
The Click Modular Router

EDDIE KOHLER, ROBERT MORRIS, BENJIE CHEN, JOHN JANNOTTI,

and M. FRANS KAASHOEK

Laboratory for Computer Science, MIT

Click is a new software architecture for building flexible and configurable routers. A Click router is
assembled from packet processing modules called elements. Individual elements implement sim-
ple router functions like packet classification, queueing, scheduling, and interfacing with network
devices. A router configuration is a directed graph with elements at the vertices; packets flow
along the edges of the graph. Several features make individual elements more powerful and com-
plex configurations easier to write, including pull connections, which model packet flow driven by
transmitting hardware devices, and flow-based router context, which helps an element locate other
interesting elements.

Click configurations are modular and easy to extend. A standards-compliant Click IP router
has sixteen elements on its forwarding path; some of its elements are also useful in Ethernet
switches and IP tunneling configurations. Extending the IP router to support dropping policies,
fairness among flows, or Differentiated Services simply requires adding a couple elements at the
right place. On conventional PC hardware, the Click IP router achieves a maximum loss-free
forwarding rate of 333,000 64-byte packets per second, demonstrating that Click’s modular and
flexible architecture is compatible with good performance.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks; C.2.6 [Computer-Communication Net-
works]: Internetworking—Routers; D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures

General Terms: Design, Management, Performance

Additional Key Words and Phrases: Routers, component systems, software router performance

An article describing a previous version of this system was published in Operating Systems Review
34(5) (Proceedings of the 17th Symposium on Operating Systems Principles), pp 217–231, December
1999.
This research was supported by a National Science Foundation (NSF) Young Investigator Award
and the Defense Advanced Research Projects Agency (DARPA) and Rome Laboratory under agree-
ment number F30602-97-2-0288. In addition, Eddie Kohler was supported by a National Science
Foundation Graduate Research Fellowship.
Address: MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139;
email: {eddietwo; rtm; benjie; jj; kaashoek}@lcs.mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works, requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept, ACM Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.



2 · E. Kohler et al.

1. INTRODUCTION

Routers are increasingly expected to do more than route packets. Boundary
routers, which lie on the borders between organizations, must often prioritize
traffic, translate network addresses, tunnel and filter packets, and act as fire-
walls, among other things. Furthermore, fundamental properties like packet
dropping policies are still under active research [Floyd and Jacobson 1993; Lak-
shman et al. 1996; Cisco Corporation 1999], and initiatives like Differentiated
Services [Blake et al. 1998] bring the need for flexibility close to the core of the
Internet.

Unfortunately, most routers have closed, static, and inflexible designs. Net-
work administrators may be able to turn router functions on or off, but they
cannot easily specify or even identify the interactions of different functions.
Furthermore, it is difficult for network administrators and third party soft-
ware vendors to extend a router with new functions. Extensions require access
to software interfaces in the forwarding path, but these often don’t exist, don’t
exist at the right point, or aren’t published.

This paper presents Click, a flexible, modular software architecture for creat-
ing routers. Click routers are built from fine-grained components; this supports
fine-grained extensions throughout the forwarding path. The components are
packet processing modules called elements. The basic element interface is nar-
row, consisting mostly of functions for initialization and packet handoff, but
elements can extend it to support other functions (such as reporting queue
lengths). To build a router configuration, the user chooses a collection of ele-
ments and connects them into a directed graph. The graph’s edges, which are
called connections, represent possible paths for packet handoff. To extend a
configuration, the user can write new elements or compose existing elements
in new ways, much as UNIX allows one to build complex applications directly
or by composing simpler ones using pipes.

Several aspects of the Click architecture were directly inspired by properties
of routers. First, packet handoff along a connection may be initiated by either
the source end (push processing) or the destination end (pull processing). This
cleanly models most router packet flow patterns, and pull processing makes it
possible to write composable packet schedulers. Second, the flow-based router
context mechanism lets an element automatically locate other elements on
which it depends; it is based on the observation that relevant elements are
often connected by the flow of packets. These features make individual elements
more powerful and configurations easier to write. For example, in Section 4.2,
we present an element that can implement four variants of the Random Early
Detection dropping policy [Floyd and Jacobson 1993] depending on its context
in the router: RED, RED over multiple queues, weighted RED, or drop-from-
front RED. This would be difficult or impossible to achieve in previous modular
networking systems.

We have implemented Click on general-purpose PC hardware as an extension
to the Linux kernel. A modular Click IP router configuration has a maximum
loss-free forwarding rate of 333,000 64-byte packets per second on a 700 MHz
Pentium III. This is roughly four times the rate for a standard Linux router on



The Click Modular Router · 3

the same hardware, mostly due to device handling improvements inspired by
previous work [Mogul and Ramakrishnan 1997; Druschel et al. 1994]. It is also
slightly more than the rate for a modified Linux router that uses our network
device extensions, demonstrating that Click’s modularity and flexibility comes
at an acceptable cost.

In the rest of this paper, we describe Click’s architecture in detail, includ-
ing the language used to describe configurations (Section 2), then present a
standards-compliant Click IP router (Section 3) and some router extensions
(Section 4). After summarizing Click’s kernel environment (Section 5) and eval-
uating its performance (Section 6), we describe related work (Section 7) and
summarize our conclusions (Section 8).

2. ARCHITECTURE

A Click element represents a unit of router processing. An element represents
a conceptually simple computation, such as decrementing an IP packet’s time-
to-live field, rather than a large, complex computation, such as IP routing. A
Click router configuration is a directed graph with elements at the vertices. An
edge, or connection, between two elements represents a possible path for packet
transfer. Every action performed by a Click router’s software is encapsulated
in an element, from device handling and routing table lookups to queueing and
counting packets. The user determines what a Click router does by choosing the
elements to be used and the connections among them. Inside a running router,
each element is a C++ object that may maintain private state. Connections
are represented as pointers to element objects, and passing a packet along a
connection is implemented as a single virtual function call.

The most important properties of an element are:

—Element class. Each element belongs to one element class. This specifies
the code that should be executed when the element processes a packet, as
well as the element’s initialization procedure and data layout.

—Ports. An element can have any number of input and output ports. Every
connection goes from an output port on one element to an input port on
another. Different ports can have different semantics; for example, second
output ports are often used to emit erroneous packets.

—Configuration string. The optional configuration string contains additional
arguments that are passed to the element at router initialization time. Many
element classes use these arguments to set per-element state and fine-tune
their behavior.

—Method interfaces. Each element supports one or more method interfaces.
Every element supports the simple packet-transfer interface, but elements
can create and export arbitrary additional interfaces; for example, a queue
might export an interface that reports its length. Elements communicate at
run time through these interfaces, which can contain both methods and data.

Figure 1 shows how we diagram these properties for a sample element, Tee(2).
‘Tee’ is the element class; a Tee copies each packet received on its single input
port, sending one copy to each output port. Configuration strings are enclosed



4 · E. Kohler et al.

Tee(2)input port output ports

element class

configuration string

Fig. 1. A sample element. Triangular ports are inputs and rectangular ports are outputs.

FromDevice(eth0) Counter Discard

Fig. 2. A router configuration that throws away all packets.

in parentheses; the ‘2’ in ‘Tee(2)’ is interpreted by Tee as a request for two
outputs. Method interfaces are not shown explicitly, as they are implied by the
element class. Figure 2 shows several elements connected into a simple router
that counts incoming packets, then throws them all away.

2.1 Push and Pull Connections

Click supports two kinds of connections, push and pull. On a push connection,
packets start at the source element and are passed downstream to the destina-
tion element. This corresponds to the way packets move through most software
routers. On a pull connection, in contrast, the destination element initiates
packet transfer: it asks the source element to return a packet, or a null pointer
if no packet is available. This is the dual of a push connection. (Clark called
pull connections upcalls [Clark 1985].) Each of these forms of packet transfer
is implemented by one virtual function call.

The processing type of a connection—whether it is push or pull—is deter-
mined by the ports at its endpoints. Each port in a running router is either
push or pull; connections between two push ports are push, and connections
between two pull ports are pull. Connections between a push port and a pull
port are illegal. Elements set their ports’ types as the router is initialized. They
may also create agnostic ports, which behave as push when connected to push
ports and pull when connected to pull ports. When a router is initialized, the
system propagates constraints until every agnostic port has been assigned to
either push or pull.1 In our configuration diagrams, black ports are push and
white ports are pull; agnostic ports are shown as push or pull ports with a
double outline. Figure 3 shows how push and pull work in a simple router.

Push processing is appropriate when unsolicited packets arrive at a Click
router—for example, when packets arrive from a device. The router must han-
dle such packets as they arrive, if only to queue them for later consideration.
Pull processing is appropriate when the Click router needs to control the timing
of packet processing. For example, a router may transmit a packet only when
the transmitting device is ready. In Click, transmitting devices are elements

1The simplest way of creating an agnostic port causes each packet handoff to that port to take two
virtual function calls rather than one. The first calls a general push or pull method, which is a
wrapper that calls the element’s “agnostic” method.



The Click Modular Router · 5

FromDevice Null Null ToDevice

push(p)
push(p)

return
return

pull()
pull()

return p return p

receive
packet p

enqueue p

ready to
transmit

dequeue p
and return it

send p

Fig. 3. Push and pull control flow. This diagram shows functions called as a packet moves through
a simple router; time moves downwards. The central element is a Queue. During the push, control
flow moves forward through the element graph starting at the receiving device; during the pull,
control flow moves backward through the graph, starting at the transmitting device. The packet p
always moves forward.

FromDevice

FromDevice

ToDevice
Counter

ToDevice

Fig. 4. Some push and pull violations. The top configuration has four errors: (1) FromDevice’s push
output connects to ToDevice’s pull input; (2) more than one connection to FromDevice’s push output;
(3) more than one connection to ToDevice’s pull input; and (4) an agnostic element, Counter, in a
mixed push/pull context. The bottom configuration, which includes a Queue, is legal. In a properly
configured router, the port colors on either end of each connection will match.

with one pull input; they therefore initiate packet transfer, and can ask for
packets only when they are ready.

