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Agenda

• Overview of shape fitting and registration

• Efficient RANSAC for Point-Cloud Shape Detection

• TEASER: Fast and Certifiable Point Cloud Registration



Fitting: find the parameters of a model that best fit the data

Registration: find the parameters of the transformation that 
best align matched points



Shape fitting and registration have many applications

Shape fitting

• Simplify mesh or remove noise from points

• Detect potential surfaces to fill in missing points

• Extract structure for matching to drawings or other representations

Registration

• Align point clouds of a building site captured on two dates for comparison

• Get a complete scan from several partial scans

• Determine the relative pose of two point clouds (e.g. for SLAM loop 
closure)

• Find an object with known shape in the scene



Fitting and Registration: Design Challenges

• Design a suitable goodness of fit measure

– Similarity should reflect application goals

– Encode robustness to outliers and noise

• Design an optimization method

– Avoid local optima

– Find best parameters quickly



Fitting and Registration: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Iterative closest point (ICP)

• Hypothesize and test

– Generalized Hough transform

– RANSAC



Total least squares
Find (a, b, c) to minimize the sum of 
squared perpendicular distances
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Solution is eigenvector corresponding to smallest eigenvalue of ATA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient
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http://en.wikipedia.org/wiki/Rayleigh_quotient


Robust least squares (to deal with outliers)
General approach: 

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters 𝜃
ρ – robust function with scale parameter σ
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The robust function ρ
• Favors a configuration 

with small residuals

• Constant penalty for large 

residuals
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Slide from S. Savarese



Robust Estimator 

1. Initialize: e.g., choose 𝜃 by least squares fit and

2. Choose params to minimize:

– E.g., numerical optimization

3. Compute new 

4. Repeat (2) and (3) until convergence
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Hypothesize and test

1. Propose parameters
– Try all possible

– Each point votes for all consistent parameters

– Repeatedly sample enough points to solve for parameters

2. Score the given parameters
– Number of consistent points, possibly weighted by 

distance

3. Choose from among the set of parameters
– Global or local maximum of scores

4. Possibly refine parameters using inliers
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Hough transform
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RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Source: Savarese



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example
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Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example
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Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



How to choose parameters?
• Number of samples N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e )

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

    s
e11log/p1logN 

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from  M. Pollefeys



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets 
of points without correspondences

1. Initialize transformation (e.g., compute difference in means 
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters 
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small



Algorithm Summary
• Least Squares Fit 

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to noise
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-3 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– Does not require initial correspondences 
– Needs good initial solution, gets stuck easily



Efficient RANSAC for Point Cloud Shape Detection (Schnabel et al. 2007)

• Fit planes and shapes to 3D points, with partial extent

• Scale to millions of points



Efficient RANSAC Overview

Input: orientated 3D point set, empty sets of shapes and candidates

1. Generate candidates for all shape types by sampling minimum 
subsets

2. Score each candidate and add to candidate set

3. Select best candidate m if it is likely that no better candidate 
exists

a. Add candidate m to shape set

b. Remove points that fit m from point set

c. Remove candidates that overlap with m

4. Return to 1 until there aren’t any good candidates



Shape estimation from 3 sampled oriented points
• Plane

– Fit to 3 unoriented points
– Quick check: point/plane normal similarity 

• Sphere
– Fit to 2 oriented points
– Find center pt closest to two rays; radius is average distance from center to points
– Quick validate: point/sphere normal similarity, point/sphere surface similarity

• Cylinder
– Fit to 2 oriented points
– Axis is n1 x n2; find center similar to sphere in plane normal to axis; radius set by distance of p1 to center
– Quick validate: normals and positions

• Cone
– Fit to 3 oriented points
– Apex is intersection of 3 planes defined by oriented points; axis is normal of plane formed by 3 unit-

normalized directions from apex to points; opening angle is average angle from axis of apex to points 



Runtime Complexity

• Suppose
– A point cloud has 𝑁 points
– 𝑛 of the points fit a particular shape
– The shape can be estimated from 𝑘 points

• Probability of fitting the shape in one sampling

• Probability of fitting the shape with 𝑠 candidates

• 𝑇 candidates needed to detect best shape of at least size 𝑛 with 
probability 𝑃 𝑛, 𝑇 ≥ 𝑝𝑡

𝑂 𝑇𝐶 = 𝑂(
𝐶

𝑃 𝑛
)

Evaluation cost

Efficiency goals

• Maximize 𝑃(𝑛), prob of generating 

good candidate

• Minimize evaluation cost 𝐶



Sampling Strategy

• Local sampling with Octree
– Nearby points are more likely to be on the 

same shape surface
– Sample first point freely
– Sample level along octree
– Sample other two points within 

corresponding cell

• Example of shape with 1,066 points 
within set of 341,547 points
– Uniform sampling: need 151,522,829 

candidates to achieve 99% probability of 
good sample

– Octree sampling: need 64,929 candidates

Assumes at least one octree cell 

containing each point has at least 

50% of points that fit shape; octree is 

depth d



Improved octree level sampling

• Learn data-dependent prior for whether to sample close or distant 
points

• Initialize probability of sampling each level to 
1

𝑑

• Keep track of sum of scores 𝜎𝑙 of each level 𝑙

• After testing a given number of candidates, assign probability of 
sampling level 𝑙

