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This class: Deep Multiview Stereo

* Potential benefits of deep learning
* Deep learning background

* Deep network approaches to MVS
— MVSNet
— AttMVSNet



Benefits of deep learning

* Learn image and feature representations that are well-tuned for
problems of interest

e Can optimize for many different kinds of losses or combinations of
losses

* Can learn representations on large datasets and finetune them on
smaller datasets

e Often, efficient inference on GPUs



Potential for deep networks in MVS

1. Learn better photometric scoring functions, e.g. more robust to
smooth or reflective surfaces or boundaries, via better features or
adaptive neighborhoods

2. Learn better prediction of visibility

3. Learn better combination of cues, such as photometric score,
geometric consistency, and surrounding predictions

4. Integrate multiview depth estimations and recognition



Deep networks: basic structures

* Image classification network (AlexNet shown)
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http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf

Deep networks: basic structures

* Pixel labeling network (U-Net shown)
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https://arxiv.org/pdf/1505.04597.pdf

ResNet: the residual module

* Introduce skip or shortcut connections (existing before in various forms in
literature)
 Make it easy for network layers to represent the identity mapping

 Sparser, more direct updates in training

weight layer
.7:(}{) l relu Important but non-intuitive idea: to
. X combine information, no need to concatenate
weight layer identity — just add

F(x) + x

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper)



http://arxiv.org/abs/1512.03385

Transformers
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Figure from Ming Li. See full deck for details/illustrations.
https://cs.uwaterloo.ca/~mli/Lecture2.pptx



https://cs.uwaterloo.ca/%7Emli/Lecture2.pptx

MVSNet (Yao et al. ECCV 2018)
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Plane Sweep Stereo

Plane Sweep Stereo
Slide credit: Jae Yong Lee



Plane Sweep Stereo

Plane Sweep Stereo
Slide credit: Jae Yong Lee



Plane Sweep Stereo

Plane Sweep Stereo
Slide credit: Jae Yong Lee



Plane Sweep Stereo
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View Selection

* Score is weighted count of common sparse points, favoring
those with triangulation angle close to 5 degrees
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Photometric costs: features P ;3;1:;(;%1';
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Photometric cost volume computation

* Homography maps from each reference depth plane to each view to obtain
interpolated feature values (D = # depths = 256, N = # views = 5)

o Stack features into N volumes of size W/4 x H/4 x D x F
e Compute variance over volumes to get W/4 x H/4 x D x F photometric score volume
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Cost volume regularization and initial depth estimation

3D UNet: compress while accumulating spatial context
and then uncompress with skip connections

Softmax in depth direction results in W/4 x H/4 x D
probability volume P
— P(x, y, d) is probability that depth at coordinate (x,y) had depth d

Compute expectation of depth to get initial estimate
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Depth refinement

* Predict a residual depth from reference image and initial depth
map
— Attempts to refine around boundaries
— Residual depth is added to initial
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Filtering and Fusion

* Keep points that have:
— probability of at least 0.8

— low reprojection error and low reprojection depth difference with at
least two other images

[Preproj — 1| < 1 (dyeproj — d1|/dy < 0.01  (Note: depth ratio)

 Visibility-based fusion (Merrell et al. ICCV 2007)

— Efficient GPU implementation
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Training

e Loss on initial and refined maps Loss = 3 [ld(e) — dip)ll +A- ) — d. )l
e N =3, W=640, H=512 for training PEPuatia —~— —~
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Results: example

(a) Inferred depth map (b) Filtered depth map (c) GT depth map

(d) Reference image (e) Fused point cloud (f) GT point cloud



Table 1: Quantitative results on the DTU’s evaluation set [1]. We evaluate all
methods using both the distance metric [1] (lower is better), and the percentage
metric [18] (higher is better) with respectively 1mm and 2mm thresholds

Mean Distance (mm)|Percentage (<1mm)|Percentage (<2mm)

Acc. Comp. overall | Acc. Comp. f-score | Acc. Comp. f-score

Camp 3] 0.835 0.554 0.695 |71.75 64.94 66.31 |84.83 67.82 73.02
Furu |7 0.613 0.941 0.777 [69.55 61.52 63.26 | 78.99 67.88 70.93
Tola [35] 0.342 1.190 0.766 [90.49 57.83 68.07 193.94 63.88 73.61
Gipuma [8] 0.283 0.873 0.578 (94.65 59.93 70.64 [96.42 63.81 74.16
SurfaceNet[14] 0.450 1.04 0.745 | 83.8 63.38 69.95 | 87.15 67.99 744
MVSNet (Ours) 0.396 0.527 0.462 | 86.46 71.13 75.69 | 91.06 75.31 80.25
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Table 2: Quantitative results on Tunks and Temples benchmark [18]. MVSNet
achieves best f-score result among all submissions without any fine-tuning