Pull processing also models the scheduling decision inherent in choosing
the next packet to send. A Click packet scheduler is simply an element with
one pull output and multiple pull inputs. Such an element responds to a pull
request by choosing one of its inputs, making a pull request to that input, and
returning the packet it receives. (If it receives a null pointer, it will generally try
another input.) These elements make only local decisions: different scheduling
behaviors correspond to different algorithms for choosing an input. Thus, they
are easily composable. Section 4.1 discusses this further.

The following properties hold for all correctly configured routers: Push out-
puts must be connected to push inputs, and pull outputs must be connected
to pull inputs. Each agnostic port must be used as push or pull exclusively.
Furthermore, if packets arriving on an agnostic input might be emitted imme-
diately on one of that element’s agnostic outputs, then both input and output
must be used in the same way (either push or pull). Finally, push outputs
and pull inputs must be connected exactly once. This ensures that each packet
transfer request—either pushing to an output port or pulling from an input
port—is along a unique connection. These properties are automatically checked
by the system during router initialization. Figure 4 demonstrates some prop-
erty violations.



6 · E. Kohler et al.

These properties are designed to catch intuitively invalid configurations. For
example, the connection in Figure 4 from FromDevice to ToDevice is illegal
because FromDevice’s output is push while ToDevice’s input is pull. But this
connection is intuitively illegal, since it would mean that ToDevice might receive
packets when it was not ready to send them. The Queue element, which converts
from push to pull, also provides the temporary packet storage this configuration
requires.

2.2 Packet Storage

Click elements do not have implicit queues on their input and output ports,
or the associated performance and complexity costs. Instead, queues in Click
are explicit objects, implemented by a separate Queue element. This gives the
router designer explicit control over an important router property, namely how
packets are stored. It also enables valuable configurations that are difficult
to arrange otherwise—for example, a single queue feeding multiple devices,
or a queue feeding a traffic shaper on the way to a device. Explicit queues
necessitate both push and pull connections. A Queue has a push input port and
a pull output port; the input port responds to pushed packets by enqueueing
them, and the output port responds to pull requests by dequeueing packets and
returning them.

2.3 CPU Scheduling

Click schedules the router’s CPU with a task queue; the router’s driver is a
loop that processes the task queue one element at a time. (The task queue is
currently scheduled with the flexible and lightweight stride scheduling algo-
rithm [Waldspurger and Weihl 1995].) Each task is simply an element that
would like special access to CPU time. Thus, the element is Click’s unit of CPU
scheduling as well as its unit of packet processing. A task can initiate an ar-
bitrary sequence of push and pull requests. However, most elements are never
placed on the task queue; they are implicitly scheduled when their push or pull
methods are called. An element should be on the task queue if it frequently
initiates push or pull requests without receiving a corresponding request. This
includes device elements—for example, FromDevice initiates a push request
when it receives a packet from a device—as well as elements that ship packets
between Queues inside the router configuration.

Another task structure handles timer events. Each element can have any
number of active timers, where each timer calls an arbitrary method when it
fires.

Click currently runs in a single thread. Thus, any packet transfer method
(push or pull) must return to its caller before another task can begin. The
router will continue to process each pushed packet, following it from element
to element along a path in the router graph, until it is explicitly stored or
dropped (and similarly for pull requests). Therefore, the placement of Queues
in a configuration graph determines how CPU scheduling may be performed.
For example, if Queues are late in the graph, the router commits to a lot of
processing on each input packet before processing the next input packet—
specifically, it commits to the processing required to push the packet to a Queue.



The Click Modular Router · 7

RED Classifier Discard

· · ·

Strip

Fig. 5. Flow-based router context. A packet starting at RED and stopping at the first Queue it
encountered might pass through any of the grey elements.

2.4 Flow-Based Router Context

If an element A wants to use a method interface of another element B, it must
first locate B. Connections solve this problem for packet transfer, but not for
other method interface interactions. Instead, A can refer to B by name (for
example, A’s configuration string could contain the string “B”), or it can use an
automatic mechanism called flow-based router context.

Flow-based router context describes where packets starting at a given ele-
ment might end up after several transfers, or where packets arriving at that
element might have originated. This generalizes connections, which specify
where a packet might travel in exactly one transfer. In practical terms, ele-
ments may ask the system questions such as “If I were to emit a packet on my
second output, where might it go?”; the answer is computed using flow-based
router context. The element may restrict this question by method interface;
when searching for Queues, it might ask “If I were to emit a packet on my
second output, which Queues might it encounter?” It may further restrict the
answer to the closest method interfaces: “If I were to emit a packet on my
second output, and it stopped at the first Queue it encountered, where might
it stop?” This occupies a useful middle ground between purely local informa-
tion (connections) and purely global information (the entire router). It can be
more robust than naming elements explicitly, since it automatically adapts
to changes in the router configuration. It also captures a fundamental router
property: if two elements interact, then packets can usually pass from one to
the other.

For example, each Queue exports its current length using a method inter-
face. Elements such as RED (a dropping policy element described further in
Section 4.2) are interested in this information, but before finding a Queue’s
length, RED must find the correct Queue. It can do so with flow-based router
context. Figure 5 shows the router context downstream of RED. Every element
in the figure is downstream of RED, but only the grey elements are found if
the search stops at the closest Queues. Thus, RED’s flow-based router context
search will return the two grey Queues.

Flow-based router context is calculated by a simple data-flow algorithm that
is robust in the presence of cycles in the configuration graph. Elements gen-
erally ask for flow-based router context once, at router initialization time, and
save its results for quick reference as the router runs. Any element that uses
flow-based router context must be prepared to handle zero, one, two, or more



8 · E. Kohler et al.

// Declare three elements . . .
src :: FromDevice(eth0);

ctr :: Counter;

sink :: Discard;

// . . . and connect them together
src -> ctr;

ctr -> sink;

// Alternate definition using syntactic sugar
FromDevice(eth0) -> Counter -> Discard;

Fig. 6. Two Click-language definitions for the trivial router of Figure 2.

result elements, possibly by reporting an error if there are too many or too few
results. Section 4.2 demonstrates the flexibility benefits of supporting variable
numbers of results.

2.5 Language

Click configurations are written in a simple language with two important con-
structs: declarations create elements, and connections say how they should be
connected. Its syntax is easy enough to learn from an example; Figure 6 uses
it to define a trivial router.

The language contains an abstraction mechanism called compound elements
that lets users define their own element classes. A compound element is a
router configuration fragment that behaves like an element class. A user could
define a compound element consisting of a Queue followed by a Shaper, and call
the resulting element class ShapedQueue; the rest of the configuration could
then use ShapedQueue as if it were a primitive Click element class. Compound
elements can have multiple ports with arbitrary push/pull characteristics. At
initialization time, each use of a compound element is compiled into the corre-
sponding collection of simple elements.

The language is wholly declarative: it specifies what elements to create and
how they should be connected, not how to process packets procedurally. This
makes configurations easy to manipulate—processing a language file loses no
information, and there is a canonical language file for any configuration. Router
manipulation tools can take advantage of these properties to optimize router
configurations off line or prove simple properties about them.

Language extensions are generally implemented through special element
classes rather than new syntactic constructs. For example, the language has
no special syntax for specifying CPU scheduling priorities. Instead, the user
writes this information in the configuration strings of one or more ScheduleInfo
elements. These elements have no input or output ports, and packets do not
pass through them; they are used only at initialization time, for the data in
their configuration strings. This design keeps the language clean and simplifies
tool maintenance.

2.6 Installing Configurations

There are currently two drivers that can run Click router configurations, a
Linux in-kernel driver and a user-level driver that communicates with the net-



The Click Modular Router · 9

work using Berkeley packet filters [McCanne and Jacobson 1993] or a similar
packet socket mechanism. The user-level driver is most useful for profiling and
debugging, while the in-kernel driver is good for production work. The rest of
this paper concentrates on the in-kernel driver.

To install a Click router configuration, the user passes a Click-language file to
the kernel driver. The driver then parses the file, checks it for errors, initializes
every element, and puts the router on line. It breaks the initialization process
into stages, allowing cyclic configurations without forcing any particular ini-
tialization order. In the early stages, elements set object variables, add and
remove ports, and specify whether those ports are push or pull. In later stages,
they query flow-based router context, place themselves on the task queue, and
attach to Linux kernel structures.

Installing a new configuration normally destroys any old configuration; for
instance, any packets stored in old queues are dropped. This starts the new
configuration from a predictable empty state. However, Click supports two
techniques for changing a configuration without losing information:

—Handlers. Each element can easily install any number of handlers, which
are access points for user interaction. They appear to the user as files in
Linux’s /proc file system; for example, a count handler belonging to an ele-
ment named c would be accessible in the file /proc/click/c/count. One of
c’s methods is called when the user reads or writes this file. This lightweight
mechanism is most appropriate for modifications local to an element, such as
changing a maximum queue length. A Click routing table element, for exam-
ple, would likely provide add_route and del_route handlers as access points
for user-level routing protocol implementations. Handlers are also useful for
exporting statistics and other element information.

—Hot swapping. Some configuration changes, such as adding new elements,
are more complex than handlers can support. In these cases, the user can
write a new configuration file and install it with a hot-swapping option.
This will only install the new configuration if it initializes correctly—if there
are any errors, the old configuration will continue routing packets without
a break. Also, if the new configuration is correct, it will atomically take
the old configuration’s state before being placed on line; for example, any
enqueued packets are moved into the new configuration. This happens only
with element classes that explicitly support it, and can be prevented by giving
the new elements different names than the old ones.

Finally, element class definitions can be dynamically added to and removed
from the Click kernel driver; combined with hot swapping, this makes Click an
interesting platform for active networking.

