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Challenges

* Most of shape is not observed in single view

* Many different possible 3D shapes
— Simple structural priors are not sufficient
— Parameterizing shape is difficult

 Want it to work for any category



Problem and solution design decisions

Reference frame: Object centric vs. viewer centric
Shape output: points, depths, mesh, voxels
Generalization: category-specific or category agnostic

Cues: RGB appearance, depth, boundaries, surface normals,
symmetry



Early approaches to recover 3D object shape
Shape from contour

7980

‘ 2.5D from Shading/Contour
“Teddy” (SG’99) “3-Sweep” (SGA14) (Barron et al. 2014)

Exemplar-based completion

Interactive retrieval/alignment Automatic Retrieval/lignment
(Kholgade et al. SG'14) (Aubrey et al. 2014)



Rock et al. CVPR 2015

Ground Truth

Input Depth Predicted 3D shape (voxels)
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Examples of deformations
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Experiments

* Three difficulty settings
— Novel view: new view of model that is in exemplar set
— Novel model: new model from a category that is in exemplar set

— Novel category: new model from a category that is not in the
exemplar set

* Two measures of reconstruction accuracy

— Voxel intersection/union
— Surface-to-surface distance

 Same procedure applied in all cases (system is not told
whether examples of the model or category are available)



SHREC 2012 Dataset

» 60 different classes
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Deformation makes exemplars more helpful

Voxel Intersection/Union (Mean)
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Do retrieved exemplars help reconstruction?

e Usually, but depends on similarity of retrieved model

Reconstruction Voxel I/U (mean)
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Results: novel model
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Results: novel category
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Pixels, voxels, and views: A study of shape
representations for single view 3D object shape
prediction
(Shin, Fowlkes, Hoiem CVPR 2018)



What effect does object representation have on prediction?

 Volumetric vs. Surface based

* Object-centric vs. Viewer -centric



Volumetric vs. Surface-based representations

*ﬁ—

- 3D Voxels

- The focus of most previous studies

- Low resolution

- Hard to capture compositions, symmetries

\ ‘ - 2.5D Surfaces

—>
& - Multiple silhouettes, depth or normal maps
‘ \ - Infer volume through multi-view reconstruction
software

- Can adopt existing texture-based image generation
techniques

Front, back, left, right, etc.



Viewer-centered vs. Object-centered
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Viewer-centered

Object shape/orientation modeled relative to input
view

Input has known viewpoint wrt model

Good approximation by retrieving a model
corresponding to a similar depth map

Object-centered

Object shape modeled wrt canonical view
Output models within class will be more similar
Viewer orientation may need to be inferred

Good approximation by retrieving a model
corresponding to the same class



Multi-view representation for shape completion

- Object-centered output coordinates
- Problem: For shape completion, the viewpoint of the input image needs to be
guessed separately
- Problem: Requires 3D model alignment

- "Interpolation" of the learned outputs happens in object coordinates.
i. Not good for Novel Class

Reference viewpoint of the output?
- Arbitrary and dataset
dependent
- Camera transformation to

match the input is unknown.
(needed for shape completion)

Object in novel category



Multi-view representation for shape completion

- Viewer-centered output coordinates

2. Constant camera parameters from the
reference view to the other views

1.S ' int
ame viewpoin front

back

Different input view of the same 3D model

Ground-truth output. Already transformed relative to
the viewpoint of the input image



Multi-view representation for shape completion

- Viewer-centered output coordinates
- Shape can be completed without knowing the viewpoint of the input image

- Does not require 3D model alignment within category or across categories
- Cross-category alignment is a difficult problem on its own

Reference viewpoint of the output

for novel category?
- Always the same: relative to the input

Object in novel category.
Unknown alignment




Training Set

Generate 20 relative
views (depth +
silhouette) of
meshes




Network architecture
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Surface-based 3D Prediction

Input

-

\ 4

CNN predicts depth and T oy .‘ - "- . -
silhouette for each view - - ‘. - “‘ i s

Create surface from all 3D ‘
points (FSSR: Floating Scale
Surface Reconstruction)

FSSR: Fuhrmann and Goesele, SIGGRAPH 2014



Surface-based prediction outperforms, especially for novel class

Distance from Predicted to Ground Truth Surfaces (median over dataset)

Rock et al. (2015) 0.064 0.060 0.083
CNN Voxel 0.051 0.062 0.095
CNN 2.5D + fusion (FSSR) 0.049 0.062 0.076

Lower Is better!



Viewer-centric model vs. Object-centric model

loU of Predicted and Ground Truth Values (mean)

Viewer-Centric 0.714 0.570 0.517

Object-Centric 0.902 0.474 0.309

Higher is better!






