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Agenda

e Early computer vision representations and machine learning
approaches

* Deep machine learning approaches
— Depth
— Normals
— Boundaries



Early goals of computer vision

[Guzman 1968] {d} OERIENTATION (VECTOR) {=} ILLUMINATION
[Barrow Tenenbaum 1978] (Intrinsic Images)



Early goals of computer vision
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[ B - SURFACE CUES

| Location and Shape

L1. Location: normalized x and y, mean

L2. Location: normalized x and y, 10** and 90** pctl

L3. Location: normalized y wrt estimated horizon, 10, 90** petl

L4. Location: whether segment is above, below, or straddles estimated horizon
LS. Shape: number of superpixels in segment

L6. Shape: normalized arca in image

(-

Color

Cl. RGB values: mean

C2. HSV values: C1 in HSV space
C3. Hue: histogram (5 bins)

C4. Saturation: histogram (3 bins)

Texture
T1. LM filters: mean absolute response (15 filters)
T2. LM filters: histogram of maximum responses (15 bins)

Perspective
P1. Long Lines: (number of line pixels)/sqrt(area)
P2. Long Lines: percent of nearly parallel pairs of lines
P3. Line Intersections: histogram over 8 orientations, entropy
P4. Line Intersections: percent right of image center
PS. Line Intersections: percent above image center
P6. Line Intersections: percent far from image center at 8 orientations
P7. Line Intersections: percent very far from image center at 8 orientations
P8. Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)
P9. Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)
P10. Vanishing Points: percent of total line pixels with vertical VP membership
P11. Vanishing Points: x-pos of horizontal VP - segment center (0 if none)
P12. Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center
P13. Vanishing Points: segment bounds wrt horizontal VP

| P14. Gradient: x, y center of mass of gradient magnitude wrt segment center

Input

Holiem Efros Hebert 2005,2007

Early learning: Surface Normals

~

Compute superpixels

For each superpixel compute several
interesting features that make use of
vanishing points, color, texture, lines...

Train classifiers to predict several

geometric classes: support, vertical sky)

Surface Layout

Slide from Sanja Fidler



Ground Truth Labels Ground Truth



Early learning: Depth

Make3D: Saxena et al. 2008

Divide image into small regions
Compute features for each
superpixel

Predict 3D plane parameters
for each superpixel

Compute confidence for each
prediction

Perform global inference with
constraints: connectedness,
coplanarity, colinearity

Ground Truth

Predicted

Image

Ground Truth

Predicted



Early learning: occlusion boundaries

iy
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[Hoiem et al. 2007]



Early learning: occlusion boundaries

Boundaries, Foreground/Background, Contact Depth (Max)



Early learning: 3D integration

Surfaces 7

Viewpoint/Size
Viewpoint and Objects

Scene Analysis Processes
Surface Orientation
Object/Viewpoint
Occlusion/Depth

s ».fo,',%

NG

@

Intrinsic Images

_ Reasoning

(a) Input Image (b) Surfaces (¢) Occlusion (d) Depth (e) Objects
[Hoiem et al. 2008]



Occlusions [107] Surfaces (joint) Objects (joint) Occlusions (joint)




Single view 3D is a subtle problem

 Depth

— Humans are bad at absolute depth but
can predict ordinal relationships and can
function as if they know depth (throw,
pick up etc.)

— Depth informs more about distance than
shape

— Precision matters more for close objects
e Surface Normals

— Humans are good at predicting normals

— Normals describe shape

— Normals are scale dependent

— Precision matters more for close objects
* Occlusion Boundaries

— Humans are good at predicting

— Exterior boundaries tell us which things
can move separately

— Interior boundaries needed with normals
to predict complex shapes

ps://www.frienIyshade.cm/product/medieval-brick-wall/




Deep learning for depth, surface, boundaries

Learning performance depends on classifier, optimization,
loss, data — most recent work focuses on loss and data

e Classifier form (architecture)
— Most methods use something like a UNet

* Loss
— Continuous objective, scale ambiguity

* Data and augmentation
— Hard to get ground truth 3D data

* Optimization



Predicting Depth, Surface Normals and Semantic Labels  Input
with a Common Multi-Scale Convolutional Architecture

