization lesser than the current min_path_util. This
mutually dependence requires hardware support for updating

7

a pair of state variables depending on the previous values of
the pair (the Pairs atom).

The most complex of these three atoms (Read/Write, PRAW, and
Pairs) is the Pairs atom. However, even the Pairs atom only incurs
modest estimated chip area overhead based on synthesis results
from a 32 nm standard-cell library. Further, this atom is useful for
other algorithms besides HULA as well (Table 4 of the Domino pa-
per describes several more examples). We conclude based on these
results that it is feasible to implement the instructions required by
HULA without sacrificing the performance of a line-rate switch.

6 Evaluation

In this section, we illustrate the effectiveness of the HULA load
balancer by implementing it in the ns-2 discrete event simulator and
comparing it with the following alternative load balancing schemes:

1. ECMP: Each flow’s next hop is determined by taking a hash
of the flow’s five tuple (src IP, dest IP, src port, dest port,
protocol).

2. CONGA’: CONGA [13] is the closest alternative to HULA
for congestion-aware data-plane load balancing. However,
CONGA is designed specifically for 2-tier Leaf-Spine topolo-
gies. However, according to the authors [35], if CONGA is
to be extended to larger topologies, CONGA should be ap-
plied within each pod and for cross-pod traffic, ECMP should
be applied at the flowlet level. This method involves taking a
hash of the six tuple that includes the flow’s five tuple and the
flowlet ID (which is incremented every time a new flowlet
is detected at a switch). This hash is subsequently used by
all the switches in the network to find the next hop for each
flowlet. We refer to this load balancing scheme as CONGA’
in our evaluation results.

We use our experiments to answer the following questions:

• How does HULA perform in the baseline topology compared
to other schemes?

• How does HULA perform when there is asymmetry in the
network?

• How quickly does HULA adapt to changes in the network
like link failures?

• How robust is HULA to various parameters settings?

Topology: We simulated a 3-tier Fat-Tree topology as shown in
Figure 4, with two spines (S1 and S2) connecting two pods. Each
pod contains two aggregate switches connected to two leaf ToRs
with 40G links. Each ToR is connected to 8 servers with 10G links.
This ensures that the network is not oversubscribed: the 16 servers
in one pod can together use the 160G bandwidth available for traffic
across the two pods. In this topology, even though there are only
two uplinks from any given ToR, there are a total of 8 different
paths available between a pair of ToRs sitting in different pods. To
simulate asymmetry in the baseline symmetric topology, we disable
the 40G link connecting the spine S2 with the aggregate switch A4.

Empirical Workload: We use two realistic workloads to gen-
erate traffic for our experiments - (i) A Web-search workload [36]
and (ii) a data-mining workload [25]. Both of these workloads are

L1

A1 A2

L2

S1 S2

A4

L4

A3

L3

8 servers
per leaf

40Gbps

40Gbps

10Gbps

Link
Failure

Figure 4: Topology used in evaluation

obtained from production datacenters. Figure 5a shows the cumu-
lative distribution of flow sizes seen in these two workloads. Note
that flow sizes in the CDF are in log scale. Both the workloads are
heavy tailed: most flows are small, while a small number of large
flows contribute to a substantial portion of the traffic. For example,
in the data mining workload, 80% of the flows are of size less than
10KB.

We simulate a simple client-server communication model where
each client chooses a server at random and initiates three persistent
TCP connections to the server. The client sends a flow with size
drawn from the empirical CDF of one of the two workloads. The
inter-arrival rate of the flows on a connection is also taken from an
exponential distribution whose mean is tuned to achieve a desired
load on the network. Similar to previous work [6, 13], we look at
the average flow completion time (FCT) as the overall performance
metric so that all flows including the majority of small flows are
given equal consideration. We run each experiment with three ran-
dom seeds and then measure the average of the three runs.

Parameters: In our experimental setting, there are two im-
portant parameters that determine the system behavior. First, the
flowlet inter-packet gap, as is recommended in previous work [11,
13], is set to be of the order of the network RTT so that packet re-
ordering at the receiver is minimized. In our experiments, we used
a flowlet gap of 100 µs . The second parameter is the probe fre-
quency, which (as mentioned in §4.5) is set to few times the RTT
so that it is frequent enough to quickly react to congestion but does
not overwhelm the network. In our experiments, unless stated ex-
plicitly, the probe frequency was set to 200 µs.