Method Rank Mean Family Francis Horse Lighthouse M60 Panther Playground Train
MVSNet (Ours) 3.00 43.48 5599 2855 2507 50.79 53.96 50.86 47.90 34.69
Pix4D [30] 3.12 43.24 64.45 3191 26.43 5441 50.58 35.37 47.78 34.96
COLMAP [32] 3.50 42.14 5041 2225 25.63 56.43 44.83 4697 48.53 42.04
OpenMVG [27] + OpenMVS [29] 3.62 41.71 5886 32.59 26.25 43.12  44.73 46.85 45.97 35.27
OpenMVG [27] + MVE [6] 6.00 38.00 49.91 28.19 20.75  43.35  44.51 44.76 36.58 35.95
OpenMVG [27] + SMVS [21] 10.38 30.67 31.93 19.92 15.02  39.38  36.51 41.61 35.89 25.12
OpenMVG-G [27] + OpenMVS [29] 10.88 22.86 56.50 29.63 21.69 6.55 39.54 28.48 0.00 0.53
MVE [6] 11.25 25.37 48,59 23.84 12.70 5.07 39.62 38.16 5.81 20.19
OpenMVG [27] + PMVS [7] 11.88 29.66 41.03 17.70 1283 36.68 3593 33.20 31.78 28.10

(a) Family () Panther

(&) Francis (f) Train (g) Lighthouse (h) M60



Runtime: 4.7s per view

e 100x faster than COLMAP, 5x faster than Gipuma



2 min break (and think)

* Compared to non-ML MVS algorithms, how is this one better?

e How is it worse?



Pros and Cons of MVSNet

* Pros
— Fast and relatively simple
— Learnable features
— Good completeness

* Cons
— Loses benefits of pixelwise view selection and normal estimates

— Requires dense views (lack of pixelwise view selection) and small
depth range (cost volume)

— (Maybe) depth expectation can lead to inaccurate estimates



State-of-the-art works in MVS

Vis-MVSNet (BMVC 2020) 60.03
AttMVSNet (CVPR 2020) 60.05
ACMP (AAAI 2020) 58.41
ACMM (CVPR 2019) 57.27

Tanks and Temples
Intermediate Benchmark

Slide credit: Jae Yong Lee

Dense views for object scenes
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State-of-the-art works in MVS

Vis-MVSNet (BMVC 2020) 60.03
AttMVSNet (CVPR 2020) 60.05
ACMP (AAAI 2020) 58.41
ACMM (CVPR 2019) 57.27

Tanks and Temples
Intermediate Benchmark

Slide credit: Jae Yong Lee
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Learning (Cost-Volume) based

Non-Learning PatchMatch based
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In more Challenging Benchmarks...

MARMVS (CVPR2020) 81.84
ACMP (AAAI 2020) 81.51
ACMM (CVPR 2019) 80.78
Vis-MVSNet (BMVC 2020) 78.36
PVSNet 72.08
ETH3D High-Res Benchmark With wide baselines with strict thresholds

32

Slide credit: Jae Yong Lee



In more Challenging Benchmarks...

MARMVS (CVPR2020) 81.84 ACMP (AAAI 2020) 37.44
ACMP (AAAI 2020) 81.51 ACMM (CVPR 2019) 34.02
ACMM (CVPR 2019) 80.78 ACMH (CVPR 2019) 33.73
Vis-MVSNet (BMVC 2020) 78.36 AttMVSNet (CVPR 2020) 31.93
PVSNet 72.08 CasMVSNet (CVPR 2020) 31.12
ETH3D High-Res Benchmark Tanks and Temples Advanced Benchmark
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Slide credit: Jae Yong Lee



Attention-Aware MVS (Luo et al. CVPR 2020)
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Attention-enhanced confidence volume

* Features: like MVSNet but 10 layers, 16
channels, LeakyRelLU, InstanceNorm

* Predict “attention” weights based on variance
of average feature channels across images .

e Feature confidence channels based on mean
squared diff of sources with ref along each |
channel ., (50

N-1

* Sum feature confidence channels weighted
by attention weights

* Allows scene-specific feature importance

| Attention-enhanced Confidence Volume ||



Attention-guided hierarchical regularization

* Create multiscale cost volume by
stacking feature x depth channels
and using stride=2 to downsample

* Confidence volumes are processed
with 3D convolution and linear
layers at multiple scales

e ||

Ri

RFM

simple-RFM Rs

Attention-guided Regularization



Depth regression

* Compute expected depth like MVSNet

* |n training, optimize over relative depth and depth ([ Regression
gradient (train on DTU w/ improved GT maps)
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Ablation

Table 1: Comparison results of the proposed AttMVS with different model variants on the DTU validation set.

Settings Pred. prec. | Pred. prec.

