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Goal: produce a complete 3D model from one RGB or depth image









Challenges

• Most of shape is not observed in single view

• Many different possible 3D shapes
– Simple structural priors are not sufficient
– Parameterizing shape is difficult 

• Want it to work for any category



Problem and solution design decisions

• Reference frame: Object centric vs. viewer centric

• Shape output: points, depths, mesh, voxels

• Generalization: category-specific or category agnostic

• Cues: RGB appearance, depth, boundaries, surface normals, 
symmetry



Early approaches to recover 3D object shape

Shape from contour

Exemplar-based completion

“Teddy” (SG’99) “3-Sweep” (SGA’14)
2.5D from Shading/Contour 
(Barron et al. 2014)

Automatic Retrieval/Alignment 
(Aubrey et al. 2014)

Interactive retrieval/alignment 
(Kholgade et al. SG’14)



Rock et al. CVPR 2015
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Examples of deformations 
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Experiments
• Three difficulty settings

– Novel view: new view of model that is in exemplar set
– Novel model: new model from a category that is in exemplar set
– Novel category: new model from a category that is not in the 

exemplar set

• Two measures of reconstruction accuracy
– Voxel intersection/union
– Surface-to-surface distance

• Same procedure applied in all cases (system is not told 
whether examples of the model or category are available)



SHREC 2012 Dataset

• 60 different classes
• Instruments
• Cars
• Swords
• Humans
• Houses
• …etc

• 20 models per class



Deformation makes exemplars more helpful
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Do retrieved exemplars help reconstruction?

• Usually, but depends on similarity of retrieved model
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Results: novel model

Input Matched Exemplar Reconstruction Ground Truth





















Results: novel category

Input Matched Exemplar Reconstruction Ground Truth





















Pixels, voxels, and views: A study of shape 
representations for single view 3D object shape 

prediction 
(Shin, Fowlkes, Hoiem CVPR 2018)



What effect does object representation have on prediction?

• Volumetric vs. Surface based

• Object-centric vs. Viewer -centric



Volumetric vs. Surface-based representations

- 3D Voxels

- The focus of most previous studies

- Low resolution

- Hard to capture compositions, symmetries

- 2.5D Surfaces
- Multiple silhouettes, depth or normal maps

- Infer volume through multi-view reconstruction 
software

- Can adopt existing texture-based image generation 
techniques

Front, back, left, right, etc.



Viewer-centered vs. Object-centered

Viewer-centered

- Object shape/orientation modeled relative to input 
view

- Input has known viewpoint wrt model

- Good approximation by retrieving a model 
corresponding to a similar depth map

Object-centered

- Object shape modeled wrt  canonical view

- Output models within class will be more similar

- Viewer orientation may need to be inferred

- Good approximation by retrieving a model 
corresponding to the same class



Multi-view representation for shape completion

- Object-centered output coordinates
- Problem: For shape completion, the viewpoint of the input image needs to be 

guessed separately
- Problem: Requires 3D model alignment
- "Interpolation" of the learned outputs happens in object coordinates.

i. Not good for Novel Class

Object in novel category

Reference viewpoint of the output?
- Arbitrary and dataset 

dependent
- Camera transformation to 

match the input is unknown. 
(needed for shape completion)



Multi-view representation for shape completion

- Viewer-centered output coordinates

Different input view of the same 3D model Ground-truth output. Already transformed relative to 
the viewpoint of the input image

front

back

1. Same viewpoint

2. Constant camera parameters from the 
reference view to the other views



Multi-view representation for shape completion

- Viewer-centered output coordinates
- Shape can be completed without knowing the viewpoint of the input image
- Does not require 3D model alignment within category or across categories

- Cross-category alignment is a difficult problem on its own

Object in novel category. 
Unknown alignment

Reference viewpoint of the output 
for novel category?

- Always the same: relative to the input



Training Set

Generate 20 relative 
views (depth + 
silhouette) of 
meshes



Network architecture



Surface-based 3D Prediction

CNN predicts depth and 
silhouette for each view

Input

Create surface from all 3D 
points (FSSR: Floating Scale 
Surface Reconstruction)

FSSR: Fuhrmann and Goesele, SIGGRAPH 2014



Surface-based prediction outperforms, especially for novel class

Novel View Novel Model Novel Class

Rock et al. (2015) 0.064 0.060 0.083

CNN Voxel 0.051 0.062 0.095

CNN 2.5D + fusion (FSSR) 0.049 0.062 0.076

Distance from Predicted to Ground Truth Surfaces (median over dataset)

Lower is better!



Viewer-centric model vs. Object-centric model

Higher is better!

Novel View Novel Model Novel Class

Viewer-Centric 0.714 0.570 0.517

Object-Centric 0.902 0.474 0.309

IoU of Predicted and Ground Truth Values (mean)





Fusion is a challenge for the surface-based method

Input Output images
Multi-view recon Voxel-based output GT mesh

- Output depth maps may not be exactly consistent
- Difficulties in reconstructing thin object parts
- Could improve with view alignment



RGB-based prediction



Conclusions so far

• Object-centric shape completion is 
basically recognition/retrieval

• Viewpoint-centric shape completion 
forces better generalization and 
leads to better performance for 
novel categories

• Predicting in terms of multiview
surfaces may be better than voxels

Predicted Ground Truth



CVPR 2019



Object-centered



Viewer-centered



Difficulty measuring shape similarity for evaluation

• F-score is proposed (geometric 
mean of surface precision/recall 
at some threshold)



Recommendations from Tatarchenko et al.

• Use viewer-centric problem 
formulation (otherwise, it’s just 
retrieval)

• F1-score is a better metric



Objects are structured.

Why aren’t predictions?



3D-PRNN: Generating Shape Primitives with RNNs

Output multiple guesses of 3D 
structure (parts layouts)
- Variable number of parts
- Varying classes

Zou et al. ICCV 2017



Training annotations automatically generated from meshes

Object-centric model



Network structure



Experiment 1: shape synthesis



Experiment 2: Shape reconstruction from single 
depth view on synthetic data (ModelNet10)



Experiment 2: Shape reconstruction from single 
depth view on synthetic data (ModelNet10)



Experiment 2: Shape reconstruction from single 
depth view on synthetic data (ModelNet10)



Experiment 2: Shape reconstruction from single 
depth view on real data (NYUd v2)



Experiment 2: Shape reconstruction from single depth 
view on real data (NYUd v2)



Mini-conclusions

• Can generate part-based models 
of objects using RNN



Quick survey of additional works worth knowing



• Generate set of local parametric surfaces 
that are stitched together

CVPR 2018



ECCV 2018



ICCV 2019



2020



ECCV 2018



Things to remember

• Two different problem formulations lead to very different 
challenges
1. Reconstruct a known object category in a canonical viewpoint

− Relatively easy to solve via retrieval, so research focuses on learning in a loosely 
supervised way

2. Reconstruct any object in the current viewpoint
− Harder to solve, so not as many people work on it
− Good solution may still factor shape and pose

• Many shape representations have been tried: voxels, multiview
depth, deformed sphere, mesh, multiple local surfaces, primitives
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