Fusion is a challenge for the surface-based method

- Output depth maps may not be exactly consistent
- Difficulties in reconstructing thin object parts
- Could improve with view alignment

Input

_ Multi-view recon Voxel-based output GT mesh
Output images

‘ ey agoPesoo-
' oesgygol oo

o 9 9
4 AT TA N LR Ll \ S N

> pP Aot ¢tm=

A <

3 J i

—e
G
»

¢

L S

' ) B ¢
l




RGB-based prediction

Viewer-centered Object-centered




Conclusions so far
Predicted Ground Truth

* Object-centric shape completion is
basically recognition/retrieval

* Viewpoint-centric shape completion
forces better generalization and
leads to better performance for
novel categories

* Predicting in terms of multiview
surfaces may be better than voxels



What Do Single-view 3D Reconstruction Networks Learn?
CVPR 2019

Maxim Tatarchenko*!, Stephan R. Richter*?, René Ranftl>, Zhuwen Li?,
Vladlen Koltun?, and Thomas Brox!

Figure 1. We provide evidence that state-of-the-art single-view 3D reconstruction methods (AtlasNet (light green, 0.38 IoU) [1], OGN
(green, 0.46 IoU) [-16], Matryoshka Networks (dark green, 0.47 IoU) [ 7]) do not actually perform reconstruction but image classification.
We explicitly design pure recognition baselines (Clustering (light blue, 0.46 loU) and Retrieval (dark blue, 0.57 IoU)) and show that

they produce similar or better results both qualitatively and quantitatively. For reference, we show the ground truth (white) and a nearest
neighbor from the training set (red, 0.76 IoU). The inset shows the input image.



Object-centered
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Viewer-centered
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Figure 7. Mean IoU in viewer-centered mode. The retrieval base-
line does not perform as well in this mode.



Difficulty measuring shape similarity for evaluation

0.59 0.81 0.91

T =

Figure 8. loU between a source shape and various target shapes. Low to mid-range IoU values are a poor indicator of shape similarity.

Source

Source CD=0.21 CD=0.15

* F-score is proposed (geometric
- | mean of surface precision/recall
nﬂ | at some threshold)
Figure 9. The Chamfer distance is sensitive to outliers. Compared
to the source, both target shapes exhibit non-matching parts that

are equally wrong. While the F@ 1% 1s 0.56 for both shapes, the
Chamfer distance differs significantly.



Recommendations from Tatarchenko et al.
* Use viewer-centric problem
formulation (otherwise, it’s just

retrieval)

e Fl-score is a better metric



Objects are structured.
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Why aren’t predictions?




3D-PRNN: Generating Shape Primitives with RNNs
Zou et al. ICCV 2017

Single Depth
Image

Output multiple guesses of 3D 3D-PRNN | <~

structure (parts layouts) — ;

- Variable number of parts senermton et

- Varying classes - . B e Y.




Training annotations automatically generated from meshes

Algorithm 1 Primitive fitting

1: Given shape point clouds Q and empty primitive set X;
2 3=0097Q|, t=0;
3: while |Q| < 5 or i <maxPrimNum de

Uniformly Point

i sampled point
Volume of the Rotatl-on ; E p o cloud Truncation 4 Epest = Inf;
primitive matrix rom the primitive arameter 5. fori=1:maxRandNum do
P [ # = [0,0,0]. random initialize S, T, j = 0;
T 7 while 6 < 0.01 or j <maxlter do
2 8: fix #, solve S, 1" — S*.T* by Eq .2;
B - _ E "V, min ( exp ( — |R(O)SPm + T — an| £) (1) 5 fix 5%, 7", update 0 — 0 by Eq .2;
p p o2 ’ 10: calculate F,,(S*,T*,6*) by Eq .2;
m,T 11: if £, < Epeq: then
Object-centric model N 12 E| = Eu, Test = [S*g*.m:
E . =FE' — oF, 2 13: =[S, T.6] — [S*.T*,0%]||":
w P p @ 14: S=5T=THk=k+1;
15: ;I’t:;rbest,add Iy tOX,t:t+1,
16: Remove fitted points from ¢ and add to non-
occupied space ()~
refurn X

r = [8.’1:7 Sy SZ)tSC)t'y1 tza Qwa 9y7 HZ]
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Network structure
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Experiment 1: shape synthesis




Experiment 2: Shape reconstruction from single
depth view on synthetic data (voceeto)
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Experiment 2: Shape reconstruction from single
depth view on synthetic data (voceeto)
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Experiment 2: Shape reconstruction from single
depth view on synthetic data (vodeinetio)

| | chair | table | nightstand |

GT prim 0.473 | 0.533 0.657

NN Baseline 0.269 | 0.220 0.256

Wu et al. [10] (mean) | 0.253 | 0.250 0.295
3D-PRNN 0.245 | 0.188 0.204
3D-PRNN +rotloss | 0.238 | 0.263 0.266

Table 1. Shape IoU evaluation in synthetic depth map in Mod-
elNet. We explore two settings of 3D-PRNN with or without ro-
tation axis constrains, and compare it with ground truth primitive
and the nearest neighbor baseline. We also compare to the Wu et
al. [10] deep network voxel generation method.

| | chair | table | night stand |

GT prim 0.049 | 0.044 0.044

NN baseline 0.075 | 0.089 0.100

Wu et al. [10] (mean) | 0.045 | 0.035 0.057
3D-PRNN 0.074 | 0.080 0.104
3D-PRNN + rotloss | 0.074 | 0.078 0.092

Table 2. Surface-to-surface distance evaluation in synthetic depth
map in ModelNet. We explore two settings of 3D-PRNN with or
without rotation axis constrains, and compare it with ground truth
primitive and the nearest neighbor baseline.



