Recognition in Point Clouds

3D Vision
University of Illinois

Derek Hoiem

Survey

Due tonight: put link to pdf on Google drive

- Sign up to review another survey
 - Up to 4 reviewers per survey
 - See assignment for what to address, 100+ words
 - Add link to Google doc

Question: on Tues have survey groups present or 3D recognition papers?

This class: Recognition in Point Clouds

Problem domain overview

PointNet / PointNet++

Octree-based O-CNN

MinkowskiNet

2D/3D BPNet

Tasks

semantic segmentation

object detection

Datasets

ShapeNet Part: 2k

Mo et al. PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding. CVPR 2019.

Yi et al. A scalable active framework for region annotation in 3D shape collections. TOG 2016.

Wu et al. 3D ShapeNets: A Deep Representation for Volumetric Shapes. CVPR 2015.

Datasets

Stanford 3D indoor scene: 8k

ScanNet: seg + det

Semantic 3D: 4 billion in total

KITTI: det

Dai et al. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR 2017.

Armeni et al. 3d semantic parsing of large-scale indoor spaces. CVPR 2016.

Hackel et al. Semantic3d. net: A new large-scale point cloud classification benchmark. ISPRS 2017.

General challenges

Representations

multi-view images + 2D CNN

volumetric data + 3D CNN

mesh data + DL (GNN)?

image depth + CNN

point cloud + DL (CNN)?

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Kaichun Mo

Leonidas J. Guibas

Hao Su*

Charles R. Qi* Stanford University **PointNet** mug? table? car? Classification Part Segmentation Semantic Segmentation **CVPR 2017**

- Unordered point set as input
 - Transform (point → feature) and then max pool. For example, each point could be mapped to a
 feature that encodes a voxel and then the global feature would represent which voxels are filled.
 - Point transformations are independent of other points!
- Robust to geometric transformations
 - Predicted 3x3 transformation enables point cloud to be transformed before processing

Simple 1D invariance example

Seven 1-dim points (x's)

Bins = mapping into 5-dim features

00001	00010	00100	01000	10000	
Х Х		хх х		χХ	

Max pooling

In practice, mapping from 3D points to 1024D features does not need to be as simple as a partitioning into 1024 cells, and the mapping is learned

Robust to varying point density

Minimum set of points to get same features

Maximum set of points to get same features

Results on Object Classification

		input	#views	accuracy	accuracy
				avg. class	overall
_	SPH [12]	mesh	-	68.2	
_	3DShapeNets [29]	volume	1	77.3	84.7
3D CNNs	VoxNet [18]	volume	12	83.0	85.9
	Subvolume [19]	volume	20	86.0	89.2
_	LFD [29]	image	10	75.5	-
	MVCNN [24]	image	80	90.1	-
_	Ours baseline	point	-	72.6	77.4
	Ours PointNet	point	1	86.2	89.2
_					

dataset: ModelNet40; metric: 40-class classification accuracy (%)