6.1 Symmetric 3-tier Fat-Tree Topology

Figure 5 shows the average completion time for all flows as the load
on the network is varied. HULA performs better than ECMP and
CONGA’ for both the workloads at higher loads. At lower loads,
the performance of all three load balancing schemes is nearly the
same because when there is enough bandwidth available in the net-
work, there is a greater tolerance for congestion-oblivious path for-
warding. However, as the network load becomes higher, the flows
have to be carefully assigned to paths such that collisions do not
occur. Given that flow characteristics change frequently, at high
network load, the load balancing scheme has to adapt quickly to
changes in link utilizations throughout the network.

ECMP performs the worst because it performs congestion-oblivious
load balancing at a very coarse granularity. CONGA’ does slightly

8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1e+02 1e+04 1e+06 1e+08

%
 C

D
F

Flow Size in Bytes (Log scale)

Web Search

Data Mining

(a) Empirical traffic distribution used in evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(b) Web-search overall avg FCT

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(c) Data-mining overall avg FCT

Figure 5: Average FCT for the Web-search and data-mining workload on the symmetric topology.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(a) Overall Average FCT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(b) Small Flows (<100KB)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(c) Large Flows (>10MB)

Figure 6: Average FCT for the Web-search workload on the asymmetric topology.

better because it still does congestion-oblivious ECMP (across pods)
but at the granularity of flowlets. In particular, flows sent on con-
gested paths see more inter-flowlet gaps being created due to the de-
lay caused by queue growth. Hence, compared to ECMP, CONGA’
has additional opportunities to find an uncongested path when new
flowlets are hashed. HULA performs the best because of its fine-
grained congestion-aware load balancing. For the Web-search work-
load, HULA achieves 3.7x lower FCT (better performance) com-
pared to ECMP and 2.7x better compared to CONGA’ at 70% net-
work load. The performance of HULA is slightly less apparent in
the data mining workload because a vast portion of the flows in the
workload are really small (50% are just 1 packet flows) and HULA
does not often get a chance to better load balance large flows with
multiple flowlets. Nevertheless, HULA achieves 1.35x better per-
formance than ECMP at 80% network load.

6.2 Handling Topology Asymmetry
When the link between the spine switch S2 and switch A4 is re-
moved, the effective bandwidth of the network drops by 25% for
traffic going across the pods. This means that the load balanc-
ing schemes have to carefully balance paths at even lower network
loads compared to the baseline topology scenario. In particular, the
load balancing scheme has to make sure that the bottleneck link
connecting S2 to A3 is not overwhelmed with a disproportionate
amount of traffic.

Figure 6 shows how various schemes perform with the Web-
search workload as the network load is varied. The overall FCT
for ECMP rises quickly and goes off the charts beyond a 60% net-
work load. Once the network load reaches 50%, the bottleneck link
incurs pressure from the flows hashed to go through S2. This is why

ECMP and CONGA’ have bad performance at high network loads.
CONGA’ does slightly better than ECMP here because the network
sees more flowlets being created on congested paths (due to the
delays caused by queue growth) and hence has a slightly higher
chance of finding the uncongested paths for new flowlets. Because
of this, CONGA’ is 3x better than ECMP at 60% load. However,
HULA performs the best because of its proactive utilization-aware
path selection, which avoids pressure on the bottleneck link. This
helps HULA achieve 8x better performance at 60% network load.

Figure 6(b) shows the average FCTs for small flows of size less
than 100KB and Figure 6(c) shows the average FCTs for large flows
of size greater than 10MB. HULA’s gains are most pronounced
on the large number of small flows where it does 10x better than
ECMP at 60% load. Even for large flows, HULA is 4x better than
ECMP at 60% load.