Normalizing sum

0.9

Uniform probability



Sampling: termination

• Stop sampling when there is less than 1% chance that a shape 
exists with more points that the best shape so far



Shape score

• Score = # inliers

• Points are inliers if distance to surface is less than 𝜖 and normal 
is less than surface normal by less than 𝛼
– Use octree to find points near surface efficiently

• Keep only inliers that are in connected components
– Create a low resolution bitmap over the surface of the shape

– Project points onto that surface

– Extract connected components



Scoring with random subsets

• Split entire point set into random subsets

• Compute score on subset and infer score confidence interval 
on larger set

• If score interval overlaps with score interval of best candidate, 
compute each with an extra subset, until there is no overlap



Refitting

• Perform least squares fit on inliers and check again for inliers



Summary of speed-ups

• Fast sample rejection

• Local sampling

• Improved level sampling

• Scoring with subsets



P # total pts

𝜖 Distance threshold

𝛼 Angle threshold (deg)

𝜏 Min pts for shape

Ψ # shape found

R # remaining points







Efficient RANSAC on CGAL

• https://doc.cgal.org/latest/Shape_detection/index.html

• Works well when points are uniformly distributed on the 
surface, like a laser scan

• Connected components part may need to be modified for 
sparse/MVS points due to gaps in reconstruction

https://doc.cgal.org/latest/Shape_detection/index.html


TEASER: Fast and Certifiable 
Point Cloud Registration 
(Yang et al. 2020)



Problem formulation

• Given corresponding points 𝑎𝑖 , 𝑏𝑖 , solve for translation 𝑡, 
rotation 𝑅, and scale 𝑠 that minimize truncated least squares 
cost function

• Equivalent to maximizing inliers with a distance-based 
weighting

• Difficult optimization problem



Optimization approach

• Hypothesize pairs of correspondences 𝑎𝑖 , 𝑏𝑖 and 𝑎𝑗 , 𝑏𝑗

• If both correspondences are inliers, they can vote for scale

• Given scale, it’s much easier to solve for rotation

• Given scale and rotation, the pairs can vote for translation



TIM and TRIM

• Translation-rotation-invariant measures (TRIM)

• Translation-invariant measures (TIM)

0 if 𝑖 and 𝑗 are inliers

ai

aj

bi

bj



Scale estimation

• Get consensus estimate for scale from TRIM

tolerance



Outlier rejection

• After solving scale, discard 
edges that are outliers in scale

• Find maximal clique on graph 
and discard any edges not in 
that clique



Rotation estimation

• Get consensus estimate for rotation from TIM with scale now 
fixed

• Solve via semi-definite program relaxation (for certified result) 
or GNC (for speed)

– GNC = graduated non-convex solver:  https://arxiv.org/pdf/1909.08605.pdf

https://arxiv.org/pdf/1909.08605.pdf


Translation estimation

• Solve for each translation 
component with scale and 
rotation fixed

• Same adaptive voting 
algorithm as for scale



TEASER++ implementation available

• C++ implementation

• Bindings for Python, Matlab, and ROS

• https://github.com/MIT-SPARK/TEASER-plusplus

https://github.com/MIT-SPARK/TEASER-plusplus


Application: Object localization

• Use FPFH features to create correspondences

https://www.cvl.iis.u-tokyo.ac.jp/class2016/2016w/papers/6.3DdataProcessing/Rusu_FPFH_ICRA2009.pdf

https://www.cvl.iis.u-tokyo.ac.jp/class2016/2016w/papers/6.3DdataProcessing/Rusu_FPFH_ICRA2009.pdf


Application: scan alignment

• 3DSmoothNet features w/ nearest neighbor search

https://github.com/zgojcic/3DSmoothNet

https://github.com/zgojcic/3DSmoothNet


Correspondence-free: start with all pairs of points as 
candidate correspondences



Open problems / research ideas

• Most fitting/registration experiments either involve simple 
objects (bunny) or laser scans of scenes

– Irregularity of image-based reconstructions creates major challenges

• Registration of “reality” to “model” is difficult – e.g. point 
cloud to BIM or drawing

• Likely potential to improve features for correspondence



Summary

• Fitting and registration are closely related problems with 
many potential solutions
– Robust fit solver (relaxation, branch and bound, iterative)

– RANSAC

• RANSAC is the easiest thing to try first

• Need for improved methods that work well for image-based 
reconstructions