2.7 Element Implementation

Each Click element class corresponds to a subclass of the C++ class Element,
which has about 20 virtual functions. Element provides reasonable default im-
plementations for many of these, so most subclasses must override just six of
them or less. Only three virtual functions are used during router operation,
namely push, pull, and run_scheduled (used by the task scheduler); the others



10 · E. Kohler et al.

class NullElement: public Element { public:

NullElement() { add_input(); add_output(); }

const char *class_name() const { return "Null"; }

NullElement *clone() const { return new NullElement; }

const char *processing() const { return AGNOSTIC; }

void push(int port, Packet *p) { output(0).push(p); }

Packet *pull(int port) { return input(0).pull(); }

};

Fig. 7. The complete implementation of a do-nothing element: Null passes packets from its single
input to its single output unchanged.

are used for identification, push and pull specification, configuration, initial-
ization, and statistics.

Subclasses of Element are easy to write, so we expect that users will easily
write new element classes as needed. In fact, the complete implementation of a
simple working element class takes less than 10 lines of code; see Figure 7. Most
elements define functions for configuration string parsing and initialization in
addition to those in Figure 7, and take about 120 lines of code. When linked
with 100 common elements, the Linux kernel driver contains roughly 14,000
lines of core and library source code and 19,000 lines of element source code (not
counting comments); this compiles to about 341,000 bytes of i386 instructions,
most of which are used only at router initialization time. A simple element’s
push or pull function compiles into a few dozen i386 instructions.

2.8 Element Design and Architectural Limitations

A Click user will generally prefer fine-grained elements, which have simple
specifications, to coarse-grained elements with more complex specifications.
For IP routing, for example, a collection of small elements is preferable to a
single element, since the collection of small elements supports arbitrary exten-
sions and modifications via configuration graph manipulation. However, small
elements are not appropriate for all problems, since Click’s main organizational
principle is packet flow. Coarse-grained elements are required when control or
data flow doesn’t match the flow of packets. For example, complex protocol pro-
cessing often requires a coarse-grained element; a routing protocol like BGP
does not naturally break into parts among which packets flow.

A conventional router contains shared structures that don’t participate in
packet forwarding, such as routing tables, network statistics, and so forth.
In Click, these structures are more naturally incorporated into the packet
forwarding path. Routing tables, such as the IP routing table and the ARP
cache, are encapsulated by elements that make routing decisions, and statistics
are localized inside the elements responsible for collecting them. Of course,
these elements can export a method interface so other elements can access the
structures.

Several other modular networking systems are built around an abstraction
that represents individual network flows [Hutchinson and Peterson 1991; Mos-
berger and Peterson 1996]. These systems automatically create and destroy
modules as network flows are encountered. This is a fast, limited form of con-



The Click Modular Router · 11

figuration installation, as each new or deleted flow changes a localized section
of the configuration. Hot-swap installation is fast in Click—on a 700 MHz Pen-
tium III, installing a 50-element configuration takes less than a tenth of a
second—but not fast enough to support flow creation and deletion. Most of the
benefits of a flow-based design can be realized in Click as is; many configu-
rations only require per-flow-class state and CPU scheduling, and elements
can cooperate to maintain per-flow private state. Unlike flow-based systems,
however, Click cannot schedule the CPU per individual flow.

Flow-based router context is appropriate for many situations where a method
interface must be located, but it is not always sufficiently specific. Consider a
configuration where bad packets, which occur rarely, are sent to a set of ele-
ments for error handling. Upstream elements using flow-based router context
will always include the error-handling elements in their search, which might
or might not be what the user wanted. Most elements adopt a simple solution:
the user can override flow-based router context with a configuration argument
when more specificity is required.

The Click language contains no notion of configuration variables. For exam-
ple, it would be useful to refer to “the Ethernet address of the device handled by
that FromDevice element” in a configuration string. Currently, the user must
copy such an Ethernet address everywhere it is required, which leads to du-
plication of information. A configuration-variable extension would be simple to
add.

3. AN IP ROUTER

This section presents a real Click router configuration: an IP router that for-
wards unicast packets in nearly full compliance with the standards [Baker
1995; Postel 1981a; Postel 1981b]. Figure 8 shows this configuration for a
bridge router with two network interfaces. (The reader may want to refer to
Appendix 8, a glossary of Click elements used in the IP router and elsewhere
in this paper.) The rest of this section describes the IP router in more detail;
Section 4 shows how to extend it by changing its scheduling and queueing
behavior, and Section 6 evaluates its performance.

IP forwarding tasks that involve only local information fit naturally into
the Click framework. For example, DecIPTTL decides if a packet’s time-to-
live field (TTL) has expired. If the TTL is still valid, DecIPTTL decrements
it, incrementally updates the packet’s checksum, and emits the packet on its
first output; if the TTL has expired, DecIPTTL emits the packet on its second
output (usually connected to an element that generates ICMP errors). These
actions depend only on the packet’s contents, and do not interact with decisions
made elsewhere except as expressed in the packet’s path through the element
graph. Self-contained elements like DecIPTTL can be easily composed. For
example, one could connect DecIPTTL’s “expired” output to a Discard to avoid
generating ICMP errors, or insert an element that limited the rate at which
errors are generated.

Some forwarding tasks require that information about a packet be calculated
in one place and used in another. Click uses annotations to carry such infor-
mation along. An annotation is a piece of information attached to the packet



12 · E. Kohler et al.

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

ARPQuerier(1.0.0.1, ...)

ToDevice(eth0)

ARPQuerier(2.0.0.1, ...)

ToDevice(eth1)

ARPResponder
(1.0.0.1 ...)

ARPResponder
(2.0.0.1 ...)

IPGWOptions(1.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(1.0.0.1)

CheckPaint(1)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

IPGWOptions(2.0.0.1)

IPFragmenter(1500)

DecIPTTL

FixIPSrc(2.0.0.1)

CheckPaint(2)

DropBroadcasts

ICMPError
redirect

ICMPError
bad param

ICMPError
TTL expired

ICMPError
must frag

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

GetIPAddress(16)

LookupIPRoute(...)

ARP
queries

ARP
responses IP

ARP
queries

ARP
responses IP

to Queue to Queueto ARPQuerier to ARPQuerier

from Classifier from Classifier

to Linux

Fig. 8. An IP router configuration.



The Click Modular Router · 13

header, but not part of the packet data; the Linux packet structure, sk_buff,
provides 48 bytes of annotation space. The annotations used in the IP router
include:

—Destination IP address. Elements that deal with a packet’s destination
IP address use this annotation rather than the IP header field. This allows
elements to modify the destination address—for example, to set it to the next-
hop gateway address—without modifying the packet. GetIPAddress copies an
address from the IP header into the annotation, LookupIPRoute replaces the
annotation with the next-hop gateway’s address, and ARPQuerier maps the
annotation to the next-hop Ethernet address.

—Paint. The Paint element marks a packet with an integer “color”. CheckPaint
emits every packet on its first output, and a copy of each packet with a
specified color on its second output. The IP router uses color to decide whether
a packet is leaving the same interface on which it arrived, and thus should
prompt an ICMP redirect.

—Link-level broadcast flag. FromDevice sets this flag on packets that ar-
rived as link-level broadcasts. The IP router uses DropBroadcast to drop
such packets if they are about to be forwarded to another interface.

—ICMP Parameter Problem pointer. This is set by IPGWOptions on erro-
neous packets to specify the bad IP header byte, and used by ICMPError
when constructing an error message.

—Fix IP Source flag. The IP source address of an ICMP error packet must
be the address of the interface on which the error is sent. ICMPError can’t
predict this interface, so it uses a default address and sets the Fix IP Source
annotation. After the ICMP packet has been routed towards a particular
interface, a FixIPSrc on that path will see the flag, insert the correct source
address, and recompute the IP checksum.

In a few cases elements require information of an inconveniently global
nature. A router usually has a separate IP address on each attached net-
work, and each network usually has a separate IP broadcast address. All of
these addresses must be known at multiple points in the Click configuration:
LookupIPRoute must decide if a packet is destined to the router itself, Check-
IPHeader must discard a packet with any of the IP broadcast addresses as
its source address, ICMPError must suppress responses to IP broadcasts, and
IPGWOptions must recognize any of the router’s addresses in an IP Timestamp
option. Each of these elements takes the complete list of addresses as part of
its configuration string, but ideally they would derive the list automatically
(perhaps using flow-based router context).

The IP router conforms to the routing standards both because of the behavior
of individual elements and because of their arrangement. In terms of individual
elements, the CheckIPHeader element checks exactly the properties required by
the standards: the IP length fields, the IP source address, and the IP checksum.
Also, IPGWOptions processes just the Record Route and Timestamp options,
since the source route options should be processed only on packets addressed to
the router. IPFragmenter fragments packets larger than the configured MTU,



14 · E. Kohler et al.

PrioSched
high priority

low priority

RoundRobinSched

Fig. 9. Some composable packet scheduler elements.

HashDemux RoundRobinSched

Fig. 10. A virtual queue implementing Stochastic Fairness Queueing.

but sends large, unfragmentable packets to an error output instead. Finally,
ICMPError, which encapsulates most input packets in an ICMP error message
and outputs the result, does not respond to broadcasts, ICMP errors, fragments,
and source-routed packets; ICMP errors should not be generated in response
to these packets. In terms of element arrangement properties, the standards
mandate the placement of DecIPTTL after the LookupIPRoute routing element;
a packet’s time-to-live can be decremented only after it is determined that the
packet is not destined for the router itself.

4. EXTENSIONS

The Click IP router is modular—it has sixteen elements on its forwarding
path—and, therefore, easy to understand and easy to extend. This section
demonstrates these benefits of modularity by presenting IP router extensions
and other configurations built with the same elements. We show simple exten-
sions supporting scheduling and dropping policies, queueing requirements, and
Differentiated Services; an IP tunneling configuration; and one non-IP router,
an Ethernet switch. The Click software supports many other extensions not
described here, including RFC 2507-compatible IP header compression and de-
compression, IP security, communication with wireless radios, network address
translation, firewalling, and other specialized routing tasks.

4.1 Scheduling

Packet scheduling is a kind of multiplexing: a scheduler decides how a number
of packet sources—usually queues—will share a single output channel. A Click
packet scheduler is naturally implemented as a pull element with multiple
inputs and one output. This element reacts to requests for packets by choosing
one of its inputs, pulling a packet from it, and returning that packet. (If the
chosen input has no packets ready, the scheduler will usually try other inputs.)