HULA prevents queue growth: The superior performance
of HULA can be understood by looking at the growth of switch
queues. As described earlier, in the link failure scenario, all the
traffic that crosses the pod through the spine S2 has to go through
the link connecting it to A3, which becomes the bottleneck link at
high network load. Figure 8c shows the CDF of queue depth at
the bottleneck link. The queue was monitored every 100 microsec-
onds and the instantaneous queue depth was plotted. ECMP has
high depth most of the time and frequently sees packet drops as
well. HULA on the other hand maintains zero queue depth 90% of
the time and sees no packet drops. In addition, the 95th percentile
queue depth for HULA is 8x smaller compared to CONGA’ and
19x smaller compared to ECMP.

9

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(a) Overall Average FCT

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(b) Small Flows (<100KB)

 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(c) Large Flows (>10MB)

Figure 7: Average FCT for the data mining workload on the asymmetric topology.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(a) 99th percentile FCT for Web-search work-
load

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

HULA

CONGA’

ECMP

(b) 99th percentile FCT for datamining

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F
 o

f b
ot

tle
ne

ck
 q

ue
ue

Queue size/Queue limit

HULA

CONGA’

ECMP

(c) Queue length at bottleneck link (S2->A3)
in the link failure scenario

Figure 8: 99th percentile FCTs and queue growth on the asymmetric topology

Figure 7 shows that HULA’s gains are less pronounced with the
data mining workload similar to what was seen with the baseline
topology. Due to the extremely large number of small flows, the ef-
fect of congestion-aware load balancing is less pronounced. Never-
theless, HULA does the best with small flows having 1.53x better
performance than ECMP at 80% load. With large flows, it does
1.35x better than ECMP. Overall, HULA does 1.52x better than
ECMP and 1.17x better than CONGA’.

HULA achieves better tail latency: In addition to performing
better on average FCT, HULA also achieves good tail latency for
both workloads. Figure 8 shows the 99th percentile FCT for all the
flows. For the Web-search workload, HULA achieves 10x better
99th percentile FCT compared to ECMP and 3x better compared
to CONGA’ at 60% load. For the data mining workload, HULA
achieves 1.53x better tail latency compared to ECMP.

6.3 Stability

In order to study HULA’s stability in response to topology changes,
we monitored the link utilization of the links that connect the spine
to the aggregate switches in the asymmetric topology while the
Web-search workload is running. We then brought down the bot-
tleneck link at 0.2 milliseconds from the beginning of the exper-
iment. As Figure 9(a) shows, HULA quickly adapts to the fail-
ure and redistributes the load onto the two links going through S1
within a millisecond. Then when the failed link comes up later,
HULA quickly goes back to the original utilization values on all
the links. This demonstrates that HULA is robust to changes in the
network topology and also shows that the load is distributed almost
equally on all the available paths at any given time regardless of the
topology.

Figure 9(b) shows a similar experiment but run with long-running
flows as opposed to the empirical workload. Long-running flows al-
low us to study HULA’s stability better than empirical workloads,
because in an empricial workload the link utilizations may fluc-
tuate depending on flow arrivals and departures. As the figure
shows, when the link connecting a spine to an aggregate switch
fails, HULA quickly deflects the affected flows onto another avail-
able path within half a millisecond. Further, while doing this, it
does not disturb the bottleneck link and cause instability in the net-
work.

6.4 Robustness of probe frequency
As discussed earlier, carrying probes too frequently can reduce the
effective network bandwidth available for data traffic. While we
argued that the ideal frequency is of the order of the network RTT,
we found that HULA is robust to change in probe frequency. Fig-
ure 9(c) shows the average FCT with the Web-search workload run-
ning on the asymmetric topology. When the network load is below
70%, increasing the probe frequency to 10 times its ideal has no
effect on the performance. Even at 90% load, the average FCT for
10x frequency is only 1.15x higher. In addition, compared with
ECMP and CONGA’, these numbers are much better. Therefore,
we believe HULA probes can be circulated with moderately low
frequency so that the effective bandwidth is not affected while still
achieving utilization-aware load balancing.