ICCV 2015

Scale 1

o

David Eigen' Rob Fejrgusl'-2 - }ipainple
! Dept. of Computer Science, Courant Institute, New York University |
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* One architecture, 3 tasks: depth, cant/pe] ‘ —
normals, class labels | T

Scale 3

 Multiscale encoder, related to
(contemporaneous) UNet

* Mostly weights are not shared
between tasks (except
depth/normal share scale 1)




Losses

Depth: scale-invariant
log depth, gradient

Normals: correlation

e Class labels: cross-
entropy

https://arxiv.org/pdf/1406.2283.pdf

Scale-
invariant

D is log depth
d=1D— D* | squared log
. 2 depth error
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https://arxiv.org/pdf/1406.2283.pdf

Architecture / Training

e AlexNet and VGG backbones tested

* Optimize scales 1-2, then optimize scale 3

— End-to-end would be done now

 Augmentation: scaling, in-plane rotation, translation, color,
flips, contrast (w/ corresponding changes to depth/normal)



Results

(a) (b) (c) (d)
Figure 2. Example depth results. (a) RGB input; (b) result of [*];
(c) our result; (d) ground truth. Note the color range of each image
is individually scaled.

NYU v2

Depth Prediction

].}adicky[.‘il[(arsch['h] Baig [ 1] Liu[27] Eigen[*] Ours(A) Durs{VGGﬂ

o < 1.25 0.542 - 0597 0614 0614 0.697 0.769
§ < 1.252 0.829 - - 0.883 088 0912 0.950
§ < 1.25° 0.940 - - 0971 0,972 0977 0,988
abs rel - 0.350 0259 0230 0214  0.198 0.158
sqr rel - - - - 0.204 0.180 0.121
EMS(lin) - 1.2 0.839 0824 0877 0.753 0.641
EMS(log) - - - - 0283  0.255 0.214
sc-inv. - - 0.242 - 0219  0.202 0.171

Table 1. Depth estimation measurements. Note higher is better for
top rows of the table, while lower is better for the bottom section.



RGB input ADP 1] Ladicky&al [ 1] Wang&al [ 7] Ours (VGG) Ground Truth
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Figure 3. Comparison of surface normal maps.

NYU v2 | Surface Normal Estimation (GT [21]) |
Angle Distance Within t° Deg,

Mean  Median | 11.25°  22.5°  30°
ADP[10] 35.3 31.2 16.4 366 48.2
Ladicky &al. [21] 335 231 27.5 49.0 58.7
Fouhey &al [11] 35.2 17.9 40.5 31 58.9
Wang &al. [F] 26.9 14.8 42.0 61.2 68.2
Ours (AlexNet) 237 15.5 39.2 62.0 T1.1
Ours (WGG) 20.9 13.2 44.4 67.2 75.9




RGB input

4-Class Prediction 13-Class Prediction 13-Class Ground Truth

Figure 4. Example semantic labeling results for NYUDepth: (a) input image; (b) 4-class labeling result; (c) 13-class result; (d) 13-class
ground truth.

NYU v2

4-Class Semantic Segmentation 13-Class Semantic

| Pixel Class || Pixel  Class
Couprie &al. [0] 64.5 63.5 Couprie &al [6] 524 36.2
Khan &al [15] 69.2 65.6 Wang &al. [57] - 422
Stuckler &al. [77] 70.9 67.0 Hermans &al. [17] 542 48.0
Mueller &al. [26] 72.3 71.9 Khan &al. [15] 7 583 45.1
Gupta &al "13[17] 78 - Ours (AlexNet) 70.5 594
Ours (AlexNet) 80.6 79.1 Ours (VGG) 75.4 66.9
Ours (VGG) 83.2 82.0

40-Class Semantic Segmentation
| Pix. Acc.  PerCls Acc.  Freq. Jaccard  Av. Jaccard

Guptadal." 13 [13] 59.1 284 45.6 274
Guptadeal " 14 [14] 60.3 35.1 47.0 28.6
Longdal. [24] 65.4 46.1 49.5 34.0
Ours (AlexNet) 62.9 413 47.6 30.8
Ours (VGG) 65.6 45.1 514 341

Table 3. Semantic labeling on NYUDepth v2

*Khan&al. use a different overlapping label set.