Experiment 2: Shape reconstruction from single
depth view on real data (vwe)




Experiment 2: Shape reconstruction from single depth
view on real data (wua2)
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Mini-conclusions

* Can generate part-based models
of objects using RNN



Quick survey of additional works worth knowing



AtlasNet: A Papier-Maché Approach to Learning 3D Surface Generation

Thibault Groueix'. Matthew Fisher?, Viadimir G. Kim?2, Bryan C. Russell?, Mathieu Aubry!
ILIGM (UMR 8049), Ecole des Ponts, UPE, 2Adobe Research

http://imagine.enpc.fr/~groueixt/atlasnet/

il
3D Point Cloud
(a) Possible Inputs (b)) Output Mesh from the 20 Image ic) Output Atlas (optimized)

(d) Textured Output

{e) 3D Printed Output

CVPR 2018

Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas
parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).

* Generate set of local parametric surfaces
that are stitched together

Latent shape
representation
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2D point

MLP 1

—_—

[/

MLP K

K generated
3D points
P -\\-.



Pixel2Mesh: Generating 3D Mesh Models
from Single RGB Images

ECCV 2018

Nanyang Wang!*, Yinda Zhang?*, Zhuwen Li**,
Yanwei Fu?, Wei Liu®, Yu-Gang Jiang!{
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Mesh R-CNN
ICCV 2019

Georgia Gkioxart  Jitendra Malik  Justin Johnson

Facebook AI Research (FAIR)
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Pix2Vox+-+: Multi-scale Context-aware 3D Object
Reconstruction from Single and Multiple Images

Haozhe Xie'? . Hongxun Yao! .- Shengping Zhang!'* - 2020
Shangchen Zhou® - Wenxiu Sun?
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Fig. 1 Overview of the proposed Pix2Vox++. The network recovers the 3D shape of an object from arbitrary (uncalibrated)
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Learning Category-Specific Mesh Reconstruction

from Image Collections
ECCV 2018

Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik
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Things to remember

* Two different problem formulations lead to very different
challenges
1. Reconstruct a known object category in a canonical viewpoint

—  Relatively easy to solve via retrieval, so research focuses on learning in a loosely
supervised way

2. Reconstruct any object in the current viewpoint
— Harder to solve, so not as many people work on it
-  Good solution may still factor shape and pose

 Many shape representations have been tried: voxels, multiview
depth, deformed sphere, mesh, multiple local surfaces, primitives



	Single View 3D Object Shape
	Goal: produce a complete 3D model from one RGB or depth image
	Challenges
	Problem and solution design decisions
	Early approaches to recover 3D object shape
	Rock et al. CVPR 2015
	Examples of deformations 
	Experiments
	SHREC 2012 Dataset
	Deformation makes exemplars more helpful
	Do retrieved exemplars help reconstruction?
	Results: novel model
	Results: novel category
	Pixels, voxels, and views: A study of shape representations for single view 3D object shape prediction �(Shin, Fowlkes, Hoiem CVPR 2018)
	What effect does object representation have on prediction?
	Volumetric vs. Surface-based representations
	Viewer-centered vs. Object-centered
	Multi-view representation for shape completion

	Multi-view representation for shape completion
	Multi-view representation for shape completion
	Training Set
	Network architecture
	Surface-based 3D Prediction
	Surface-based prediction outperforms, especially for novel class
	Viewer-centric model vs. Object-centric model
	Slide Number 26
	Fusion is a challenge for the surface-based method
	RGB-based prediction
	Conclusions so far
	Slide Number 30
	Object-centered
	Viewer-centered
	Difficulty measuring shape similarity for evaluation
	Recommendations from Tatarchenko et al.
	Slide Number 35
	3D-PRNN: Generating Shape Primitives with RNNs
	Training annotations automatically generated from meshes
	Network structure
	Experiment 1: shape synthesis
	Experiment 2: Shape reconstruction from single depth view on synthetic data (ModelNet10)
	Experiment 2: Shape reconstruction from single depth view on synthetic data (ModelNet10)
	Experiment 2: Shape reconstruction from single depth view on synthetic data (ModelNet10)

	Experiment 2: Shape reconstruction from single depth view on real data (NYUd v2)

	Experiment 2: Shape reconstruction from single depth view on real data (NYUd v2)
	Mini-conclusions
	Quick survey of additional works worth knowing
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Things to remember