Results on Object Part Segmentation

Results on Object Part Segmentation

mean	aero	bag	cap	car	chair	ear	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
						phone									board	
	2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
-	63.2	-	-	-	73.5	-	-	-	74.4	-	-	-	-	-	-	74.8
81.4	81.0	78.4	77.7	75.7	87.6	61.9	92.0	85.4	82.5	95.7	70.6	91.9	85.9	53.1	69.8	75.3
79.4	75.1	72.8	73.3	70.0	87.2	63.5	88.4	79.6	74.4	93.9	58.7	91.8	76.4	51.2	65.3	77.1
83.7	83.4	78. 7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6
	- 81.4 79.4	2690 - 63.2 81.4 81.0 79.4 75.1	2690 76 - 63.2 - 81.4 81.0 78.4 79.4 75.1 72.8	2690 76 55 - 63.2 81.4 81.0 78.4 77.7 79.4 75.1 72.8 73.3	2690 76 55 898 - 63.2 81.4 81.0 78.4 77.7 75.7 79.4 75.1 72.8 73.3 70.0	2690 76 55 898 3758 - 63.2 73.5 81.4 81.0 78.4 77.7 75.7 87.6 79.4 75.1 72.8 73.3 70.0 87.2	phone 2690 76 55 898 3758 69 - 63.2 73.5 - 81.4 81.0 78.4 77.7 75.7 87.6 61.9 79.4 75.1 72.8 73.3 70.0 87.2 63.5	phone 2690 76 55 898 3758 69 787 - 63.2 - - - 73.5 - - 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4	phone 2690 76 55 898 3758 69 787 392 - 63.2 - - - 73.5 - - - 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6	phone 2690 76 55 898 3758 69 787 392 1547 - 63.2 - - - 73.5 - - - 74.4 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4	phone 2690 76 55 898 3758 69 787 392 1547 451 - 63.2 - - - 73.5 - - - 74.4 - 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9	phone 2690 76 55 898 3758 69 787 392 1547 451 202 - 63.2 - - - 73.5 - - - 74.4 - - 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7	phone 2690 76 55 898 3758 69 787 392 1547 451 202 184 - 63.2 - - - - - 74.4 - - - 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8	phone 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 - 63.2 - - - 73.5 - - - 74.4 - - - - 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4	phone 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 - 63.2 - - - 73.5 - - - 74.4 - - - - - 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2	board 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 - 63.2 73.5 74.4

dataset: ShapeNetPart; metric: mean IoU (%)

Results on Semantic Scene Parsing

dataset: Stanford 2D-3D-S (Matterport scans)

PointNet pros and cons

- + Process 1 million points per second on GTX1080 GPU
- + Can incorporate many features (position, color, normal, local shape)
- + Many applications: object classification, point labeling, point normal estimation, retrieval, keypoint matching

- Limited resolution (due to 1024 global vector)
- Cannot learn local shape features other than occupancy
- Not as accurate as subsequent methods

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

Charles R. Qi Li Yi Hao Su Leonidas J. Guibas Stanford University

NeurIPS 2017

- Sampling: iterative farthest point to get N' cluster centers
- Grouping: Points within ball radius of each cluster center are selected
- PointNet: maps each point from d+C to d+C' dimensions and maxpools (encode occupancy of local neighborhood)
- Multi-scale Grouping: apply grouping with different radii in parallel and concatenate; train with point dropout
- Feature propagation: in skip links, interpolate feature values and concatenate with each point; then pass through 1x1 conv

Method	Error rate (%)
Multi-layer perceptron [24]	1.60
LeNet5 [11]	0.80
Network in Network [13]	0.47
PointNet (vanilla) [20]	1.30
PointNet [20]	0.78
Ours	0.51

Method	Input	Accuracy (%)
Subvolume [21]	vox	89.2
MVCNN [26]	img	90.1
PointNet (vanilla) [20]	pc	87.2
PointNet [20]	pc	89.2
Ours	pc	90.7
Ours (with normal)	pc	91.9

Table 1: MNIST digit classification.

Table 2: ModelNet40 shape classification.

Figure 4: Left: Point cloud with random point dropout. Right: Curve showing advantage of our density adaptive strategy in dealing with non-uniform density. DP means random input dropout during training; otherwise training is on uniformly dense points. See Sec.3.3 for details.

- Uses 4 layers of PointNet (vs. 3 for classification)
- Operates on a 3x2.5x2.5 m volume of points at a time

PointNet++ pros and cons

+ Improves accuracy: clustering approach enables computing features of local geometry

- More complicated than PointNet: more hyperparamters parameters and more variations between application settings
- 3x (or more) slower than PointNet
- Does not address resolution problem

O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

PENG-SHUAI WANG, Tsinghua University and Microsoft Research Asia YANG LIU, Microsoft Research Asia YU-XIAO GUO, University of Electronic Science and Technology of China and Microsoft Research Asia CHUN-YU SUN, Tsinghua University and Microsoft Research Asia XIN TONG, Microsoft Research Asia

O-CNN

- Exploits Octree sparsity and organization to create efficient data structures for 3D convolution (this is the clever part)
- Store average point normals in leaf nodes of Octree – only compute over occupied nodes
- O(n²) space/time for n resolution, compared to O(n³) for voxels
- Simple architecture: multiple convolution + batch-norm + relu + pool modules, followed by FC layers
- For point labeling, encoding is followed by upsampling decoder, similar to UNet

Method	16 ³	32 ³	64 ³	128 ³	256 ³
O-CNN	0.32GB	0.58GB	1.1GB	2.7GB	6.4GB
full voxel+binary	0.23GB	0.71GB	3.7GB	Out of memory	Out of memory
full voxel+normal	0.27GB	1.20GB	4.3GB	Out of memory	Out of memory

Table 3. Comparisons on GPU-memory consumption. The batch size is 32.