Lessons learned

* Depth prediction, normal prediction, and semantic
segmentation can be performed with similar architectures

e Multi-scale UNet-like architecture is effective

e Scale-invariant loss accounts for scale ambiguity of depth



MegaDepth: Learning Single-View Depth Prediction from Internet Photos

Zhengqi Li Noah Snavely

CVPR 2018

Department of Computer Science & Cornell Tech, Cornell University

* Generate depth maps using MVS
and semantic segmentation on
internet photos

* Train with log depth and ordinal
depth losses

* Test on scaled RMSE and ordinal
depth, several datasets

(a) Internet photo of Colosseum (b) Image from Make3D
' !

deplhp rediction (d) Our single-view depth prediction

(e) Image from KITTI

u

(f) Our w depth predictio



Creating training data

e COLMAP SfM+MVS

— Modified to prune foreground less
* Semantic segmentation

— PSPNet labels 150 categories

— Discard foreground objects with <50%
depth values

— Discard sky depths

— Enable foreground vs. background as
ordinal prediction task

* Keep images with > 30% depth values
(ignoring sky)

* Use ordinal depth labels (F/B) for
others

* Dataset
— 150K images processed
— 100K depth images, 30K ordinal depth
— Tanks&Temples also used for training

(b) Raw depth (c) Refined depth

Figure 3: Examples of automatic ordinal labeling. Blue
mask: foreground (F,,q) derived from semantic segmenta-
tion. Red mask: background (B,.q) derived from recon-
structed depth.



Training

* Experimented with
VGG, ResNet, Hourglass
(like UNet)

— Hourglass worked best

e Loss

— Variance of log depth
differences

— L1 multiscale gradient
— Ordinal depth




E

Output w/o Lo

[nput photo Output W/ Lorg

Input photo Output w/o Lgrad Output w/ Lgrag
Figure 5: Effect of L, term. L4 tends to corrects ordi-

nal depth relations for hard-to-construct objects such as the
person in the first row and the tree in the second row.

Figure 4: Effect of L,y term. L,,.4 encourages predictions
to match the ground truth depth gradient.



Network si-RMSE  SDR=% SDR”% SDR%
VGG™ [6] 0.116 31.28 28.63 29.78
VGG (full) 0.115 29.64 27.22 28.40
ResNet (full) 0.124 27.32 25.35 26.27
HG (full) 0.104 27.73 24.36 25.82

Table 1: Results on the MD test set (places unseen during
training) for several network architectures. For VGG*
we use the same loss and network architecture as in [6] for

comparison to [6]. Lower is better.

Method si-RMSE ~ SDR=% SDR7% SDR%
Ldata Only 0.148 33.20 30.65 31.75
+Lgrad 0.123 26.17 28.32 27.11
+Lgrad +Lord 0.104 27.73 24.36 25.82

Table 2: Results on MD test set (places unseen during
training) for different loss configurations. Lower is better.

si-RMSE = scale-invariant RMSE of log
depth

SDR = ordinal disagreement with sparse
point pairs

SDR(D, D*) = %Zi_jerp I (ord(D;, Dj) # ord(Dj, D¥))

o D, -
1 1fD—j>1+(}

ord(D;, D;) = { —1 if j;‘;‘;‘_ <1—90
0 ifl-0<BE<1+46
J



Test set Error measure Raw MD  Clean MD

Make3D RMS 11.41 5.322
Abs Rel 0.614 0.364
logl0 0.386 0.152
KITTI RMS 12.15 6.680
RMS(log) 0.582 0.414
Abs Rel 0.433 0.368
Sq Rel 3.927 2.587
DIW WHDR% 31.32 24.55

Table 3: Results on three different test sets with and with-
out our depth refinement methods. Raw MD indicates raw
depth data; Clean MD indicates depth data using our refine-
ment methods. Lower is better for all error measures.
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Training set Method RMS AbsRel logl0
Make3D Karsch er al. [16] 9.20 0.355  0.127
Liu er al. [24] 9.49 0.335  0.137
Liueral. [22] 8.60 0.314 0.119
Lietal [20] 7.19 0.278  0.092
Laina er al. [19] 445 0.176  0.072
Xu et al. [39] 4.38 0.184  0.065
NYU Eigen er al. [6] 6.89 0.505  0.198
Liu er al. [22] 7.20 0.669 0.212
Laina er al. [19] 7.31 0.669 0.216
KITTI Zhou et al. [43] 8.39 0.651  0.231
Godard et al. [13] 0.88 0.525 0.319
DIW Chen et al. [4] 7.25 0.550  0.200
MD Ours 6.23 0.402  0.156
MD+Make3D  Ours 4.25 0.178  0.064

Table 4: Results on Make3D for various training datasets
The first column indicates the training
dataset. Errors for “Ours”™ are averaged over four models

and methods.

traimned/validated on MD. Lower 1s better for all metrics.