Models  —f5d Tea, extr, | ALMCY Sim[g)le—RFM REMs | Jomtioss | WAPE | 2 :prS) (1 :p35)
Baseline 2.14 83.11 95.77
Model-A v 1.96 84.57 96.25
Model-B Y WV 1.91 84.98 96.36
Model-C v Vi Vi 1.89 85.64 96.45
Model-D Vi V v Vi 1.82 87.08 96.84
Full Vi Vi Vi Vi Vi 1.79 §7.61 97.04




Table 2: Comparisons on the recovered three-dimensional models
for the DTU evaluation scenes by different methods. AttMVS*
denotes inclusion of the refinement of the depth maps by (9).

Method Mean Mean Overall .
accuracy  completeness 5;5’
Gipuma [11] 0.274 1193 0.734 A
tola [34] 0.343 1.190 0.767 A 4
Zl;rnl_g I[EH gg ;é g?gg g;gg (a) Reference image (b) WSNet
SurfaceNet [ 1 0] 0.450 1.043 0.746 : -
MVSNet [11] 0.396 0.527 0.462
R-MVSNet [+ ] 0.385 0.459 0.422
Point-MVSNet [ /] 0.342 0411 0.376
P-MVSNet [ 5] 0.406 0.434 0.420
AttMVS (Z = 256) 0.412 0.394 0.403
AttMVS (Z = 384) 0.391 0.345 0.368
AttMVS™ (Z = 384) 0.383 0.329 0.356

(c) P-MVSNet (d) AttMVS



Table 3: Performance comparisons of various reconstruction algorithms on the intermediate sequences of the Tanks & Temples benchmark.
Our AttMVS ranks 1st among all of the submissions.

Method Rank Mean | Family Francis Horse Lighthouse M60  Panther Playground  Train
AttMVS (Ours) 2.38  60.05 | 73.90 62.58  44.08 64.88 56.08  59.39 63.42 56.06
Altizure-HKUST-2019 [?] 4.00 59.03 | 77.19 61.52  42.09 63.50 59.36  58.20 57.05 53.30
3Dnovator [ ] 4.62 5837 | 7343 52.51 37.08 64.55 59.58  62.88 62.88 51.40
ACMM [+0] 6.12 57.27 | 69.24 5145 4697 63.20 55.07 57.64 60.08 54.48
Altizure-SFM, PCF-MVS [21] | 7.38 5588 | 70.99 49.60  40.34 63.44 57.79 5891 56.59 49.40
OpenMVS [25] 7.715  55.11 71.69 51.12 4276 58.98 5472 56.17 59.77 45.69
P-MVSNet [25] 7.75  55.62 | 70.04 44.64  40.22 65.20 55.08  55.17 60.37 54.29
ACMH [9] 975 5482 | 69.99 49.45  45.12 58.86 52.64  52.37 58.34 51.61
PLC_[27] 10.62  54.56 | 70.09 5030 4194 59.04 49.19  55.53 56.41 54.13
Point-MV SNet [ 7] 18.25 48.27 | 61.79 41.15  34.20 50.79 51.97  50.85 52.38 43.06
Dense R-MVSNet [+] 18.38  50.55 | 73.01 5446 4342 43.88 46.80  46.69 50.87 45.25
R-MVSNet [+2] 21.50 48.40 | 69.96 46.65  32.59 42.95 51.88  48.80 52.00 42.38
MVSNet [+1] 27.88 4348 | 55.99 28.55  25.07 50.79 5396  50.86 47.90 34.69
COLMAP [31, 532] 30.12 42.14 | 5041 2225  25.63 56.43 44.83  46.97 48.53 42.04

Table 4: Performance comparisons of various reconstruction approaches on the advanced sequences of the Tanks & Temples benchmark.

Method Rank Mean | Auditorium Ballroom Courtroom Museum Palace Temple
Altizure-HKUST-2019 [ ] 3.17 37.34 24.04 44.52 36.64 49.51 30.23 39.09
Altizure-SFM, PCE-MVS [21] 433  35.69 28.33 38.64 35.95 48.36 26.17 36.69
OpenMVS [25] 5.50 3443 24.49 37.39 38.21 47.48 27.25 31.79
3Dnovator [!] 5.67 3451 18.61 40.77 37.17 50.30 27.60 32.61
PLC_[23] 5.83 3444 23.02 30.95 42.50 49.61 26.09 34.46
COLMAP-SFM, PCF-MVS [21] | 6.17  34.59 26.87 31.53 44.70 47.39 24.05 32.97
ACMM [40] 6.33  34.02 2341 32.91 41.17 48.13 23.87 34.60
AttMVS (Ours) 8.00 31.93 15.96 27.71 37.99 52.01 29.07 28.84
Dense R-MVSNet [+7] 11.83  29.55 19.49 31.45 29.99 42.31 22.94 31.10
R-MVSNet [+2] 15.67 2491 12.55 29.09 25.06 38.68 19.14 24.96




Summary

* Deep MVS applies learned features and cost volume
regularization

* Qutperforms for dense views, moderate scene depth

* Underperforms non-ML methods for sparse views, large scene
depths

* Deep patch-match based methods try to address this and are
catching up to non-ML methods, but so far ACMMP
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