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Agenda

* Overview of shape fitting and registration

* Efficient RANSAC for Point-Cloud Shape Detection

 TEASER: Fast and Certifiable Point Cloud Registration



Fitting: find the parameters of a model that best fit the data

Registration: find the parameters of the transformation that
best aligh matched points



Shape fitting and registration have many applications

Shape fitting

* Simplify mesh or remove noise from points

* Detect potential surfaces to fill in missing points

* Extract structure for matching to drawings or other representations

Registration
e Align point clouds of a building site captured on two dates for comparison
* Get a complete scan from several partial scans

 Determine the relative pose of two point clouds (e.g. for SLAM loop
closure)

* Find an object with known shape in the scene



Fitting and Registration: Design Challenges

* Design a suitable goodness of fit measure
— Similarity should reflect application goals
— Encode robustness to outliers and noise

* Design an optimization method
— Avoid local optima
— Find best parameters quickly



Fitting and Registration: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— |terative closest point (ICP)

* Hypothesize and test

— Generalized Hough transform
— RANSAC



Slide modified from S. Lazebnik

Total least squares

Find (a, b, ¢) to minimize the sum of
squared perpendicular distances
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Solution is eigenvector corresponding to smallest eigenvalue of ATA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh quotient



http://en.wikipedia.org/wiki/Rayleigh_quotient

Robust least squares (to deal with outliers)

General approach:
minimize ZP(Ui(Xi’G); O') J2 :Zinzl(yi _mx —b)?
i

u; (xi, ) — residual of it" point w.r.t. model parameters 6
p — robust function with scale parameter o
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o2 + u? | The robust function p
|« Favors a configuration
with small residuals

» Constant penalty for large
residuals

Slide from S. Savarese



Robust Estimator

1. Initialize: e.g., choose @ by least squares fit and
o =1.5-median(error)

3 error(6,data, )’

2. Choose params to minimize: ~ &2 1 error(6, data, )

— E.g., numerical optimization

2

3. Compute new o =1.5-median(error)

4. Repeat (2) and (3) until convergence



Hypothesize and test

1. Propose parameters
— Try all possible
— Each point votes for all consistent parameters
— Repeatedly sample enough points to solve for parameters

2. Score the given parameters

— Number of consistent points, possibly weighted by
distance

3. Choose from among the set of parameters
— Global or local maximum of scores

4. Possibly refine parameters using inliers



Hough transform
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Slide from S. Savarese



RANSAC ° ®
(RANdom SAmple Consensus) : ‘ ‘ ‘

Fischler & Bolles in ‘81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Source: Savarese
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Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
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Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

1. mple (randomly) the number of points requir fit the model (#=
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




How to choose parameters?

* Number of samples N

— Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e )

* Number of sampled points s
— Minimum number needed to fit the model

e Distance threshold 6

— Choose 0 so that a good point with noise is likely (e.g., prob=0.95) within threshold

— Zero-mean Gaussian noise with std. dev. o: t2=3.84¢2

N =log(l-p)/log (1—(1—3)5)

proportion of outliers €

S 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 S 9 26 44 /8 272 1177

modified from M. Pollefeys



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points without correspondences

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each point in {Set 1} to its nearest neighbor in {Set 2}
3. Estimate transformation parameters

— e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small



Algorithm Summary

* Least Squares Fit

— closed form solution

— robust to noise

— not robust to outliers
* Robust Least Squares

— improves robustness to noise

— requires iterative optimization
* Hough transform

— robust to noise and outliers

— can fit multiple models

— only works for a few parameters (1-3 typically)
* RANSAC

— robust to noise and outliers

— works with a moderate number of parameters (e.g, 1-8)
* |terative Closest Point (ICP)

— Does not require initial correspondences

— Needs good initial solution, gets stuck easily



Efficient RANSAC for Point Cloud Shape Detection (Schnabel et al. 2007)

(a) Original (b) Approximation

* Fit planes and shapes to 3D points, with partial extent
e Scale to millions of points



Efficient RANSAC Overview

Input: orientated 3D point set, empty sets of shapes and candidates

1. Generate candidates for all shape types by sampling minimum
subsets

2. Score each candidate and add to candidate set

3. Select best candidate m if it is likely that no better candidate
exists
a. Add candidate m to shape set
b. Remove points that fit m from point set
c. Remove candidates that overlap with m

4. Return to 1 until there aren’t any good candidates



Shape estimation from 3 sampled oriented points

* Plane
— Fit to 3 unoriented points
— Quick check: point/plane normal similarity