(a) Image (b) GT (c) DIW [4] (d)NYU [6] (e) KITTI[13] (f) MD

Figure 7: Depth predictions on Make3D. The last four
columns show results from the best models trained on non-
Make3D datasets (final column 1s our result).



Training set  Method RMS RMS(log) AbsRel SqRel

KITTI Liu et al. |23] 6.52 0.275 0.202 1.614
Eigen et al. [7] 6.31 0.282 0.203 1.548
Zhou et al. [—]-..?!] 6.86 0.283 0.208 1.768 Trainine set Method WHDR %
Godard et al. |13] 5.93 0.247 0.148 1.334 —
DIW Chen et al. [4] 22.14
Make3D Laina et al. [19] 8.68 0.422 0.339 3.136
ot al. [43 31.
Liu et al. [22] 8.70 0447 0362  3.465 KITH (z}r;?;:dr (‘:”[,4[} S 3(1) i‘;
NYU Elg?l] et al. [6] 10.37 0.510 0.521 5.016 NYU Eicen ef al. [()] 25.70
Liu et al. |22] 10.10 0.526 0.540 5.059 L‘{iHa et al. [19] 45.30
Laina ef al. [19] 10.07 0.527 0.515 5.049 Liu et al. [22] 28.27
CS Zhou et al. [43] 7.58 0.334 0.267 2.686 Make3D Laina et al. [19] 31.65
Liu ef al. [22] 29.58
DIW Chen et al. |4] 7.12 0.474 0.393 3.260
MD Ours 24.55
MD Ours 6.68 0.414 0.368 2.587
MD+KITTI ~ Ours 5.25 0.229 0.139 1.325 Table 6: Results on the DIW test set for various training

datasets and approaches. Columns are as in Table 4.

Table 5: Results on the KITTI test set for various train-
ing datasets and approaches. Columns are as in Table 4.



Lessons Learned

* SFM/MVS can be used to effectively create single-view depth
training sets

* Such training generalizes to other datasets

 Combination of losses for scale-invariant depth, log depth
gradients, and ordinal depth is effective



Estimating and Exploiting the Aleatoric Uncertainty
in Surface Normal Estimation

ICCV 2021

Gwangbin Bae  Ignas Budvytis  Roberto Cipolla
University of Cambridge
{gb585, ib255, rc10001}@cam. ac.uk

* Takes into account uncertainty of
ground truth normal and improves
d eta i | TiltedSN

— Predict probability distribution of normals,
with loss as function of uncertainty

— Coarse-to-fine, focus on uncertain pixels in
upsampling

Ours — Surface Normal Ours — Uncertainty



* Baseline: minimize negative log
[} ] [} [} 1 t
likelihood of Gaussian-like £ == 2_logp:(nf'|6:(Z, W)
distribution on unit sphere (von

K EKP(Hi#?ﬂi)

PvonMF 1 (ni |P5i1 Hi) =

Mises-Fisher dist) 4 sinh
— Corresponds to minimizing L2 distance Loonmirs = — log #5; + logsinh k; — ;T 0
weighted by uncertainty / / \
Uncertainty  Uncertainty at
cost Weight correlation

(hf + 1) exp(—k; cos™! ,ui-rn?;)
27(1 + exp(—kr;m))

PAngMF i (ni|pe;, ki) =

* Proposed: minimize angle between
gt and prediction

4)

and J':ﬂ-‘qfl.ngl".fll-"',,1' = — 103%—("{'? +1) +log(1 + exp(—k;m))

+ricos T pInd. (5)



Minimizing angular loss

'.

Image

is more robust

GT Distribution (==Minimize L, ,==Minimize AL)




Training with focused refinement

(a) Feature extraction using a convolutional encoder-decoder (b) Coarse prediction (1/8 res.)