7 Related Work

Stateless or local load balancing: Equal-Cost Multi-Path routing
(ECMP) is a simple hash-based load-balancing scheme that is im-

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

Li
nk

 u
til

iz
at

io
n

Time (ms)

link1

link2

link3

(a) Link utilization on failures with Web-search
workload

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600 700

Li
nk

 u
til

iz
at

io
n

Time (ms)

link1

link2

link3

(b) Link utilization on failures with long run-
ning flows

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 F
C

T
 (

m
s)

Load(%)

1*RTT

2*RTT

5*RTT

10*RTT

(c) Effect of decreasing probe frequency

Figure 9: HULA resilience to link failures and probe frequency settings

plemented widely in switch ASICs today. However, it is congestion-
agnostic and only splits traffic at the flow level, which causes col-
lisions at high network load. Further, ECMP is shown to have
degraded performance during link failures that cause asymmetric
topologies [13]. DRB [10] is a per-packet load balancing scheme
that sprays packets effectively in a round robin fashion. More re-
cently, PRESTO [37] proposed splitting flows into TSO (TCP Seg-
ment Offload) segments of size 64KB and sending them on mul-
tiple paths. On the receive side GRO (General Receive Offload),
the packets are buffered temporarily to prevent reordering. Nei-
ther DRB nor Presto is congestion aware, which causes degraded
performance during link failures. Flare [11] and Localflow [12]
discuss switch-local solutions that balance the load on all switch
ports but do not take global congestion information into account.

Centralized load balancing: B4 [15] and SWAN [14] propose
centralized load balancing for wide-area networks connecting their
data centers. They collect statistics from network switches at a cen-
tral controller and push forwarding rules to balance network load.
The control plane operates at the timescale of minutes because of
relatively predictable traffic patterns. Hedera [8] and MicroTE [9]
propose similar solutions for datacenter networks but still suffer
from high control-loop latency in the critical path and cannot han-
dle highly volatile datacenter traffic in time.

Modified transport layer: MPTCP [38] is a modified version
of TCP that uses multiple subflows to split traffic over different
paths. However, the multiple subflows cause burstiness and per-
form poorly under Incast-like conditions [13]. In addition, it is dif-
ficult to deploy MPTCP in datacenters because it requires change
to all the tenant VMs, each of which might be running a different
operating system. DCTCP [36], pFabric [6] and PIAS [39] reduce
the tail flow completion times using modified end-host transport
stacks but do not focus on load balancing. DeTail [40] proposes
a per-packet adaptive load balancing scheme that adapts to topol-
ogy asymmetry but requires a complex cross-layer network stack
including end-host modifications.

Global utilization-aware load balancing TeXCP [41] and MATE [42]
are adaptive traffic-engineering proposals that load balance across
multiple ingress-egress paths in a wide-area network based on per-
path congestion metrics. TeXCP also does load balancing at the
granularity of flowlets but uses router software to collect utilization
information and uses a modified transport layer to react to this in-
formation. HALO [43], inspired by a long line of work beginning
with Minimum Delay Routing [44], studies load-sensitive adaptive
routing as an optimization problem and implements it in the router
software. Relative to these systems, HULA is a routing mechanism

that balances load at finer granularity and is simple enough to be
implemented entirely in the data plane.

As discussed earlier, CONGA [13] is the closest alternative to
HULA for global congestion-aware fine-grained load balancing.
However, it is designed for specific 2-tier Leaf-Spine topologies
in a custom ASIC. HULA, on the other hand, scales better than
CONGA by distributing the relevant utilization information across
all switches. In addition, unlike CONGA, HULA reacts to topol-
ogy changes like link failures almost instantaneously using data-
plane mechanisms. Lastly, HULA’s design is tailored towards pro-
grammable switches—a first for data-plane load balancing schemes.

8 Conclusion

In this paper, we design HULA (Hop-by-hop Utilization-aware Load
balancing Architecture), a scalable load-balancing scheme designed
for programmable data planes. HULA uses periodic probes to per-
form a distance-vector style distribution of network utilization in-
formation to switches in the network. Switches track the next hop
for the best path and its corresponding utilization for a given des-
tination, instead of maintaining per-path utilization congestion in-
formation for each destination. Further, because HULA performs
forwarding locally by determining the next hop and not an entire
path, it eliminates the need for a separate source routing mecha-
nism (and the associated forwarding table state required to maintain
source routing tunnels). When failures occur, utilization informa-
tion is automatically updated so that broken paths are avoided.