We have implemented three packet scheduler elements: RoundRobinSched,
PrioSched, and StrideSched. RoundRobinSched pulls from its inputs in round-
robin order, returning the first packet it finds (or no packet, if no input has
a packet ready). It always starts with the input cyclically following the last
successful pull. PrioSched is a strict priority scheduler; it always tries its



The Click Modular Router · 15

RED(p1, ...)

RED(p2, ...)

RED(p3, ...)

Classifier(...)
high priority

medium priority

low priority

Fig. 11. Weighted RED. The three RED elements have different RED parameters, so packets with
different priorities are dropped with different probabilities.

first input, then its second, and so forth, returning the first packet it gets.
StrideSched implements a stride scheduling algorithm [Waldspurger and Weihl
1995] with ticket values specified by the user. Other arbitrary packet schedul-
ing algorithms could be implemented in the same way. RoundRobinSched and
PrioSched are illustrated in Figure 9.

Both Queues and scheduling elements have a single pull output, so to an
element downstream, Queues and schedulers are indistinguishable. We can
exploit this property to build virtual queues, compound elements that act like
queues but implement more complex behavior than FIFO queueing. Figure 10
shows a virtual queue that implements a version of stochastic fairness queue-
ing [McKenney 1990]: packets are hashed into one of several queues that are
scheduled round-robin, providing some isolation between competing flows. The
IP router can be extended to use stochastic fairness queueing by replacing its
Queues with copies of Figure 10.

4.2 Dropping Policies

The Queue element implements a simple dropping policy: a configurable max-
imum length beyond which all incoming packets are dropped. Other policies
build on Queue rather than replacing it. For example, an independent RED ele-
ment implements random early detection dropping [Floyd and Jacobson 1993].
RED contains only drop decision code; this separates the dropping policy from
the packet storage policy, allowing either to be independently replaced. It also
allows important policy variants through configuration rearrangement.

Random early detection is more likely to drop packets when there is network
congestion; a link is considered congested when there are many packets in the
queue servicing that link. The RED element therefore queries router queue
lengths when deciding whether to drop a passing packet. Specifically, it queries
the number of packets in the nearest downstream Storage elements, which it
finds using flow-based router context. (Storage is a simple method interface
implemented by Queue and other elements that store packets.) RED can handle
one or more downstream Storage elements; if there are more than one, it adds
their packet counts together to form a single virtual count. This generalization
lets it implement variants like RED over multiple queues: a RED element
placed before the HashDemux in Figure 10 would count both of the figure’s
Queues. A different arrangement implements weighted RED [Cisco Corporation
1999], where packets are dropped with different probabilities depending on
their priority; see Figure 11. Finally, RED can be positioned after the Queues
instead of before them. In this case, it is a pull element and looks upstream



16 · E. Kohler et al.

RED

Classifier(...)

RoundRobin... RoundRobin...

HashDemux HashDemux

PrioSched

ToDevice ToDevice

IP router

high priority low priority

Fig. 12. A complex combination of dropping, queueing, and scheduling. The Classifier prioritizes
input packets into two virtual queues, each of which implements stochastic fair queueing (Fig-
ure 10). PrioSched implements priority scheduling on the virtual queues, preferring packets from
the left. The router is driving two equivalent T1 lines that pull packets from the same sources,
providing a form of load balancing. Finally, RED, at the top, implements RED dropping over all
four Queues.

rather than downstream for Storage elements, creating a strategy like drop-
from-front RED [Lakshman et al. 1996].

Simple RED dropping can be added to the IP router by adding a RED element
before each Queue.

4.3 Complex Extensions and Simpler Subsets

Click is equally well suited for building simple and complex packet processors.
A network administrator can easily extend the Click IP router to handle spe-
cialized routing tasks, or use a subset of its elements for some other application.

For example, imagine a complex IP router with the following requirements:

—two parallel T1 links to a backbone, between which traffic should be load-
balanced;

—division of traffic into two priority levels;
—fairness among the connections within each priority level;
—RED dropping driven by the total number of packets queued.

Click’s modular scheduling, queueing and dropping policy elements make this
easy; Figure 12 shows the extension.

Now consider Figure 13, where a remote mobile host (43.0.0.9) would like to
appear as part of its home network (1.0.0.x) with the help of a home node on that
network (1.0.0.10). A simple Click configuration for this task can reuse several



The Click Modular Router · 17

1.0.0.10

43.0.0.9
(1.0.0.11)

router
43.0.0.1

router
1.0.0.11.0.0.11

network
1.0.0.x

network
43.0.0.x

Internet

Internet

Fig. 13. Network arrangement for a configuration supporting mobility. The mobile host, 43.0.0.9,
normally has the IP address 1.0.0.11. Its home node, 1.0.0.10, will encapsulate packets destined
for 1.0.0.11 in packets destined for 43.0.0.9.

of the IP router’s elements. Figure 14 shows the configuration active at the
home node; it proxy-ARPs for the mobile host’s home IP address and performs
IP-in-IP encapsulation and unencapsulation to communicate with the mobile
host.

4.4 Differentiated Services

The Differentiated Services architecture [Blake et al. 1998] provides mecha-
nisms for border and core routers to jointly manage aggregate traffic streams.
Diffserv border routers classify and tag packets according to traffic type and en-
sure that traffic enters the network no faster than allowed; core routers queue
and schedule packets based on their tags. The diffserv architecture envisions
flexible combinations of classification, tagging, shaping, dropping, queueing,
and scheduling functions. We have implemented all of these components as
Click elements, which gives router administrators full control over how they
are arranged.

For example, Figure 15 implements a realistic diffserv traffic conditioning
block. This configuration separates incoming traffic into 4 streams based on
the IP header’s Differentiated Services Code Point field (DSCP) [Nichols et al.
1998]. The first three streams are rate-limited, while the fourth represents
normal best-effort delivery. The rate-limited streams are given priority over
the normal stream. From top to bottom in Figure 15, these streams are (A)
limited by dropping—the stream is dropped when more than 7,500 packets
per second are received on average; (B) shaped—at most 10,000 packets per
second are allowed through the Shaper, with any excess packets left enqueued;
and (C) limited by reclassification—when more than 12,500 packets per second
are received, the stream is reclassified as best-effort delivery and sent into the
lower priority queue.

4.5 Ethernet Switch

Figure 16 shows a Click configuration unrelated to IP, namely a functional,
IEEE 802.1d-compliant Ethernet switch. It acts as a learning bridge and par-
ticipates with other 802.1d-compliant bridges to determine a spanning tree for
the network.

The EtherSwitch element can be used alone as a simple, functional learn-



18 · E. Kohler et al.

FromDevice(eth0)

ToDevice(eth0)

Classifier(...)

ARPQuerier(1.0.0.10, ...)

ARPResponder
(1.0.0.10/32 ...,
1.0.0.11/32 ...)

GetIPAddress(16)

StripIPHeader

CheckIPHeader

Strip(14)

Classifier(...)
SetIPAddress(1.0.0.1)

IPEncap(4,
1.0.0.10, 43.0.0.9)

Strip(14)

ARP
queries

IP-in-IP
from 43.0.0.9

IP
for 1.0.0.11

ARP
responses

other IP
for 1.0.0.10

for 1.0.0.10 for others

to Linux

to Linux

Fig. 14. A configuration for the home node, 1.0.0.10, in the arrangement of Figure 13. The home
node proxy-ARPs for the mobile node (ARPResponder), unencapsulates packets from the remote
node, sending them onto the local network (CheckIPHeader path), and performs IP encapsulation
for packets destined for the mobile node (IPEncap path). Elements not shown ensure that packets
generated by 1.0.0.10 itself are properly encapsulated.

C
la

ss
if

ie
r(

...
)

A
R

P
Q

u
er

ie
r

Meter(7500)
Discard

Shaper(10000)

Meter(12500)

R
ou

n
d

R
ob

in
S

ch
ed

P
ri

oS
ch

ed

SetIPDSCP(D)

T
oD

ev
ic

e

A

B

C

D

Fig. 15. A sample traffic conditioning block. Meters and Shapers measure traffic rates in packets
per second. A, B, C, and D represent DSCP values.

ing bridge. The EtherSpanTree and Suppressor elements are necessary only to
avoid cycles when multiple bridges are used in a LAN. EtherSpanTree imple-
ments the IEEE 802.1d protocol for constructing a network spanning tree; it
works by controlling the Suppressor elements. Suppressor normally forwards



The Click Modular Router · 19

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)

EtherSwitchEtherSpanTree(s1, s2, ...)

s1 :: Suppressor

s2 :: Suppressor

ToDevice(eth0) ToDevice(eth1)

802.1d other 802.1d other

Fig. 16. An Ethernet switch configuration.

packets from each input to the corresponding output, but also exports a method
interface for suppressing and unsuppressing individual ports. Packets arriving
on a suppressed port are dropped. EtherSpanTree uses this interface to pre-
vent EtherSwitch from forwarding packets along edges not on the spanning
tree. The Suppressors cannot be found using flow-based router context, so the
user must specify them by name in EtherSpanTree’s configuration string.

5. KERNEL ENVIRONMENT

Click runs as a kernel thread inside a Linux 2.2 kernel. The kernel thread
runs the router driver, which loops over the task queue and runs each task.
Only interrupts can preempt this thread, but to keep the system responsive, the
router driver voluntarily gives up the CPU to Linux from time to time. (The user
can configure how often with a ScheduleLinux element.) There is generally only
one driver thread active at a time. However, during configuration installation,
there may be two or more simultaneously active router configurations and
driver threads—the new router plus several old ones in the process of dying.

The Click kernel module uses Linux’s /proc filesystem to communicate with
user processes. To bring a router on line, the user creates a configuration
description in the Click language and writes it to /proc/click/config (or
/proc/click/hotconfig for a hot-swap installation). Other files in /proc/click

export information about the currently installed configuration and memory
statistics. When installing a router configuration, Click creates a subdirectory
under /proc/click for each element. This subdirectory contains that element’s
handlers (Section 2.6). The code that handles accesses to /proc runs outside
the Click driver thread, in the context of the reading or writing process.