3x3 conv g -
—_— —

Predicted Predicted
Nomal Uncertainty

Coarse to fine

e Network

' Feature- Predicti
predicts normal | o -
. Input (HxW) (g X E) (§ >: E)
a n d u n Ce rta I nty (c) Pixel-wise refinement modules (n € {4,2,1}) l R
NLL 1°'§3 (all pixels)
. [;f'G"IMLPI-» (sampled pixels)

* Training focuses sl - [ =
on pixels with Zoc = (PP

=nl s (— (- MLP|> -
. . " § S T X2
h Ig h u n C e rta I n ty e nﬁ A QZMI;fedlCtlon uncertainty-guided sampling Prfeidlcwm
&z %)
— Prevent

network only
focusing on
low-uncertainty
planar regions

Predicted f1 (/8 1es) Predlcted K (1/8 1e5)

Predicted k (full res)

s 4
Importance Sampling Predicted p (full res)



Architecture Loss fn. |mean median rmse | 5.0° 7.5° 11.25° 22.5° 30°

Lo 13.53 7.22 21.16(35.10 51.44 65.08 82.38 87.83
baseline NLL-vonMF [14.10 7.19 22.14(36.20 51.46 64.09 80.80 86.34
(convolutional encoder-decoder with skip connections [2]) AL 13.45 6.70 21.78|38.65 54.04 66.73 82.46 87.53
NLL-AngMF|13.82 6.60 22.47(39.69 54.30 65.97 81.64 86.71

baseline + pixel-wise MLPs NLL-AnoMF 13.59 6.53 22.23/39.92 54.79 67.03 82.18 87.06
baseline + pixel-wise MLPs + uncertainty-guided sampling "EYT113.17  6.48 21.57(40.09 55.19 67.62 83.10 87.97

Table 1. (top) The baseline network is trained with different loss functions. The proposed NLL-AngMF shows higher accuracy than NLL-
vonMF, except for RMSE. NLL-AngMF and NLL-vonMF are AL and L2 with learned attenuation, respectively. As the training is biased to
low-uncertainty pixels, the median error decreases, while RMSE increases. (bottom) The bias in training is solved by the proposed decoder
modules. Both the pixel-wise MLPs and the uncertainty-guided sampling lead to improvement in all metrics.
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Image Baseline Baseline
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NYUv2

Ours - Normal Ours - Uncertainty

ScanNet

Image GI® TiltedSN Ours - Normal Ours - Uncertainty

Figure 7. Qualitative comparison against GeoNet++ [ ] and TiltedSN [6]. The predictions made by our method show clearer object
boundaries and preserve the fine-details of the scene geometry (see the regions pointed by the red arrows). The estimated uncertainty is
high near object boundaries and on small structures. More examples are provided in the supplementary material.



Method |Trair1‘mean median rmse|11.25° 22.5° 30°

Ladicky et al. [22] 335 231 - | 27.5 49.0 58.7

Fouhey et al. [10] 352 179 - | 405 54.1 5809

Deep3D [3Y] 269 148 - | 420 61.2 68.2

Eigenetal. [7] 209 132 - | 444 672 759

SkipNet 19.8 120 282| 479 700 77.8 : . .
SUEGE{!] N [206 122 - | 473 689 766 Method mean median rmse|11.25° 22.5° 30°
GeoNet [11] 19.0 118 269| 484 71.5 79.5 FrameNet[ [ =]| 147 7.7 22.8| 62.5 80.1 85.8
PAP [1] 18.6 11.7 255| 48.8 72.2 7938 VPLNet[35] [13.8 6.7 _ 66.3 81.8 87.0
GeoNet++ -] 185 112 267] 502 732 307 TiltedSN[0] [12.6 6.0 21.1| 69.3 83.9 88.6
Ours N [149 7.5 235 622 79.3 85.2 Ours 1.8 57 200 7L1 85.4 890.8
FrameNet[ | 5] 186 11.0 26.8| 50.7 72.0 79.5 '
V_PLNEI[' ] S | 180 98 ) ‘54'3 73.8 80.7 Table 4. Surface normal accuracy on ScanNet [+4]. Our method
TiltedSN[6] IE_"I 81 251 398 774 834 outperforms other methods across all metrics.

Ours S |16.0 84 247| 59.0 77.5 83.7

Table 3. Surface normal accuracy on NYUv2 [ 7]. The proposed
method shows state-of-the-art performance. (top) The networks
are trained on NYUv2. (bottom) The networks are trained on
ScanNet [] and tested on NYUv2 without fine-tuning.



