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Agenda

• Early computer vision representations and machine learning 
approaches

• Deep machine learning approaches

– Depth

– Normals

– Boundaries



Early goals of computer vision

[Guzman 1968]

[Barrow Tenenbaum 1978] (Intrinsic Images)



Early goals of computer vision

[Marr 1982] (Primal, 2 ½D sketch)



Early learning: Surface Normals

Hoiem Efros Hebert 2005,2007 Slide from Sanja Fidler





Early learning: Depth

Make3D: Saxena et al. 2008

• Divide image into small regions

• Compute features for each 
superpixel

• Predict 3D plane parameters 
for each superpixel

• Compute confidence for each 
prediction

• Perform global inference with 
constraints: connectedness, 
coplanarity, colinearity



Early learning: occlusion boundaries

Learned Models 

CRF Inference

P(occlusion)Next Segmentation

Agglomerative 

Clustering

Input Image Oversegmentation Occlusion Cues

[Hoiem et al. 2007]



Early learning: occlusion boundaries

Boundaries, Foreground/Background, Contact Depth (Max)

Depth (Min)



Early learning: 3D integration

[Hoiem et al. 2008]





Single view 3D is a subtle problem
• Depth

– Humans are bad at absolute depth but 
can predict ordinal relationships and can 
function as if they know depth  (throw, 
pick up etc.)

– Depth informs more about distance than 
shape

– Precision matters more for close objects

• Surface Normals
– Humans are good at predicting normals
– Normals describe shape
– Normals are scale dependent
– Precision matters more for close objects

• Occlusion Boundaries
– Humans are good at predicting
– Exterior boundaries tell us which things 

can move separately 
– Interior boundaries needed with normals

to predict complex shapes

https://www.friendlyshade.com/product/medieval-brick-wall/



Deep learning for depth, surface, boundaries

Learning performance depends on classifier, optimization, 
loss, data – most recent work focuses on loss and data

• Classifier form (architecture)
– Most methods use something like a UNet

• Loss
– Continuous objective, scale ambiguity

• Data and augmentation
– Hard to get ground truth 3D data

• Optimization



• One architecture, 3 tasks: depth, 
normals, class labels

• Multiscale encoder, related to 
(contemporaneous) UNet

• Mostly weights are not shared 
between tasks (except 
depth/normal share scale 1)

ICCV 2015



Losses

• Depth: scale-invariant 
log depth, gradient

• Normals: correlation

• Class labels: cross-
entropy

D is log depth
Scale-

invariant 

squared log 

depth error 

(variance of 

log depth 

difference)

https://arxiv.org/pdf/1406.2283.pdf

Squared 

gradient log 

depth error

https://arxiv.org/pdf/1406.2283.pdf


Architecture / Training

• AlexNet and VGG backbones tested

• Optimize scales 1-2, then optimize scale 3

– End-to-end would be done now

• Augmentation: scaling, in-plane rotation, translation, color, 
flips, contrast (w/ corresponding changes to depth/normal)



Results

NYU v2



NYU v2



NYU v2



Lessons learned

• Depth prediction, normal prediction, and semantic 
segmentation can be performed with similar architectures

• Multi-scale UNet-like architecture is effective

• Scale-invariant loss accounts for scale ambiguity of depth



• Generate depth maps using MVS 
and semantic segmentation on 
internet photos

• Train with log depth and ordinal 
depth losses

• Test on scaled RMSE and ordinal 
depth, several datasets

CVPR 2018



Creating training data
• COLMAP SfM+MVS

– Modified to prune foreground less

• Semantic segmentation
– PSPNet labels 150 categories
– Discard foreground objects with <50% 

depth values
– Discard sky depths
– Enable foreground vs. background as 

ordinal prediction task

• Keep images with > 30% depth values 
(ignoring sky)

• Use ordinal depth labels (F/B) for 
others

• Dataset
– 150K images processed
– 100K depth images, 30K ordinal depth
– Tanks&Temples also used for training



Training

• Experimented with 
VGG, ResNet, Hourglass 
(like UNet)

– Hourglass worked best

• Loss

– Variance of log depth 
differences

– L1 multiscale gradient

– Ordinal depth





si-RMSE = scale-invariant RMSE of log 

depth

SDR = ordinal disagreement with sparse 

point pairs











Lessons Learned

• SfM/MVS can be used to effectively create single-view depth 
training sets

• Such training generalizes to other datasets

• Combination of losses for scale-invariant depth, log depth 
gradients, and ordinal depth is effective



• Takes into account uncertainty of 
ground truth normal and improves 
detail

– Predict probability distribution of normals, 
with loss as function of uncertainty

– Coarse-to-fine, focus on uncertain pixels in 
upsampling

ICCV 2021



• Baseline: minimize negative log 
likelihood of Gaussian-like 
distribution on unit sphere (von 
Mises-Fisher dist)
– Corresponds to minimizing L2 distance 

weighted by uncertainty

• Proposed: minimize angle between 
gt and prediction

correlation
Uncertainty 

weight
Uncertainty 

cost



Minimizing angular loss is more robust



Training with focused refinement

• Coarse to fine

• Network 
predicts normal 
and uncertainty

• Training focuses 
on pixels with 
high uncertainty

– Prevent 
network only 
focusing on 
low-uncertainty 
planar regions 









Lessons learned

• Minimizing angular error is better than minimizing 
correlation/L2 for surface normal prediction

• Accounting for prediction/gt uncertainty and focusing 
refinement on less certain pixels is helpful



ICCV 2015



Approach

• Output boundary pixels at 
each scale

• Balance loss for positive and 
negative pixels

• Minimize loss of each scale 
and of fused prediction

– Per scale loss helps prediction 
on fine boundaries



Results (qual from blog)

• Applicable to multiple datasets, 
e.g. BSDS500 and NYUv2

https://www.pyimagesearch.com/2019/03/04/holistically-

nested-edge-detection-with-opencv-and-deep-learning/



https://www.pyimagesearch.com/2019/03/04/holistically-

nested-edge-detection-with-opencv-and-deep-learning/



• Goal: Predict object 
boundary with 
figure/ground

• Proposes tunable weighting 
on positive/negative loss

• ResNet50 encoder/decoder

ACCV 2018



GT Prediction



GT Prediction



Lessons learned

• Coarse-to-fine approach and UNet-style encoder/decoders are 
effective for edge prediction

• Balancing loss of positive and negative examples is critical since 
edges are sparse

• Relatively little recent work in this area, and edge detection 
may be seen as an implicit part of other problems now



What is it for?

• Computational photography

– Selective blur

– Relighting

• Photo tour, novel view synthesis

• Navigation, grasping, interaction

• Captioning, visual relationships?



Research ideas

• Main improvements likely through better use of 
self-supervised data/training

• How should depth/normal/boundary impact 
other vision tasks?

• Is it most useful when you want something to 
perform many tasks, including actions?
– Taskonomy shows surface normal prediction is one 

of the best pre-training tasks

• Use of single-view depth/normal/boundary for 
grasping and manipulation

Kumra et al. IROS 2017



Summary

• Depth, normal, boundary prediction can be solved with 
similar architectures

• Works in past few years focus on losses and acquisition of 
training samples

• Biggest open question: Are explicit geometry representations 
needed or helpful for downstream tasks?