 Sphere
— Fit to 2 oriented points
— Find center pt closest to two rays; radius is average distance from center to points
— Quick validate: point/sphere normal similarity, point/sphere surface similarity

 Cylinder
— Fit to 2 oriented points
— Axisis nl1 x n2; find center similar to sphere in plane normal to axis; radius set by distance of p1 to center
— Quick validate: normals and positions

* Cone
— Fit to 3 oriented points

— Apexis intersection of 3 planes defined by oriented points; axis is normal of plane formed by 3 unit-
normalized directions from apex to points; opening angle is average angle from axis of apex to points



' - Efficiency goals
Runtime CompIeX|ty « Maximize P(n), prob of generating

good candidate

* Suppose . .
e Minimize evaluation cost C

— A point cloud has N points
— n of the points fit a particular shape
— The shape can be estimated from k points

* Probability of fitting the shape in one sampling

=)/ ()= G

* Probability of fitting the shape with s candidates

Pn,s)=1—(1—=P(n))’
T candidates needed to detect best shape of at least size n with
proba bility P(Tl, T) = Dt / Evaluation cost

C
_—ln(l=p)  O(TC) = 0(=—)

- In(1—py) . oD

~ In(1—="P(n)) T P(n)




Sampling Strategy

* Local sampling with Octree

— Nearby points are more likely to be on the
same shape surface

— Sample first point freely
— Sample level along octree

— Sample other two points within
corresponding cell

* Example of shape with 1,066 points
within set of 341,547 points

— Uniform sampling: need 151,522,829
candidates to achieve 99% probability of
good sample

— Octree sampling: need 64,929 candidates

n
Pocal (I”l) —

{Vdel

Assumes at least one octree cell
containing each point has at least
50% of points that fit shape; octree is
depth d

Figure 2: A small cylinder that has been detected by our
method. The shape consists of 1066 points and was detected
among 341,587 points. That corresponds to a relative size of

1/3000.



Improved octree level sampling

* Learn data-dependent prior for whether to sample close or distant
points

s . . 1
* Initialize probability of sampling each level to -

* Keep track of sum of scores g; of each level [

e After testing a given number of candidates, assign probability of
sampling level [ 0.9

A x O/ | |
Pp=x—+4(1—x)- =y¢ g
Normalizing sum/ /

Uniform probability



Sampling: termination

e Stop sampling when there is less than 1% chance that a shape
exists with more points that the best shape so far



Shape score

e Score = # inliers

 Points are inliers if distance to surface is less than € and normal
is less than surface normal by less than a

— Use octree to find points near surface efficiently

* Keep only inliers that are in connected components
— Create a low resolution bitmap over the surface of the shape
— Project points onto that surface
— Extract connected components



Scoring with random subsets

e Split entire point set into random subsets

 Compute score on subset and infer score confidence interval
on larger set

* |f score interval overlaps with score interval of best candidate,
compute each with an extra subset, until there is no overlap



Refitting

* Perform least squares fit on inliers and check again for inliers



Summary of speed-ups

* Fast sample rejection
* Local sampling

* Improved level sampling
* Scoring with subsets

— Optimized — Global sampling — no subsets

i e _
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#ishapes

Figure 4: The chart shows the times of detection of the
shapes found in the oil pump model when either subset eval-
uation or the localized sampling is disabled. For compari-
son also the timings of the fully optimized version are plot-
ted. Total runtime for the version without subsets was 272.5s,
199. I's without local sampling and 12.3s with both optimiza-
tions activated.



model P £ al|l t |[¥|] |R|]| sec
fandisk 12k 0.01] 10 50| 24 381 0.57
rocker arm 40k | 0.003 | 20 501 73 k| 6.5
carter 546k | 0.001]20( 200|138 47k| 29.1
rolling stage | 606k | 0.003 20| 300| 61| 16k]| 15.1
oil pump 542k 1 0.0015]30( 100|202 15k|{ 30.9
master cyl. 418k | 0.003|35( 300| 37 Tk | 12.1
house 379k | 0.002(20| 100|130 19k | 10.7
church 1,802k [ 0.002 120 1000 | 160 | 690k | 40.7
: 4,000 81| 543k| 20.8
choir screen | 1,922k [ 0.002 | 20 =50 T35 536 613

P # total pts

e Distance threshold

a Angle threshold (deg)
T Min pts for shape

Y # shape found

R # remaining points



(a) Original (b) Random colors (c) Colored by type (d) Bitmaps

Figure 7: a) The original scanned model with ca. 500k points. b) Points belonging to shapes in random colors. c) Points of
the shapes colored according to the type of the shape they have been assigned to: planes are red, cylinders green, spheres
vellow, cones purple and tori are grey. No remaining points are shown. d) The bitmaps constructed for connected component

computations provide a rough reconstruction of the object.