We evaluate HULA against existing load balancing schemes and
find that it is more effective and scalable. While HULA is effective
enough to quickly adapt to the volatility of datacenter workloads,
it is also simple enough to be implemented at line rate in the data
plane on emerging programmable switch architectures. While the
performance and stability of HULA is studied empirically in this
paper, an analytical study of its optimality and stability will provide
further insights into its dynamic behavior.

Acknowledgments: We thank the SOSR reviewers for their valu-
able feedback, Mohammad Alizadeh for helpful discussions about
extending CONGA to larger topologies, and Mina Tahmasbi Arashloo
for helpful comments on the writing. This work was supported in
part by the NSF under the grant CNS-1162112 and the ONR under
award N00014-12-1-0757.

11

9 References

[1] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the "one big
switch" abstraction in software-defined networks,” CoNEXT ’13,
(New York, NY, USA), ACM.

[2] M. Alizadeh and T. Edsall, “On the data path performance of
leaf-spine datacenter fabrics,” in HotInterconnects 2013, pp. 71–74.

[3] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized "zero-queue" datacenter network,”
SIGCOMM, 2014, (New York, NY, USA), pp. 307–318, ACM.

[4] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and
A. Greenberg, “Eyeq: Practical network performance isolation at the
edge,” NSDI 2013, (Berkeley, CA, USA), pp. 297–312, USENIX
Association.

[5] L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica, “Faircloud:
Sharing the network in cloud computing,” HotNets-X, (New York,
NY, USA), pp. 22:1–22:6, ACM, 2011.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker, “pfabric: Minimal near-optimal
datacenter transport,” SIGCOMM 2013, (New York, NY, USA),
pp. 435–446, ACM.

[7] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, (New York, NY, USA), pp. 443–454,
ACM, 2014.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” NSDI 2010, (Berkeley, CA, USA), pp. 19–19, USENIX
Association.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine
grained traffic engineering for data centers,” CoNEXT 2011,
pp. 8:1–8:12, ACM.

[10] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency
routing for clos-based data center networks,” CoNEXT 2013,
pp. 49–60, ACM.

[11] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” SIGCOMM Comput. Commun.
Rev., vol. 37, pp. 51–62, Mar. 2007.

[12] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal flow
routing in datacenters via local link balancing,” CoNEXT 2013,
pp. 151–162, ACM.

[13] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and
G. Varghese, “Conga: Distributed congestion-aware load balancing
for datacenters,” SIGCOMM Comput. Commun. Rev., vol. 44,
pp. 503–514, Aug. 2014.

[14] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” SIGCOMM 2013, pp. 15–26, ACM.

[15] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: Experience with a globally-deployed
software defined wan,” SIGCOMM 2013, pp. 3–14, ACM.

[16] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding
Metamorphosis: Fast Programmable Match-action Processing in
Hardware for SDN,” in SIGCOMM, 2013.

[17] “Intel FlexPipe.”
http://www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/ethernet-switch-fm6000-series-brief.pdf.

[18] “Cavium and XPliant introduce a fully programmable switch silicon
family scaling to 3.2 terabits per second.” http://tinyurl.com/nzbqtr3.

[19] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,”
SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95, July 2014.

[20] T. Issariyakul and E. Hossain, Introduction to Network Simulator
NS2. Springer Publishing Company, Incorporated, 1st ed., 2010.

[21] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A
scalable fault-tolerant layer 2 data center network fabric,”
SIGCOMM 2009, pp. 39–50, ACM.

[22] “Cisco’s massively scalable data center.”
http://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/
Data_Center/MSDC/1-0/MSDC_AAG_1.pdf, Sept 2015.

[23] “High Capacity StrataXGS R©Trident II Ethernet Switch Series.”
http://www.broadcom.com/products/Switching/Data-Center/
BCM56850-Series.

[24] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao, and
C. Guo, “Explicit path control in commodity data centers: Design
and applications,” NSDI 2015, pp. 15–28, USENIX Association.

[25] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” SIGCOMM Comput. Commun. Rev., vol. 39,
pp. 51–62, Aug. 2009.