A running Click router contains four important object categories: elements,



20 · E. Kohler et al.

a router, packets, and timers.

—Elements. The system contains an element object for each element in the
current configuration, as well as prototype objects for every kind of primitive
element that could be used.

—Router. The single router object collects information relevant to a given
router configuration. It configures the elements, checks that connections are
valid, and puts the router on line; it also manages the task queue.

—Packets. Click packet data is stored in a single block of memory, as opposed
to a BSD mbuf-like structure. Packet data is copy-on-write—when copying a
packet, the system copies the packet header but not the data. Annotations
are stored in the packet header in a fixed static order; there is currently no
way to dynamically add a new kind of annotation. In the Linux kernel, Click
packet objects are equivalent to sk_buffs (Linux’s packet abstraction).

—Timers. In the Linux kernel, Click timers are implemented with Linux timer
queues, which on Intel PCs have .01-second resolution.

5.1 Polling and Device Handling

The original Click system [Morris et al. 1999] shared Linux’s interrupt struc-
ture and device handling; our goal was to change Linux as little as possible.
However, interrupt overhead and device handling dominated that system’s per-
formance, consuming about 4.8 and 6.7 µs respectively of the 13 µs required to
forward a packet on a 700 MHz Pentium III PC. In addition, Click processed
packets at a lower priority than interrupts, leading to receive livelock [Mogul
and Ramakrishnan 1997]: with increasing numbers of input packets, inter-
rupt processing eventually starved all other system tasks, leading to reduced
throughput.

Click now eliminates interrupts in favor of polling. Device-handling elements
—namely, FromDevice and ToDevice—place themselves on Click’s task queue.
When activated, FromDevice polls its device’s receive DMA queue for newly
arrived packets; if any are found, it pushes them through the configuration.
ToDevice examines its device’s transmit DMA queue for empty slots, which it
fills by pulling packets from its input. These elements also refill the receive
DMA list with empty buffers and remove transmitted buffers from the trans-
mit DMA list. The device never interrupts the processor; furthermore, Linux
networking code never executes, except as requested by the Click router config-
uration. Mogul and Ramakrishnan [1997] also used polling to eliminate receive
livelock. However, their system left interrupts enabled under light load, while
Click is a pure polling system—even infrequent PC interrupts are simply too
expensive.

Polling required changes to Linux’s structure representing network devices
and the drivers for the network devices we used. The new device structure
includes, for example, methods to turn interrupts on and off, to poll for received
packets, and to clean the transmit DMA ring.

The introduction of polling let us eliminate all programmed I/O (PIO) in-
teraction with the Ethernet controllers. One PIO reenabled receive interrupts
after an interrupt was processed, and was not necessary in a polling system.



The Click Modular Router · 21

The second PIO was used in the send routine to tell the controller to look for
a new packet to transmit. To eliminate it, we configured the network card to
periodically check the transmit DMA queue for new packets. As a result, all
communication between Click and the controller takes place indirectly through
the shared DMA queues in main memory, in the style of the Osiris network con-
troller [Druschel et al. 1994]. This saved roughly two microseconds per packet,
as a PIO takes about 1 µs to execute.

These improvements eliminated receive livelock, reduced the total time re-
quired to process a packet from 13 µs to 2.8 µs, and increased Click’s maximum
loss-free forwarding rate of minimum-sized packets more than fourfold. Mogul
and Ramakrishnan [1997] found that polling eliminated receive livelock but
did not increase peak forwarding rate. We hypothesize that interrupts are rel-
atively much more expensive on PCs than on the Alpha hardware they used.

6. EVALUATION

This section evaluates Click’s performance for IP routing and for several ex-
tended configurations. We also describe and analyze sources of overhead in
Click’s design and implementation.

6.1 Experimental Setup

The experimental setup consists of a total of nine Intel PCs running Linux—
specifically, a version of Linux 2.2.14 modified to add support for Click’s polling
device drivers. Of the nine PCs, one is the router host, four are source hosts, and
four are destination hosts. The router host has eight 100 Mbit/s Ethernet con-
trollers connected, by point-to-point links, to the source and destination hosts.
During a test, each source generates an even flow of UDP packets addressed
to a corresponding destination; the router is expected to get them there. The
tests use version 1.1 of the Click software.

The router host has a 700 MHz Intel Pentium III CPU and an Intel L440GX+
motherboard. Its Ethernet controllers are DEC 21140 Tulip 100 Mbit/s PCI
controllers [Digital Equipment Corporation 1998] on multi-port cards, split
across the motherboard’s two independent PCI buses. The Pentium III has a
16 KB L1 instruction cache, a 16 KB L1 data cache, and a 256 KB L2 unified
cache. The source and destination hosts have 733 MHz Pentium III CPUs and
200 MHz Pentium Pro CPUs, respectively. Each has one DEC 21140 Ethernet
controller. The source-to-router and router-to-destination links are point-to-
point full-duplex 100 Mbit/s Ethernet.

The source hosts generate UDP packets at specified rates, and can generate
up to 147,900 64-byte packets per second. The destination hosts count and dis-
card the forwarded UDP packets. Each 64-byte UDP packet includes Ethernet,
IP, and UDP headers as well as 14 bytes of data and the 4-byte Ethernet CRC.
When the 64-bit preamble and 96-bit inter-frame gap are added, a 100 Mbit/s
Ethernet link can carry up to 148,800 such packets per second.

6.2 Forwarding Rates

We characterize performance by measuring the rate at which a router can for-
ward 64-byte packets over a range of input rates. Minimum-size packets stress



22 · E. Kohler et al.

0
50

100
150
200
250
300
350
400
450
500

0 50 100 150 200 250 300 350 400 450 500

F
or

w
ar

d
in

g 
ra

te
 (

K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

Click
Polling Linux
Linux

Fig. 17. Forwarding rate as a function of input rate for Click and Linux IP routers (64-byte
packets).

the router harder than larger packets; the CPU and several other bottleneck re-
sources are consumed in proportion to the number of packets forwarded, not in
proportion to bandwidth. Plotting forwarding rate versus input rate indicates
both the maximum loss-free forwarding rate (MLFFR) and the router’s behav-
ior under overload. An ideal router would emit every input packet regardless
of input rate, corresponding to the line y = x.

Figure 17 compares Click’s and Linux’s performance for IP routing. The line
marked “Click” shows the performance of an eight-interface version of the Click
IP router configuration in Figure 8. This configuration has a total of 161 ele-
ments (19 elements per interface plus 9 elements shared by all interfaces). The
“Linux” and “Polling Linux” lines show the performance of Linux IP routing;
“Linux” uses the standard interrupting device drivers, while “Polling Linux”
was modified to use Click’s polling drivers.

Click’s maximum loss-free forwarding rate is 333,000 packets per second; its
peak forwarding rate, attainable with bursty senders, is 360,000 packets per
second. When these rates are exceeded, the Ethernet controllers report that
they are discarding received packets due to insufficient receive DMA descrip-
tors, which suggests that the bottleneck is the router’s CPU, not its PCI bus
bandwidth.

Standard Linux’s MLFFR is 84,000 packets per second; its output rate de-
clines as the input rate increases due to receive livelock. Polling Linux’s MLFFR
of 284,000 packets per second is over three times standard Linux’s MLFFR,
which demonstrates the advantages of avoiding interrupts and handling de-
vice I/O efficiently. Polling Linux is slightly slower than Click, perhaps because
Linux’s routing table lookup algorithms are slower, but more scalable.

An otherwise idle Click IP router forwards 64-byte packets with a one-way
latency of 29 µs. This number was calculated by taking the round-trip ping time
through the router (measured with tcpdump), subtracting the round-trip ping
time with the router replaced by a wire, and dividing by two. 5.8 µs of the 29 are
due to the time required to transmit a 64-byte Ethernet packet at 100 megabits
per second. 10 µs are due to the costs of polling eight Ethernet controllers, all



The Click Modular Router · 23

0
50

100
150
200
250
300
350
400
450
500

0 50 100 150 200 250 300 350 400 450 500

F
or

w
ar

d
in

g 
ra

te
 (

K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

Simple
Switch
IP
IP+RED
IP+SFQ

Fig. 18. Forwarding rate as a function of input rate for extended IP router configurations and
some non-IP routers (64-byte packets).

but two of which are idle in this test. 2.5 µs of delay is the expected amount
of time the Tulip controller will take to poll for a new packet to transmit. The
latency of a router running standard Linux IP code is 33 µs.

Figure 18 shows the performance of some extended IP router configurations
and some non-IP-router configurations. The “Simple” line shows the perfor-
mance of the simplest possible Click router, which forwards input packets di-
rectly from input to output with no intervening processing. The MLFFR for this
configuration is 452,000 packets per second. It is limited by the PCI bus, not the
CPU, which explains its different behavior under overload. The “Switch” line
corresponds to the Ethernet switch configuration of Figure 16; its MLFFR is
close to that of “Simple”. The “IP” line, repeated from Figure 17, shows the per-
formance of the base IP router configuration. The “IP+RED” line corresponds to
an IP router in which a RED element is inserted before each Queue. No packets
were dropped by RED in the test, since the router’s output links are as fast
as its inputs. The “IP+SFQ” line shows the performance of an IP router with
each Queue replaced by a stochastic fair queue—namely, a version of Figure 10
with four component Queues. As router complexity increases from simple for-
warding through IP routing to IP routing with stochastic fair queueing, Click’s
performance drops only gradually.

This test configuration shows both Click and Linux in a better light than
might be seen in a real network. The tests did not involve fragmentation, IP
options, or ICMP errors, though Figure 8 has all the code needed to handle
these. Increasing the number of hosts involved might slow Click down by in-
creasing the number of ARP table entries. Increasing the routing table size
would also decrease performance, a problem addressed by previous work on
fast lookup in large tables [Degermark et al. 1997; Waldvogel et al. 1997]. The
configuration is nevertheless sufficient to analyze the architectural aspects of
Click’s performance.