Lessons learned

* Minimizing angular error is better than minimizing
correlation/L2 for surface normal prediction

* Accounting for prediction/gt uncertainty and focusing
refinement on less certain pixels is helpful



Holistically-Nested Edge Detection
ICCV 2015

Saining Xie Zhuowen Tu
Dept. of CSE and Dept. of CogSci Dept. of CogSci and Dept. of CSE
University of California, San Diego University of California, San Diego
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A p p roa C h . Input image X

e Output boundary pixels at
each scale

e Balance loss for positive and
negative pixels

Receptive Field Size

e Minimize loss of each scale 5 | [1] [40] [52

and of fused prediction F 1 oo m— bt
— Per scale loss helps prediction
on fine boundaries (G (W owm™) = =33 log Pr(y; = 1|X; W, w(™)
JEY

—(1—=58) > logPr(y; = 0|X; W,w(™)  (2)
JEY_



Results (qual from blog)

* Applicable to multiple datasets,
e.g. BSDS500 and NYUv2

08

BN - T oy PR _
s ® [F=.500] Human
§ 0.5 | mm [F= 782] HED (ours) ; . . :
& [F=.756] DeepContour | ; : : : \ \
[F=.756] CSCNN 5 5 : 5 : 5
044 [F=.753] DeepEdge e e [ e \ -

m— (F=749] OEF
m— [F=.747] SE+multi-ucm | - : : ' : :
e [F=.748] SE T e Lol e .
[F=739] 3CG : : : ; : :
 [F= 727] Sketch Tokens
[F=726] gPh—owt-ucm
— [F=723] ISCRA
[F=.694] Gb
[F=.640] Mean Shift .
0.1 [F=.640] Normalized Cuts| "
s [F=.610)] Felz—Hutt :

0.2H

[F=.600] Canny : : : : : :
T I | | 1 | 1 |

D T
0 01 02 03 04 05 06 07 08 08 1
Recall

Figure 5. Results on the BSDS500 dataset. Our proposed HED frame-
work achieves the best result (ODS=.782). Compared to several recent
CNN-based edge detectors, our approach 1s also orders of magnitude faster.
See Table 4 for a detailed discussion.

https://www.pyimagesearch.com/2019/03/04/holistically-
nested-edge-detection-with-opencv-and-deep-learning/



https://www.pyimagesearch.com/2019/03/04/holistically-
nested-edge-detection-with-opencv-and-deep-learning/



DOOBNet: Deep Object Occlusion Boundary

Detection from an Image
ACCV 2018

Guoxia Wang?!, Xiaohui Liang!, and Frederick W. B. Li?

'Beihang University, ?University of Durham

* Goal: Predict object
boundary with
figure/ground

* Proposes tunable weighting
on positive/negative loss

I
| MNMS
i Merge

- :
lonly inciuded in testing phase;

e ResNet50 encoder/decoder

Il residual conv block il decony block

conv block B concat B sigmoid

Fig. 4. DOOBNet Architecture.



Prediction
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GT Prediction



Lessons learned

* Coarse-to-fine approach and UNet-style encoder/decoders are
effective for edge prediction

* Balancing loss of positive and negative examples is critical since
edges are sparse

* Relatively little recent work in this area, and edge detection
may be seen as an implicit part of other problems now



What is it for?

 Computational photography

— Selective blur

— Relighting

* Photo tour, novel view synthesis

* Navigation, grasping, interaction

e Captioning, visual relationships?



Research ideas

 Main improvements likely through better use of
self-supervised data/training

* How should depth/normal/boundary impact
other vision tasks?

* |s it most useful when you want something to
perform many tasks, including actions?

— Taskonomy shows surface normal prediction is one
of the best pre-training tasks

* Use of single-view depth/normal/boundary for
grasping and manipulation

3-Channel
Images

N x 2043

{D = Dropout [0.2)}

D

Features

FC, 1024 x 1

Kumra et al. IROS 2017 |

M Grasp
ReLU|| RelU" | Prediction

FC,5x1

{FC = Fully Connected}



Summary

* Depth, normal, boundary prediction can be solved with
similar architectures

 Works in past few years focus on losses and acquisition of
training samples

* Biggest open question: Are explicit geometry representations
needed or helpful for downstream tasks?