[26] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: A high performance, server-centric network
architecture for modular data centers,” SIGCOMM 2009, pp. 63–74,
ACM.

[27] E. Athanasopoulou, L. X. Bui, T. Ji, R. Srikant, and A. Stolyar,
“Back-pressure-based packet-by-packet adaptive routing in
communication networks,” IEEE/ACM Trans. Netw., vol. 21,
pp. 244–257, Feb. 2013.

[28] B. Awerbuch and T. Leighton, “A simple local-control approximation
algorithm for multicommodity flow,” pp. 459–468, 1993.

[29] “P4 Specification.”
http://p4.org/wp-content/uploads/2015/11/p4-v1.1rc-Nov-17.pdf.

[30] S. Radhakrishnan, M. Tewari, R. Kapoor, G. Porter, and A. Vahdat,
“Dahu: Commodity switches for direct connect data center
networks,” ANCS 2013, pp. 59–70, IEEE Press.

[31] A. Sivaraman, M. Budiu, A. Cheung, C. Kim, S. Licking,
G. Varghese, H. Balakrishnan, M. Alizadeh, and N. McKeown,
“Packet transactions: A programming model for data-plane
algorithms at hardware speed,” CoRR, vol. abs/1512.05023, 2015.

[32] “Protocol-independent switch architecture.” http://schd.ws/hosted_
files/p4workshop2015/c9/NickM-P4-Workshop-June-04-2015.pdf.

[33] “Members of the p4 consortium.” http://p4.org/join-us/.
[34] “P4’s action-execution semantics and conditional operators.” https:

//github.com/anirudhSK/p4-semantics/raw/master/p4-semantics.pdf.
[35] Private communication with the authors of CONGA.
[36] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp
(dctcp),” SIGCOMM 2010, pp. 63–74, ACM.

[37] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” in
SIGCOMM, 2015.

[38] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” SIGCOMM 2011, pp. 266–277, ACM.

[39] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data centers,”
NSDI 2015, pp. 455–468, USENIX Association.

[40] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail:
Reducing the flow completion time tail in datacenter networks,”
SIGCOMM 2012, pp. 139–150, ACM.

[41] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
tightrope: Responsive yet stable traffic engineering,” SIGCOMM
2005, pp. 253–264, ACM.

[42] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “Mate: Mpls adaptive
traffic engineering,” in IEEE INFOCOM 2001, pp. 1300–1309 vol.3.

[43] N. Michael and A. Tang, “Halo: Hop-by-hop adaptive link-state
optimal routing,” Networking, IEEE/ACM Transactions on, vol. PP,
no. 99, pp. 1–1, 2014.

[44] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” Communications, IEEE Transactions on, vol. 25,

pp. 73–85, Jan 1977.

12

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://tinyurl.com/nzbqtr3
http://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Data_Center/MSDC/1-0/MSDC_AAG_1.pdf
http://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Data_Center/MSDC/1-0/MSDC_AAG_1.pdf
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://p4.org/wp-content/uploads/2015/11/p4-v1.1rc-Nov-17.pdf
http://schd.ws/hosted_files/p4workshop2015/c9/NickM-P4-Workshop-June-04-2015.pdf
http://schd.ws/hosted_files/p4workshop2015/c9/NickM-P4-Workshop-June-04-2015.pdf
http://p4.org/join-us/
https://github.com/anirudhSK/p4-semantics/raw/master/p4-semantics.pdf
https://github.com/anirudhSK/p4-semantics/raw/master/p4-semantics.pdf

	Introduction
	Design Challenges for HULA
	HULA Overview: Scalable, Proactive, Adaptive, and Programmable
	HULA Design: Probes and Flowlets
	Origin and Replication of HULA Probes
	Processing Probes to Update Best Path
	Flowlet Forwarding on Best Paths
	Data-Plane Adaptation to Failures
	Probe Overhead and Optimization

	Programming HULA in P4
	Introduction to P4
	HULA in P4
	Feasibility of P4 Primitives at Line Rate

	Evaluation
	Symmetric 3-tier Fat-Tree Topology
	Handling Topology Asymmetry
	Stability
	Robustness of probe frequency

	Related Work
	Conclusion
	References