24 · E. Kohler et al.

Table I. Microbenchmarks of Tasks Involved in the Click IP Forwarding Path

Task Time (ns/packet)

Polling packet 528
Refill receive DMA ring 90
Push through Click forwarding path 1565
Pull from Click queue 103
Enqueue packet for transmit 161
Clean transmit DMA ring 351

Total 2798

6.3 Analysis

Table I breaks down the cost of forwarding a packet through a Click router.
Costs were measured in nanoseconds by Pentium III cycle counters [Intel Cor-
poration 1996]; each cost is the accumulated cost for all packets in a 10-second
run divided by the number of packets forwarded. “Polling packet” is the time
FromDevice spends taking a packet from the Tulip’s receive DMA ring. “Refill
receive DMA ring” is the time FromDevice spends replacing the DMA descriptor
of the packet it just received with a new descriptor, so that the Tulip may re-
ceive a new packet. The Click IP forwarding path (see Figure 8) is divided into a
push path and a pull path. The push path involves 15 elements; it begins when
an input packet is emitted by some FromDevice element and ends when the
packet reaches the Queue element before the appropriate transmitting device.
The pull path involves just two elements—when a ToDevice element is ready to
send, it pulls a packet from a Queue. The time consumed by Linux’s equivalent
of the push path is 1.65 µs, slightly more than Click’s 1.57 µs. “Enqueue packet
for transmit” is the time ToDevice spends enqueueing a packet onto the Tulip’s
transmit DMA ring. “Clean transmit DMA ring” is the time ToDevice spends
removing DMA descriptors of transmitted packets. Overall, Click code takes
60% of the time required to process a packet; device code takes the other 40%.

Table II breaks down the 1.57 µs push cost by element. Each element’s cost
is the difference between the Pentium III cycle counter value before and after
executing the element, decreased by the time required to read the cycle counter;
it includes the virtual function call(s) that move a packet from one element to
the next. (IPFragmenter is so inexpensive because it does nothing—no packets
need to be fragmented in this test—and its packet handoff requires one virtual
function call. Other elements that do nothing in this test, such as IPGWOptions,
have agnostic ports that incur two virtual function calls per packet handoff.)
The FromDevice and Queue elements are not included.

The total cost of 2798 ns measured with performance counters implies a
maximum forwarding rate of about 357,000 packets per second, consistent
with the observed peak forwarding rate of 360,000 packets per second.

Forwarding a packet through Click incurs five L2 data cache misses (mea-
sured using Pentium III performance counters): one to read the receive DMA
descriptor, two to read the packet’s Ethernet and IP headers, and two to re-
move the packet from the transmit DMA queue and put it into a pool of reusable
packets. Each of these loads takes about 112 nanoseconds. Click runs without



The Click Modular Router · 25

Table II. Execution Times of Elements Involved in IP Forwarding, in Nanoseconds per Packet

Element Time (ns)

Classifier 70
Paint 77
Strip 67
CheckIPHeader 457
GetIPAddress 120
LookupIPRoute 140
DropBroadcasts 77
CheckPaint 67
IPGWOptions 63
FixIPSrc 63
DecIPTTL 119
IPFragmenter 29
ARPQuerier 106

Subtotal 1455

incurring any other L2 data or instruction cache misses. 1295 instructions are
retired during the forwarding of a packet, implying that significantly more com-
plex Click configurations could be supported without exhausting the Pentium
III’s 16K L1 instruction cache.

6.4 Overhead of Modularity

Click’s modularity imposes performance costs in two ways: the overhead of
passing packets between elements, and the overhead of unnecessarily general
element code.

Passing a packet from one element to the next causes either one or two
virtual function calls, where a virtual function call includes loading the rele-
vant function pointer from a virtual function table as well as an indirect jump
through that function pointer. Indirect jumps take about 10 nanoseconds if the
Pentium III’s branch target buffer successfully predicts the target address, but
can take dozens of nanoseconds if it fails. Most elements in the IP router use
the simplified agnostic-port interface that causes two virtual function calls per
packet handoff; the CPU usually predicts one call but doesn’t predict the other.
As a result, the total cost of packet handoff is about 70 nanoseconds. Thus,
adding an empty element to a configuration graph usually adds 70 nanosec-
onds of overhead, and the IP router, with 16 elements on its forwarding path,
has about 1 µs of overhead. This overhead is avoidable—we have built tools
that can automatically eliminate all virtual function calls from a Click config-
uration [Kohler 2000].

Several elements in the IP router configuration were implemented with more
generality than the IP router requires. The best example is Classifier, which the
IP router uses to classify Ethernet packets into ARP queries, ARP responses,
and IP packets. However, Classifier can handle many classification tasks; at
run time, it interprets a small data structure (derived from its configuration
string) that tells it which packet data to examine. An element specialized for
the IP router’s classification task could use straight-line code with compiled-in



26 · E. Kohler et al.

C
la

ss
if

ie
r(

...
)

A
R

P
Q

u
er

ie
r Shaper(30000)

P
ri

oS
ch

ed

T
oD

ev
ic

e

high
priority

medium
priority

low
priority

Fig. 19. Another Click diffserv traffic conditioning block. This configuration fragment implements
strict priority with three priority levels; in addition, the high-priority stream is rate-limited to
30,000 packets per second.

constants, avoiding interpretation overhead. We measured this overhead by
writing such a specialized classifier. This element cost 24% less CPU time per
packet than the generic Classifier, but even the generic Classifier takes only
4% of the per-packet CPU time expended inside the Click configuration. Since
the rest of the IP router’s elements offer less opportunity for specialization,
we conclude that element generality has a relatively small effect on Click’s
performance.

To analyze the combined effects of these overheads, we wrote two single ele-
ments that combine much of the processing in Figure 8. These elements reduce
the number of virtual function calls on the forwarding path, specialize some
of the more general elements, and offer the compiler better opportunities for
optimization. One element implements the functionality of Paint, Strip, Check-
IPHeader, and GetIPAddress; the other, the functionality of DropBroadcasts,
CheckPaint, IPGWOptions, FixIPSrc, DecIPTTL, and IPFragmenter. The re-
sulting configuration is equivalent to Figure 8, but has only eight elements
on the forwarding path instead of sixteen. The new configuration’s push path
processes an IP packet in 1.03 µs instead of 1.57 µs. When we add eight dis-
tinct do-nothing elements to the forwarding path of this new configuration,
restoring the number of elements to sixteen, the packet processing time rises
to 1.58 µs. This suggests that the entire reduction from 1.57 µs to 1.03 µs is
due to reducing the number of virtual function calls.

6.5 Differentiated Services Evaluation

Section 4.4 showed that Click can conveniently model Differentiated Services
configurations; this section shows that Click can enforce diffserv policies us-
ing only packet scheduling elements like PrioSched. The test configuration
involves three source hosts sending packets marked as high, medium, and low
priority respectively. The router has a single 100 Mbit/s Ethernet output link.
It uses the configuration in Figure 8 with each Queue replaced with Figure 19.
The configuration queues each priority level separately; it also rate-limits the
highest priority traffic to no more than 30,000 packets per second. The Prio-
Sched packet scheduling element implicitly schedules CPU time as well as link
bandwidth.

Figure 20 shows the results. The per-source sending rate varies along the x
axis; the total input load on the router is three times the x-axis value. The y
axis indicates how many packets per second the router forwarded from each
of the sources. Once the per-source input rate rises above 30,000 packets per



The Click Modular Router · 27

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

F
or

w
ar

d
in

g 
ra

te
 (

K
pa

ck
et

s/
s)

Input rate (Kpackets/s)

High priority
Medium priority
Low priority

Fig. 20. Performance of the Click diffserv configuration in Figure 19. Three traffic sources send 64-
byte UDP packets with three different priorities into a router with a single 100 Mbit/s output link.
The sources send equal numbers of high, medium, and low-priority packets; the x axis indicates
the input rate for each priority level.

second, the router starts dropping high-priority packets, since they are rate-
limited. Above 57,000 packets per second, the output link is saturated, and
medium priority packets start taking bandwidth away from low. Above 100,000
packets per second, the router runs out of CPU time, forcing the Ethernet
controllers to drop packets. Since the controllers don’t understand priority,
they drop medium-priority packets as well as low. Each medium-priority packet
that a controller drops leaves room on the output link for a low-priority packet,
which is why the low-priority forwarding rate isn’t driven down to zero.

There is probably no way to achieve perfect packet scheduling under overload;
instead, a router should be engineered with sufficient processing power to carry
all packets to the point where the priority decision is made. The Click user
can approximate such a design by moving the classification and per-priority
queues of Figure 19 earlier in the configuration—that is, nearer to FromDevice
than ToDevice. This wastes less CPU time on lower priority packets that will
eventually be dropped, because they travel through less of the configuration
before reaching the drop point. Even with the priority decision late in the
configuration, Click enforces priority reasonably well under overload and very
well with ordinary loads.

7. RELATED WORK

The x-kernel [Hutchinson and Peterson 1991] is a framework for implementing
and composing network protocols. It is intended for use at end nodes, where
packet motion is vertical (between the network and user level) rather than
horizontal (between network interfaces). Like a Click router, an x-kernel con-
figuration is a graph of processing nodes, and packets are passed between nodes
by virtual function calls. However, an x-kernel configuration graph is always
acyclic and layered, as x-kernel nodes were intended to represent protocols in
a protocol stack. This prevents cyclic configurations like our IP router. The
x-kernel’s inter-node communication protocols are more complex than Click’s.



28 · E. Kohler et al.

Connections between nodes are bidirectional—packets travel up the graph to
user level and down the graph to the network. Packets pass alternately through
“protocol” nodes and “session” nodes, where the session nodes correspond to
end-to-end network connections like TCP sessions. Bidirectional connections
and session nodes are irrelevant to most routers.