(a) Noisy original (b) Random colors (c) Colored by type (d) Random colors

Figure 8: a) Distorted model with Gaussian noise and outliers b)-c) Results of the detection on the model with Gaussian noise
but without added outliers. d) In addition to the Gaussian noise, 10% outliers were added (see a)).



Figure 9: First column: Original point-clouds. Second column: Shapes colored randomly. Last column: Shapes colored by
type as in Fig. 7. Models are from top to bottom and left to right: rolling stage, house, master cylinder, rocker arm, church, and
carter. For parameters and timings see table 1.



Efficient RANSAC on CGAL

* https://doc.cgal.org/latest/Shape detection/index.html

* Works well when points are uniformly distributed on the
surface, like a laser scan

 Connected components part may need to be modified for
sparse/MVS points due to gaps in reconstruction


https://doc.cgal.org/latest/Shape_detection/index.html

TEASER: Fast and Certifiable
Point Cloud Registration
(Yang et al. 2020)

Algorithm 1: Truncated least squares Estimation And
SEmidefinite Relaxation (TEASER).

Input: points (a;.b;) and bounds 3; (i =1,....N).
threshold &2 (default: 2 = 1), graph G(V, €) (default:
G describes the complete graph);

Output: s, R,

% Compute TIM and TRIM

(]

LF¥]

s by =by—b; , ay; = a;—a; , §; = fitfy, V(i.j) €€
$ 5ij = et o = ety V(0 €€

6 Y0 Decoupled estimation of s, R, t

7 § = estimate_s({s;;,a;; : V(i,j) € £},¢)

s G'(V', &) —maxChque( (V,E")) % prune out]ierﬂ
9 R = estimate_R({ay;, bij, 0;; : V(i, ) 5”} &, %)

0 t= estlmate _t({a;, b;,B; i € V'}, &2 §, R)
11 return: §, R, ¢

(a) Input (b) RANSAC (c) TEASER++

Correspondence-free  Correspondence-based

(e) ICP (f) TEASER++

Object Localization

g) Correspondences (h) TEASER++

Scan Matching

(1) Correspondences (j) TEASER++



Problem formulation

* Given corresponding points (a;, b;), solve for translation ¢,
rotation R, and scale s that minimize truncated least squares
cost function

* Equivalent to maximizing inliers with a distance-based
weighting

* Difficult optimization problem

,'l'\‘."

- 1
min E min (2 |b; — sRa; — tHZ_ ,«—2)
3 3

s>0,ReS0O(3),teR 1



Optimization approach

Hypothesize pairs of correspondences (a;, b;) and (aj, bj)
If both correspondences are inliers, they can vote for scale

Given scale, it’'s much easier to solve for rotation

Given scale and rotation, the pairs can vote for translation



TIM and TRIM

* Translation-rotation-invariant measures (TRIM)

T

a;; = a; — a; bij =b; — b, Sij — ||||

o

i |

L
ijll

QI

* Translation-invariant measures (TIM)  b;; = sRa;; +0;; + €5
f

0 if i and j are inliers




Scale estimation

e Get consensus estimate for scale from TRIM

K 2
. . . (s — sk) _
§ = arg min E min 5 , C
.

5

k=1 /4
tolerance
(a) '51 ! élz L1 65; 1 611 L '5:-]
—— q—r' L '4—5 q—r' [P
C aC 2 s C xqC Q5

i

myz ms Mg

myq mz mz mq Ms mes

Fig. 3. (a) confidence interval for each measurement s, (every s in the k-th

2
interval satisfies (S—_C:ZJi < &2: (b) cardinality of the consensus set for every

. . Tk . :
s and middle-points m; for each interval with constant consensus set.

Algorithm 2: Adaptive Voting.

=T - - N - Y Y

Input: s;, oy, ¢
Output: s, scale estimate solving (11);
% Define boundaries and sort
v = sort([s1 —1¢, s1+ i€, ..., Sk —akC, Sk +ak])
Y0 Compute middle points
m; = YL for i =1,...,2K — 1
% Voting
fori=1,...,2K —1 do
I, =10
for k=1,...,K do
if m; € [sp — axC, sk + axc| then
| 7, =1; U{k} % add to consensus set
end
end
end

% Enumerate consensus sets and return best
return: § from Eq. (14).




