
3D Registration and Shape
Fitting

3D Vision

University of Illinois

Derek Hoiem

Agenda

• Overview of shape fitting and registration

• Efficient RANSAC for Point-Cloud Shape Detection

• TEASER: Fast and Certifiable Point Cloud Registration

Fitting: find the parameters of a model that best fit the data

Registration: find the parameters of the transformation that
best align matched points

Shape fitting and registration have many applications

Shape fitting

• Simplify mesh or remove noise from points

• Detect potential surfaces to fill in missing points

• Extract structure for matching to drawings or other representations

Registration

• Align point clouds of a building site captured on two dates for comparison

• Get a complete scan from several partial scans

• Determine the relative pose of two point clouds (e.g. for SLAM loop
closure)

• Find an object with known shape in the scene

Fitting and Registration: Design Challenges

• Design a suitable goodness of fit measure

– Similarity should reflect application goals

– Encode robustness to outliers and noise

• Design an optimization method

– Avoid local optima

– Find best parameters quickly

Fitting and Registration: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Iterative closest point (ICP)

• Hypothesize and test

– Generalized Hough transform

– RANSAC

Total least squares
Find (a, b, c) to minimize the sum of
squared perpendicular distances

 


n

i ii dybxaE
1

2)((xi, yi)

ax+by+c=0

 


n

i ii cybxaE
1

2)(
Unit normal:

N=(a, b)

0)(2
1





 

n

i ii cybxa
c

E
ybxay

n

b
x

n

a
c

n

i i

n

i i    11

ApAp
TT

nn

n

i ii
b

a

yyxx

yyxx

yybxxaE 




























 

2

11

1

2))()((

Solution is eigenvector corresponding to smallest eigenvalue of ATA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh_quotient

pp

ApAp
 pp ApAp

T

TT
TTT minimize1 s.t.minimize 

Slide modified from S. Lazebnik

http://en.wikipedia.org/wiki/Rayleigh_quotient

Robust least squares (to deal with outliers)
General approach:

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters 𝜃
ρ – robust function with scale parameter σ

   ;,xu ii

i



The robust function ρ
• Favors a configuration

with small residuals

• Constant penalty for large

residuals

 


n

i ii bxmyu
1

22)(

Slide from S. Savarese

Robust Estimator

1. Initialize: e.g., choose 𝜃 by least squares fit and

2. Choose params to minimize:

– E.g., numerical optimization

3. Compute new

4. Repeat (2) and (3) until convergence

 errormedian5.1 


i i

i

dataerror

dataerror
22

2

),(

),(





 errormedian5.1 

Hypothesize and test

1. Propose parameters
– Try all possible

– Each point votes for all consistent parameters

– Repeatedly sample enough points to solve for parameters

2. Score the given parameters
– Number of consistent points, possibly weighted by

distance

3. Choose from among the set of parameters
– Global or local maximum of scores

4. Possibly refine parameters using inliers

x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2

2 1 0 1 3 3

b

Hough transform

Slide from S. Savarese

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Source: Savarese

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

6IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?
• Number of samples N

– Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

    s
e11log/p1logN 

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from M. Pollefeys

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points without correspondences

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}

3. Estimate transformation parameters
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small

Algorithm Summary
• Least Squares Fit

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to noise
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-3 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– Does not require initial correspondences
– Needs good initial solution, gets stuck easily

Efficient RANSAC for Point Cloud Shape Detection (Schnabel et al. 2007)

• Fit planes and shapes to 3D points, with partial extent

• Scale to millions of points

Efficient RANSAC Overview

Input: orientated 3D point set, empty sets of shapes and candidates

1. Generate candidates for all shape types by sampling minimum
subsets

2. Score each candidate and add to candidate set

3. Select best candidate m if it is likely that no better candidate
exists

a. Add candidate m to shape set

b. Remove points that fit m from point set

c. Remove candidates that overlap with m

4. Return to 1 until there aren’t any good candidates

Shape estimation from 3 sampled oriented points
• Plane

– Fit to 3 unoriented points
– Quick check: point/plane normal similarity

• Sphere
– Fit to 2 oriented points
– Find center pt closest to two rays; radius is average distance from center to points
– Quick validate: point/sphere normal similarity, point/sphere surface similarity

• Cylinder
– Fit to 2 oriented points
– Axis is n1 x n2; find center similar to sphere in plane normal to axis; radius set by distance of p1 to center
– Quick validate: normals and positions

• Cone
– Fit to 3 oriented points
– Apex is intersection of 3 planes defined by oriented points; axis is normal of plane formed by 3 unit-

normalized directions from apex to points; opening angle is average angle from axis of apex to points

Runtime Complexity

• Suppose
– A point cloud has 𝑁 points
– 𝑛 of the points fit a particular shape
– The shape can be estimated from 𝑘 points

• Probability of fitting the shape in one sampling

• Probability of fitting the shape with 𝑠 candidates

• 𝑇 candidates needed to detect best shape of at least size 𝑛 with
probability 𝑃 𝑛, 𝑇 ≥ 𝑝𝑡

𝑂 𝑇𝐶 = 𝑂(
𝐶

𝑃 𝑛
)