Scout [Mosberger and Peterson 1996; Peterson et al. 1999] was designed for
use as an operating system at end nodes, but it is better suited for routing than
the x-kernel; for example, cyclic configurations are partially supported, and
session nodes are not mandatory. Execution in Scout is centered on “paths”,
sequences of packet processing functions. Each path has implicit queues on its
inputs and outputs; it is not clear, therefore, how many queues would appear
in a complex configuration like the IP router, which is not amenable to lin-
earization. Each path is run by a single thread and has a CPU priority, and
packets are classified into the correct path as early as possible. For example,
TCP/IP packets containing MPEG data can be routed immediately to the cor-
rect path, whose scheduling behavior might be specialized for MPEG. If desired,
Click primitives can support some uses of paths: an early Classifier element
could send MPEG-in-TCP-in-IP-in-Ethernet traffic into a special Queue, and
the element that took packets off that Queue could be scheduled appropriately
for MPEG data. However, Scout supports per-flow paths, where a path object
is created for each individual network flow. This allows its CPU scheduler to
treat flows independently; Click’s CPU scheduler can only treat flow classes
independently.

The UNIX System V STREAMS system [Ritchie 1984] is also built from
composable packet processing modules. STREAMS modules include implicit
queueing by default. Each module must be prepared for the next module’s queue
to fill up, and to respond by queueing or discarding or deferring the processing
of incoming packets. Modules with multiple inputs or outputs must also make
packet scheduling decisions. STREAMS’ tendency to spread scheduling and
queueing logic throughout the configuration conflicts with a router’s need for
precise control over these functions.

FreeBSD contains a modular networking system called Netgraph [Elischer
and Cobbs 1998] whose nodes strongly resemble Click elements. Netgraph was
designed for composing coarse-grained modules such as PPP encapsulation
and other framing protocols. Configurations are built up dynamically; there
are commands that add and delete nodes, and that connect and disconnect
“hooks” (the equivalent of ports), but no external specification for a configura-
tion. This supports on-line configuration modification somewhat more naturally
than Click, but there is no way to analyze a Netgraph configuration off line or
install a new configuration atomically.

ALTQ [Cho 1998], a system for configurable traffic management, is also
shipped with FreeBSD. It contains several sophisticated queueing policies, but
its configurability is limited to the specification of one queueing policy per
output interface.

The router plugins system [Decasper et al. 1998; Decasper 1999] was de-
signed to make IP routers more extensible. A router plugin is a software mod-
ule executed when a classifier matches a particular flow. These classifiers can



The Click Modular Router · 29

be installed at any of several “gates”. However, gates are fixed points in the IP
forwarding path; there is no way to add new gates or to control the path itself.

To the best of our knowledge, commercial routers are difficult to extend, either
because they use specialized hardware [Newman et al. 1998; Partridge et al.
1998] or because their software is proprietary. However, open router software
does not necessarily make a router easily extensible. A network administrator
could, in principle, implement new routing functions in Linux, but we expect
few administrators have the time or ability to modify the monolithic Linux
kernel. Click’s modularity makes it easy to take advantage of its extensibility.

The active networking research program allows anyone to write code that
will affect a router [Tennenhouse et al. 1997; Smith et al. 1999]. Click al-
lows a trusted user to change any aspect of a router; active networking allows
untrusted packets to decide how they should be routed. The two approaches
are complementary, and Click may provide a good platform for active network
research.

Click’s polling implementation and device driver improvements were derived
from previous work [Druschel et al. 1994; Mills 1988; Mogul and Ramakrishnan
1997; Wroclawski 1997].

8. CONCLUSION

Click is an open, extensible, and configurable router framework. The Click IP
router demonstrates that real routers can be built from small, modular el-
ements, and our performance analysis shows that modularity is compatible
with good forwarding performance for PC hardware. IP router extensions for
scheduling and dropping policies, complex queueing, and Differentiated Ser-
vices simply require adding and rearranging a couple elements. Finally, Click
is flexible enough to support other packet processing applications. The Click
system is free software; it is available for download at http://www.pdos.lcs.
mit.edu/click/.

APPENDIX

ELEMENT GLOSSARY

This section lists 38 of the approximately 130 elements included with version
1.1 of the Click software. Each entry follows this format:

ElementName(configuration arguments) Push, pull, or agnostic (specifies
port types). Port descriptions (packet types and numbers of ports). Descrip-
tion.

More detailed descriptions are accessible on line at http://www.pdos.lcs.mit.
edu/click/doc/.

ARPQuerier(...) Push. First input takes IP packets, second input takes ARP
responses with Ethernet headers. Output emits ARP queries and IP-in-
Ethernet packets. Uses ARP to find the Ethernet address corresponding to
each input IP packet’s destination IP address annotation; encapsulates the
packet in an Ethernet header with that destination Ethernet address.



30 · E. Kohler et al.

ARPResponder(ip eth, ...) Agnostic. Input takes ARP queries, output emits
ARP responses. Responds to ARP queries for IP address ip with the static
Ethernet address eth.

CheckIPHeader(...) Agnostic. Input takes IP packets. Discards packets with
invalid IP length, source address, or checksum fields; forwards valid packets
unchanged.

CheckPaint(p) Agnostic. Input takes any packet. Forwards packets with paint
annotation p to both outputs; otherwise just to first.

Classifier(...) Push. Input takes any packet. Examines packet data according
to a set of classifiers, one classifier per output port. Forwards packet to
output port corresponding to the first classifier that matched. Example
classifier: “12/0800” checks that the packet’s data bytes 12 and 13 contain
values 8 and 0, respectively. See also IPClassifier.

DecIPTTL Agnostic. Input takes IP packets. Decrements input packets’ IP
time-to-live field. If the packet is still live, incrementally updates IP check-
sum and sends modified packet to first output; if it has expired, sends
unmodified packet to second output.

Discard Push. Discards all input packets.
DropBroadcasts Agnostic. Input takes any packet. Discards packets that

arrived as link-level broadcasts; forwards others unchanged.
EtherSpanTree Agnostic. Inputs take IEEE 802.1d messages. Implements

the IEEE 802.1d spanning tree algorithm for Ethernet switches.
EtherSwitch Push. Inputs take Ethernet packets; one input per output. Learn-

ing, forwarding Ethernet switch. Learns the interfaces corresponding to
Ethernet addresses by examining input packets’ source addresses; forwards
packets to the correct output port, or broadcasts them if the destination
Ethernet address is not yet known.

FixIPSrc(ip) Agnostic. Input takes IP packets. Sets the IP header’s source
address field to the static IP address ip if the packet’s Fix IP Source anno-
tation is set; forwards other packets unchanged.

FromDevice(devicename) Push. No inputs. Sends packets to its single out-
put as they arrive from a Linux device driver.

FromLinux(devicename, ip/netmask) Push. No inputs. Installs into Linux
a fake Ethernet device devicename and a routing table entry that sends
packets for ip/netmask to that fake device. The result is that packets gen-
erated at the router host and destined for ip/netmask are emitted on From-
Linux’s single output as they arrive from Linux.

GetIPAddress(16) Agnostic. Input takes IP packets. Copies the IP header’s
destination address field (offset 16 in the IP header) into the destination
IP address annotation; forwards packets unchanged.

HashDemux(offset, length) Push. Input takes any packet; arbitrary number
of outputs. Forwards packet to one of its outputs, chosen by a hash bytes
[offset, offset + length) of the packet’s data.

ICMPError(ip, type, code) Agnostic. Input takes IP packets, output emits
ICMP error packets. Encapsulates first part of input packet in ICMP error



The Click Modular Router · 31

header with source address ip, error type type, and error code code. Sets
the Fix IP Source annotation on output packets.

IPClassifier(...) Push. Input takes IP packets. Examines packet data accord-
ing to a set of classifiers, one classifier per output port. Forwards packet
to output port corresponding to the first classifier that matched. Example
classifier: “ip src 1.0.0.1 and dst tcp port www” checks that the packet’s
source IP address is 1.0.0.1, its IP protocol is 6 (TCP), and its destination
TCP port is 80. See also Classifier.

IPEncap(p, ipsrc, ipdst) Agnostic. Input takes any packet, output emits IP
packets. Encapsulates input packets in an IP header with protocol p, source
address ipsrc, and destination address ipdst.

IPFragmenter(mtu) Push. Input takes IP packets. Fragments IP packets
larger than mtu; sends fragments, and packets smaller than mtu, to first
output. Too-large packets with the don’t-fragment IP header flag set are
sent unmodified to the second output.

IPGWOptions Agnostic. Input takes IP packets. Processes IP Record Route
and Timestamp options; packets with invalid options are sent to the second
output.

LookupIPRoute(table) Push. Input takes IP packets with valid destination
IP address annotations. Arbitrary number of outputs. Looks up input pack-
ets’ destination annotations in a static routing table specified in the con-
figuration string. Forwards each packet to the output port specified in the
resulting routing table entry; sets its destination annotation to the result-
ing gateway address, if any.

Meter(r) Push. Input takes any packet. Sends packets to first output if recent
input rate averages < r, second output otherwise. Multiple rate arguments
are allowed.

Paint(p) Agnostic. Input takes any packet. Sets each input packet’s paint
annotation to p before forwarding it.

PrioSched Pull. Inputs take any packet; one output port, arbitrary number
of input ports. Responds to pull requests by trying inputs in numeric order,
returning the first packet it receives. Thus, lower-numbered inputs have
priority.

Queue(n) Push input, pull output. Input takes any packet. Stores packets in
a FIFO queue; maximum queue capacity is n.

RED(min-thresh, max-thresh, max-p) Agnostic. Input takes any packet. Drops
packets probabilistically according to the Random Early Detection algo-
rithm [Floyd and Jacobson 1993] with the given parameters; forwards other
packets unchanged. Examines nearby router queue lengths when making
its drop decision.

RoundRobinSched Pull. Inputs take any packet; one output port, arbitrary
number of input ports. Responds to pull requests by trying inputs in round-
robin order; returns the first packet it receives. It first tries the input port
just after the one that succeeded on the last pull request.



32 · E. Kohler et al.