Method	16 ³	32 ³	64 ³	128 ³	256 ³
O-CNN	17ms	33ms	90ms	327ms	1265ms
full voxel+binary	59ms	425ms	1648ms	-	-
full voxel+normal	75ms	510ms	4654ms	-	-

Table 4. Timings of one backward and forward operation in milliseconds. The batch size is 32.

O-CNN – best performing in ScanNet(!?)

What's New?

2021.08.24: Update the code for pythorch-based O-CNN, including a UNet and some other major components.
 Our vanilla implementation without any tricks on ScanNet dataset achieves 76.2 mIoU on the ScanNet benchmark, even surpassing the recent state-of-art approaches published in CVPR 2021 and ICCV 2021.

https://github.com/Microsoft/O-CNN

Extension to scene completion (CVPR 2020 workshop)

Complete occluded portion of depth image

	Scen	e comple	etion				Semantic scene completion								
Method	prec.	recall	IoU	ceil.	floor	wall	win.	chair	bed	sofa	table	tvs	furn.	objs.	avg.
3DRecGAN [46]	-	-	72.1	79.9	75.2	48.2	28.9	20.2	64.4	54.6	25.7	17.4	33.7	24.4	43.0
SSCNet [32]	76.3	95.2	73.5	96.3	84.9	56.8	28.2	21.3	56.0	52.7	33.7	10.9	44.3	25.4	46.4
ForkNet [40]	_	-	86.9	95.0	85.9	73.2	54.5	46.0	81.3	74.2	42.8	31.9	63.1	49.3	63.4
SATNet [20]	80.7	96.5	78.5	97.9	82.5	57.7	58.5	45.1	78.4	72.3	47.3	45.7	67.1	55.2	64.3
VVNet [10]	90.8	91.7	84.0	98.4	87.0	61.0	54.8	49.3	83.0	75.5	55.1	43.5	68.8	57.7	66.7
SGCNet [48]	92.6	90.4	84.5	96.6	83.7	74.9	59.0	55.1	83.3	78.0	61.5	47.4	73.5	62.9	70.5
CCPNet [49]	98.2	96.8	91.4	99.2	89.3	76.2	63.3	58.2	86.1	82.6	65.6	53.2	76.8	65.2	74.2
Our Results	92.1	95.5	88.1	98.2	92.8	76.3	61.9	62.4	87.5	80.5	66.3	55.2	74.6	67.8	74.8

O-CNN pros and cons

- + Performs very well
- + Efficient in memory/compute

 Paper describes only use of basic CNN modules, while latest updates seem to result in much better performance but not well documented

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

Christopher Choy

JunYoung Gwak

Silvio Savarese

chrischoy@stanford.edu

jgwak@stanford.edu

ssilvio@stanford.edu

 Minkowski Engine enables convolution with sparse tensors

- 3D: XYZ

-4D: XYZ + time

Figure 4: Architecture of ResNet18 (left) and MinkowskiNet18 (right). Note the structural similarity. × indicates a hypercubic kernel, + indicates a hypercross kernel. (best viewed on display)

4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks

Christopher Choy

chrischoy@stanford.edu

JunYoung Gwak

jgwak@stanford.edu

Silvio Savarese

ssilvio@stanford.edu

Architecture of MinkowskiUNet32. × indicates a hypercubic kernel, + indicates a hypercross kernel. (bes

ScanNet / Stanford Dataset

Process entire room fully convolutionally

 Good performance due to ability for high resolution voxelization and deep networks