Evaluation cost

Efficiency goals

• Maximize 𝑃(𝑛), prob of generating

good candidate

• Minimize evaluation cost 𝐶

Sampling Strategy

• Local sampling with Octree
– Nearby points are more likely to be on the

same shape surface
– Sample first point freely
– Sample level along octree
– Sample other two points within

corresponding cell

• Example of shape with 1,066 points
within set of 341,547 points
– Uniform sampling: need 151,522,829

candidates to achieve 99% probability of
good sample

– Octree sampling: need 64,929 candidates

Assumes at least one octree cell

containing each point has at least

50% of points that fit shape; octree is

depth d

Improved octree level sampling

• Learn data-dependent prior for whether to sample close or distant
points

• Initialize probability of sampling each level to
1

𝑑

• Keep track of sum of scores 𝜎𝑙 of each level 𝑙

• After testing a given number of candidates, assign probability of
sampling level 𝑙

Normalizing sum

0.9

Uniform probability

Sampling: termination

• Stop sampling when there is less than 1% chance that a shape
exists with more points that the best shape so far

Shape score

• Score = # inliers

• Points are inliers if distance to surface is less than 𝜖 and normal
is less than surface normal by less than 𝛼
– Use octree to find points near surface efficiently

• Keep only inliers that are in connected components
– Create a low resolution bitmap over the surface of the shape

– Project points onto that surface

– Extract connected components

Scoring with random subsets

• Split entire point set into random subsets

• Compute score on subset and infer score confidence interval
on larger set

• If score interval overlaps with score interval of best candidate,
compute each with an extra subset, until there is no overlap

Refitting

• Perform least squares fit on inliers and check again for inliers

Summary of speed-ups

• Fast sample rejection

• Local sampling

• Improved level sampling

• Scoring with subsets

P # total pts

𝜖 Distance threshold

𝛼 Angle threshold (deg)

𝜏 Min pts for shape

Ψ # shape found

R # remaining points

Efficient RANSAC on CGAL

• https://doc.cgal.org/latest/Shape_detection/index.html

• Works well when points are uniformly distributed on the
surface, like a laser scan

• Connected components part may need to be modified for
sparse/MVS points due to gaps in reconstruction

https://doc.cgal.org/latest/Shape_detection/index.html

TEASER: Fast and Certifiable
Point Cloud Registration
(Yang et al. 2020)

Problem formulation

• Given corresponding points 𝑎𝑖 , 𝑏𝑖 , solve for translation 𝑡,
rotation 𝑅, and scale 𝑠 that minimize truncated least squares
cost function

• Equivalent to maximizing inliers with a distance-based
weighting

• Difficult optimization problem

Optimization approach

• Hypothesize pairs of correspondences 𝑎𝑖 , 𝑏𝑖 and 𝑎𝑗 , 𝑏𝑗

• If both correspondences are inliers, they can vote for scale

• Given scale, it’s much easier to solve for rotation

• Given scale and rotation, the pairs can vote for translation

TIM and TRIM

• Translation-rotation-invariant measures (TRIM)

• Translation-invariant measures (TIM)

0 if 𝑖 and 𝑗 are inliers

ai

aj

bi

bj

Scale estimation

• Get consensus estimate for scale from TRIM

tolerance

Outlier rejection

• After solving scale, discard
edges that are outliers in scale

• Find maximal clique on graph
and discard any edges not in
that clique

Rotation estimation

• Get consensus estimate for rotation from TIM with scale now
fixed

• Solve via semi-definite program relaxation (for certified result)
or GNC (for speed)

– GNC = graduated non-convex solver: https://arxiv.org/pdf/1909.08605.pdf

https://arxiv.org/pdf/1909.08605.pdf

Translation estimation

• Solve for each translation
component with scale and
rotation fixed

• Same adaptive voting
algorithm as for scale

TEASER++ implementation available

• C++ implementation

• Bindings for Python, Matlab, and ROS

• https://github.com/MIT-SPARK/TEASER-plusplus

https://github.com/MIT-SPARK/TEASER-plusplus

Application: Object localization

• Use FPFH features to create correspondences

https://www.cvl.iis.u-tokyo.ac.jp/class2016/2016w/papers/6.3DdataProcessing/Rusu_FPFH_ICRA2009.pdf

https://www.cvl.iis.u-tokyo.ac.jp/class2016/2016w/papers/6.3DdataProcessing/Rusu_FPFH_ICRA2009.pdf

Application: scan alignment

• 3DSmoothNet features w/ nearest neighbor search

https://github.com/zgojcic/3DSmoothNet

https://github.com/zgojcic/3DSmoothNet

Correspondence-free: start with all pairs of points as
candidate correspondences

Open problems / research ideas

• Most fitting/registration experiments either involve simple
objects (bunny) or laser scans of scenes

– Irregularity of image-based reconstructions creates major challenges

• Registration of “reality” to “model” is difficult – e.g. point
cloud to BIM or drawing

• Likely potential to improve features for correspondence

Summary

• Fitting and registration are closely related problems with
many potential solutions
– Robust fit solver (relaxation, branch and bound, iterative)

– RANSAC

• RANSAC is the easiest thing to try first

• Need for improved methods that work well for image-based
reconstructions