ScheduleInfo(elementname param, ...) No inputs or outputs. Specifies el-
ements’ initial task queue scheduling parameters by element name. Each
scheduling parameter is a real number; an element with parameter 2p will
be scheduled twice as often as an element with parameter p.

ScheduleLinux No inputs or outputs. Places itself on the task queue, and
returns to Linux’s scheduler every time it is run.

SetIPAddress(ip) Agnostic. Input takes IP packets. Sets each packet’s desti-
nation IP address annotation to the static IP address ip. Forwards modified
packets to first output.

SetIPDSCP(c) Agnostic. Input takes IP packets. Sets each packet’s IP diffserv
code point field [Nichols et al. 1998] to c and incrementally updates the IP
header checksum. Forwards modified packets to first output.

Shaper(n) Pull. Input takes any packet. Simple pull traffic shaper: forwards
at most n pull requests per second to its input. Pull requests over that rate
get a null pointer in response.

Strip(n) Agnostic. Input takes any packet. Strips off each packet’s first n
bytes; forwards modified packets to first output.

StripIPHeader Agnostic. Input takes IP packets. Strips off each packet’s IP
header, including any options; forwards modified packets to first output.

Suppressor Agnostic. Inputs take any packet; arbitrary number of input
ports, same number of output ports. Normally forwards packets arriving
on each input port to the corresponding output port. A method interface
allows other elements to ask Suppressor to drop packets arriving on par-
ticular input ports.

Tee(n) Push. Input takes any packet; n output ports. Forwards each input
packet to all n output ports.

ToDevice(device) Pull. Input takes Ethernet packets; no outputs. Hands pack-
ets to a Linux device driver for transmission. Activates pull requests only
when the device is ready.

ToLinux Push. Input takes Ethernet packets; Linux will ignore the Ethernet
header except for the protocol field. No outputs. Hands input packets to
Linux’s default network input software.

ACKNOWLEDGMENTS

Massimiliano Poletto helped us enormously with tests and benchmarks. We
also thank Alex Snoeren for his work on the IPsec elements, Chuck Blake for
help with hardware, and Hari Balakrishnan, Daniel Jackson, Greg Minshall,
John Wroclawski, Chandu Thekkath, and the anonymous reviewers for their
helpful comments.

REFERENCES

BAKER, F. 1995. Requirements for IP Version 4 routers. RFC 1812 (June), Internet Engineering
Task Force. ftp://ftp.ietf.org/rfc/rfc1812.txt.

BLAKE, S., BLACK, D., CARLSON, M., DAVIES, E., WANG, Z., AND WEISS, W. 1998. An architecture
for differentiated services. RFC 2475 (Dec.), Internet Engineering Task Force. ftp://ftp.ietf.
org/rfc/rfc2475.txt.



The Click Modular Router · 33

CHO, K. 1998. A framework for alternate queueing: towards traffic management by PC-UNIX
based routers. In Proc. USENIX 1998 Annual Technical Conference (June 1998), pp. 247–258.

CISCO CORPORATION. 1999. Distributed WRED. Technical report. http://www.cisco.com/

univercd/cc/td/doc/product/software/ios111/cc111/wred.htm, as of January 2000.
CLARK, D. 1985. The structuring of systems using upcalls. In Proc. of the 10th ACM Symposium

on Operating Systems Principles (SOSP) (Dec. 1985), pp. 171–180.
DECASPER, D., DITTIA, Z., PARULKAR, G., AND PLATTNER, B. 1998. Router plugins: A software

architecture for next generation routers. In Proc. ACM SIGCOMM Conference (SIGCOMM ’98)
(Oct. 1998), pp. 229–240.

DECASPER, D. S. 1999. A software architecture for next generation routers. Ph. D. thesis, Swiss
Federal Institute of Technology, Zurich.

DEGERMARK, M., BRODNIK, A., CARLSSON, S., AND PINK, S. 1997. Small forwarding tables for
fast routing lookups. In Proc. ACM SIGCOMM Conference (SIGCOMM ’97) (Oct. 1997), pp. 3–14.

DIGITAL EQUIPMENT CORPORATION. 1998. DIGITAL Semiconductor 21140A PCI Fast Ethernet
LAN Controller Hardware Reference Manual. http://developer.intel.com/design/network/
manuals.

DRUSCHEL, P., PETERSON, L., AND DAVIE, B. 1994. Experiences with a high-speed network
adaptor: A software perspective. In Proc. ACM SIGCOMM Conference (SIGCOMM ’94) (Aug.
1994), pp. 2–13.

ELISCHER, J. AND COBBS, A. 1998. The Netgraph networking system. Technical report (Jan.),
Whistle Communications. http://www.elischer.com/netgraph/, as of July 2000.

FLOYD, S. AND JACOBSON, V. 1993. Random early detection gateways for congestion avoidance.
IEEE/ACM Trans. Networking 1, 4 (Aug.), 397–413.

HUTCHINSON, N. C. AND PETERSON, L. L. 1991. The x-kernel: an architecture for implementing
network protocols. IEEE Trans. Software Engineering 17, 1 (Jan.), 64–76.

INTEL CORPORATION. 1996. Pentium Pro Family Developer’s Manual, Volume 3. http://

developer.intel.com/design/pro/manuals.
KOHLER, E. 2000. The Click modular router. Ph. D. thesis, Laboratory for Computer Science,

Massachusetts Institute of Technology.
LAKSHMAN, T. V., NEIDHARDT, A., AND OTT, T. J. 1996. The drop from front strategy in TCP and

in TCP over ATM. In Proc. IEEE Infocom, Volume 3 (March 1996), pp. 1242–1250.
MCCANNE, S. AND JACOBSON, V. 1993. The BSD packet filter: A new architecture for user-level

packet capture. In Proc. Winter 1993 USENIX Conference (Jan. 1993), pp. 259–269.
MCKENNEY, P. E. 1990. Stochastic fairness queueing. In Proc. IEEE Infocom, Volume 2 (June

1990), pp. 733–740.
MILLS, D. L. 1988. The Fuzzball. In Proc. ACM SIGCOMM Conference (SIGCOMM ’88) (Aug.

1988), pp. 115–122.
MOGUL, J. C. AND RAMAKRISHNAN, K. K. 1997. Eliminating receive livelock in an interrupt-

driven kernel. ACM Trans. Computer Systems 15, 3 (Aug.), 217–252.
MORRIS, R., KOHLER, E., JANNOTTI, J., AND KAASHOEK, M. F. 1999. The Click modular router.

In Proc. of the 17th ACM Symposium on Operating Systems Principles (SOSP) (Dec. 1999), pp.
217–231.

MOSBERGER, D. AND PETERSON, L. L. 1996. Making paths explicit in the Scout operating system.
In Proc. 2nd Symposium on Operating Systems Design and Implementation (OSDI ’96) (Oct.
1996), pp. 153–167.

NEWMAN, P., MINSHALL, G., AND LYON, T. L. 1998. IP switching—ATM under IP. IEEE/ACM
Trans. Networking 6, 2 (April), 117–129.

NICHOLS, K., BLAKE, S., BAKER, F., AND BLACK, D. 1998. Definition of the Differentiated Services
field (DS field) in the IPv4 and IPv6 headers. RFC 2474 (Dec.), Internet Engineering Task Force.
ftp://ftp.ietf.org/rfc/rfc2474.txt.

PARTRIDGE, C., CARVEY, P. P., BURGESS, E., CASTINEYRA, I., CLARKE, T., GRAHAM, L., HATHAWAY, M.,
HERMAN, P., KING, A., KOHALMI, S., MA, T., MCALLEN, J., MENDEZ, T., MILLIKEN, W. C., PETTYJOHN,
R., ROKOSZ, J., SEEGER, J., SOLLINS, M., STORCH, S., TOBER, B., TROXEL, G. D., WAITZMAN, D.,



34 · E. Kohler et al.

AND WINTERBLE, S. 1998. A 50-Gb/s IP router. IEEE/ACM Trans. Networking 6, 3 (June),
237–248.

PETERSON, L. L., KARLIN, S. C., AND LI, K. 1999. OS support for general-purpose routers. In
Proc. 7th Workshop on Hot Topics in Operating Systems (HotOS-VII) (March 1999), pp. 38–43.
IEEE Computer Society Technical Committee on Operating Systems.

POSTEL, J. 1981a. Internet Protocol. RFC 791 (Sept.), Internet Engineering Task Force. ftp://
ftp.ietf.org/rfc/rfc0791.txt.

POSTEL, J. 1981b. Internet Control Message Protocol. RFC 792 (Sept.), Internet Engineering
Task Force. ftp://ftp.ietf.org/rfc/rfc0792.txt.

RITCHIE, D. M. 1984. A stream input-output system. AT&T Bell Laboratories Technical Jour-
nal 63, 8 (Oct.), 1897–1910.

SMITH, J. M., CALVERT, K. L., MURPHY, S. L., ORMAN, H. K., AND PETERSON, L. L. 1999. Activat-
ing networks: a progress report. IEEE Computer 32, 4 (April), 32–41.

TENNENHOUSE, D. L., SMITH, J. M., SINCOSKIE, W., WETHERALL, D. J., AND MINDEN, G. J. 1997.
A survey of active network research. IEEE Communications Magazine 35, 1 (Jan.), 80–86.

WALDSPURGER, C. A. AND WEIHL, W. E. 1995. Stride scheduling: deterministic proportional-
share resource management. Technical Memo MIT/LCS/TM-528 (June), MIT Laboratory for
Computer Science.

WALDVOGEL, M., VARGHESE, G., TURNER, J., AND PLATTNER, B. 1997. Scalable high speed IP
routing lookups. In Proc. ACM SIGCOMM Conference (SIGCOMM ’97) (Oct. 1997), pp. 25–38.

WROCLAWSKI, J. 1997. Fast PC routers. Technical report (Jan.), MIT LCS Advanced Network
Architecture Group. http://mercury.lcs.mit.edu/PC-Routers/pcrouter.html, as of July 2000.

Received March 2000; revised July 2000; accepted July 2000