Table 1: 3D Semantic Label Benchmark on ScanNet[†] [5]

Method	mIOU
ScanNet [5]	30.6
SSC-UNet [10]	30.8
PointNet++ [23]	33.9
ScanNet-FTSDF	38.3
SPLATNet [28]	39.3
TangetConv [29]	43.8
SurfaceConv [20]	44.2
3DMV [‡] [6]	48.4
3DMV-FTSDF [‡]	50.1
PointNet++SW	52.3
MinkowskiNet42 (5cm)	67.9
SparseConvNet [10] [†]	72.5
MinkowskiNet42 (2cm) [†]	73.4
-	

^{†:} post-CVPR submissions. ‡: uses 2D images additionally. Per class IoU in the supplementary material. The parenthesis next to our methods indicate the voxel size.

Table 4: Stanford Area 5 Test (Fold #1) (S3DIS) [2]

Method	mIOU	mAcc
PointNet [22]	41.09	48.98
SparseUNet [9]	41.72	64.62
SegCloud [30]	48.92	57.35
TangentConv [29]	52.8	60.7
3D RNN [32]	53.4	71.3
PointCNN [15]	57.26	63.86
SuperpointGraph [14]	58.04	66.5
MinkowskiNet20	62.60	69.62
MinkowskiNet32	65.35	71.71

Per class IoU in the supplementary material.

Table 6: Time (s) to process 3D videos with 3D and 4D MinkNet, the volume of a scan at each time step is $50m \times 50m \times 50m$

Voxel Size		0.6	m		0.45	5m		0.3m					
Video Length (s)	3D	4D	4D-CRF	3D	4D	4D-CRF	3D	4D	4D-CRF				
3	0.18	0.14	0.17 0.27	0.25	0.22	0.27	0.43	0.49	0.59				
5	0.31	0.23	0.27	0.41	0.39	0.47	0.71	0.94	1.13				
7	0.43	0.31	0.38	0.58	0.61	0.74	0.99	1.59	2.02				

Minkowski pros and cons

- + Framework for sparse convolution
- + Good accuracy, due to ability for deeper networks