Outlier rejection

» After solving scale, discard
edges that are outliers in scale

Feature Points Complete Graph

* Find maximal cliqgue on graph
and discard any edges not in
that clique

Fig. 2. TIMs generated from a complete graph in the Bunny dataset [97].

Theorem 6 (Maximal Clique Inlier Selection). Edges cor-
responding to inlier TIMs form a clique in E', and there is at
least one maximal clique in E' that contains all the inliers.



Rotation estimation

e Get consensus estimate for rotation from TIM with scale now
fixed

b sR .
R = arg mmme(” F ;2 m‘| _E‘z)

RE‘:O 3)

* Solve via semi-definite program relaxation (for certified result)
or GNC (for speed)

— GNC = graduated non-convex solver: https://arxiv.org/pdf/1909.08605.pdf



https://arxiv.org/pdf/1909.08605.pdf

Translation estimation

 Solve for each translation
component with scale and
rotation fixed

* Same adaptive voting
algorithm as for scale




TEASER++ implementation available

 C++ implementation
* Bindings for Python, Matlab, and ROS

* https://github.com/MIT-SPARK/TEASER-plusplus



https://github.com/MIT-SPARK/TEASER-plusplus

Application: Object localization

* Use FPFH features to create correspondences

AT AL

-'.’Sugcesé.‘f'ull‘ objéét poée“éstlmato by TEASER on a‘v'r;é'al RG ‘- dataset. Blue
lines are the original FPFH [1] correspondences with outliers, green lines are the inlier
correspondences computed by TEASER, and the final registered object is highlighted in red.

Fig. 8.

https://www.cvl.iis.u-tokyo.ac.ip/class2016/2016w/papers/6.3DdataProcessing/Rusu FPFH ICRA2009.pdf



https://www.cvl.iis.u-tokyo.ac.jp/class2016/2016w/papers/6.3DdataProcessing/Rusu_FPFH_ICRA2009.pdf

Application: scan alignment

* 3DSmoothNet features w/ nearest neighbor search

Scenes
Mean  SD =
Rotation error [rad] 0.066 0.043 S S S S S S _ S =
Translation error [m] 0.069 0.053 - — = —~ — = S ) =
= — — -l o — = &
# of FPFH correspondences 525 161 é o = = = = S : _
inlier ratio [% £ & & & B & 2 & 2
FPFH inlier ratio [%] 6.53 4.59 g < = = = = z S Z
TABLE 1 RANSAC-IK 91.3 89.1 745 942 846 90.7 863 818 0.008
REGISTRATION RESULTS ON EIGHT SCENES OF THE RANSAC-10K 97.2 923 793 965 865 944 904 857 0.074
RGB-D DATASET [36]. TEASER++ 98.6 929 865 978 894 944 O9l1.1 83.1 0.059
TEASER++ (CERT) 994 941 887 982 919 944 943 88.6 238.136
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Fig. 10. Rotation errors for each scene (data points correspond to pairs of . L
scans in the scene), with certified TEASER++ solutions (blue dots) vs. non- https://q|thub_Com/2q0|C|C/3DsmOOthNet

certified (red crosses).


https://github.com/zgojcic/3DSmoothNet

Correspondence-free: start with all pairs of points as

candidate correspondences

—TEASER++ Go-ICP (90%) —TEASER++ Go-ICP (90%)
——Go-ICP (30%) —ICP ——Go-ICP (30%) —ICP
——Go-ICP (60%) ——Go-ICP (80%)
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Fig. 7. (a)-(b) Rotation and translation errors for TEASER++, ICP, and Go-

ICP in a correspondence-free problem. (¢) Timing breakdown for TEASER++.



Open problems / research ideas

* Most fitting/registration experiments either involve simple
objects (bunny) or laser scans of scenes

— Irregularity of image-based reconstructions creates major challenges

* Registration of “reality” to “model” is difficult — e.g. point
cloud to BIM or drawing

* Likely potential to improve features for correspondence



Summary

e Fitting and registration are closely related problems with
many potential solutions

— Robust fit solver (relaxation, branch and bound, iterative)
— RANSAC

* RANSAC is the easiest thing to try first

* Need for improved methods that work well for image-based
reconstructions