Does not cite O-CNN, so it's hard to tell how they compare

Bidirectional Projection Network for Cross Dimension Scene Understanding

Wenbo Hu^{1,3*} Hengshuang Zhao^{2*} Li Jiang¹ Jiaya Jia¹ Tien-Tsin Wong^{1,3†}

¹The Chinese University of Hong Kong ²University of Oxford

³Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, SIAT, CAS

Bidirectional projection

3D ScanNet

Method	mIoU	bath	bed	bkshf	cab	chair	cntr	curt	desk	door	floor	other	pic	fridge	shower	sink	sofa	table	toilet	wall v	window
PointNet++ [43]	33.9	58.4	47.8	45.8	25.6	36.0	25.0	24.7	27.8	26.1	67.7	18.3	11.7	21.2	14.5	36.4	34.6	23.2	54.8	52.3	25.2
SPLATNet [†] [50]	39.3	47.2	51.1	60.6	31.1	65.6	24.5	40.5	32.8	19.7	92.7	22.7	0.00	00.1	24.9	27.1	51.0	38.3	59.3	69.9	26.7
3DMV [†] [8]	48.4	48.4	53.8	64.3	42.4	60.6	31.0	57.4	43.3	37.8	79.6	30.1	21.4	53.7	20.8	47.2	50.7	41.3	69.3	60.2	53.9
FAConv[69]	63.0	60.4	74.1	76.6	59.0	74.7	50.1	73.4	50.3	52.7	91.9	45.4	32.3	55.0	42.0	67.8	68.8	54.4	89.6	79.5	62.7
MCCNN [19]	63.3	86.6	73.1	77.1	57.6	80.9	41.0	68.4	49.7	49.1	94.9	46.6	10.5	58.1	64.6	62.0	68.0	54.2	81.7	79.5	61.8
FPConv [33]	63.9	78.5	76.0	71.3	60.3	79.8	39.2	53.4	60.3	52.4	94.8	45.7	25.0	53.8	72.3	59.8	69.6	61.4	87.2	79.9	56.7
MVPNet [†] [24]	64.1	83.1	71.5	67.1	59.0	78.1	39.4	67.9	64.2	55.3	93.7	46.2	25.6	64.9	40.6	62.6	69.1	66.6	87.7	79.2	60.8
DCM-Net [47]	65.8	77.8	70.2	80.6	61.9	81.3	46.8	69.3	49.4	52.4	94.1	44.9	29.8	51.0	82.1	67.5	72.7	56.8	82.6	80.3	63.7
PointConv [62]	66.6	78.1	75.9	69.9	64.4	82.2	47.5	77.9	56.4	50.4	95.3	42.8	20.3	58.6	75.4	66.1	75.3	58.8	90.2	81.3	64.2
PointASNL [64]	66.6	70.3	78.1	75.1	65.5	83.0	47.1	76.9	47.4	53.7	95.1	47.5	27.9	63.5	69.8	67.5	75.1	55.3	81.6	80.6	70.3
KP-FCNN [55]	68.4	84.7	75.8	78.4	64.7	81.4	47.3	77.2	60.5	59.4	93.5	45.0	18.1	58.7	80.5	69.0	78.5	61.4	88.2	81.9	63.2
MinkowskiNet [6]	73.6	85.9	81.8	83.2	70.9	84.0	52.1	85.3	66.0	64.3	95.1	54.4	28.6	73.1	89.3	67.5	77.2	68.3	87.4	85.2	72.7
BPNet (Ours) [†]	74.9	90.9	81.8	81.1	75.2	83.9	48.5	84.2	67.3	64.4	95.7	52.8	30.5	77.3	85.9	78.8	81.8	69.3	91.6	85.6	72.3

Table 1. Comparison with the typical streams of methods on ScanNetV2 3D Semantic label benchmark, including point cloud based, sparse convolution based, and joint 2D-3D-input (marked with †) based methods.

3 views performs best

ScanNet 2D

Method	mIoU	bath	bed	bkshf	cab	chair	cntr	curt	desk	door	floor	other	pic	fridge	shower	sink	sofa	table	toilet	wall	window
PSPNet [72]	47.5	49.0	58.1	28.9	50.7	6.7	37.9	61.0	41.7	43.5	82.2	27.8	26.7	50.3	22.8	61.6	53.3	37.5	82.0	72.9	56.0
UNet34 [46]	48.9	55.3	62.6	26.6	50.3	23.5	37.9	52.4	49.8	41.6	84.5	28.6	32.1	54.0	12.8	60.8	55.3	38.5	81.6	73.6	56.6
3DMV [8]															18.2						
FuseNet [†] [16]	53.5	57.0	68.1	18.2	51.2	29.0	43.1	65.9	50.4	49.5	90.3	30.8	42.8	52.3	36.5	67.6	62.1	47.0	76.2	77.9	54.1
SSMA [†] [56]	1	ı													35.3						
RFBNet [†] [10]															47.9						
BPNet (Ours) [†]	67.0	82.2	79.5	83.6	65.9	48.1	45.1	76.9	65.6	56.7	93.1	39.5	39.0	70.0	53.4	68.9	77.0	57.4	86.5	83.1	67.5

(mark indicates 2d-3d)

BPNet pros and cons

- + Incorporates both image and 3D features in an elegant way
- + Performs very well

- Must be slow (?) -- might not be worth complexity vs Minkowski or O-CNN

Open problems / research ideas

- MVS point clouds
 - Most or all datasets are currently based on laser scans or other detailed depth sensors
 - MVS is challenging due to noisy and incomplete points
- Automated progress monitoring
 - Detect presence/state of building elements given point clouds and images
 - Challenges of many element types, long-tail distribution
- Change/deviation detection
 - Given two 3D models, identify the important differences, e.g. deviation from design or change detection from date to date

Summary

 Early successful approaches (PointNet variety) focus on pointwise processing, or graph-based approaches in local neighborhoods

 Current best-performing approaches (O-CNN, Minkowski) use sparse convolution

 Semantic segmentation on MVS point clouds is relatively unstudied and may raise new challenges