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This class: Two-View Stereo

• Epipolar geometry
– Relates cameras from two positions

• Stereo depth estimation
– Recover depth from two images



3D from Stereo Images
Goal: Produce a depth image from a pair of images from 
translated cameras 

image 1

image 2

Dense depth map



What do we know from a pixel position?
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2D Pixel  3D Ray through camera center and pixel
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We know the 3D point is along the ray, but cannot 
determine the depth
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Intersection of two rays determines depth
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Why do we need two 2D points to get one 3D point?
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All points on the ray from first camera project onto line in 
second camera
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How do we determine this line?

Camera 
Center

Pixel 
Position

Camera 
Center

1. All rays observed by a camera pass through its center
2. The center of left projected on right camera is the epipole
3. Given the pixel position and epipole from left, we can 

compute the epipolar line in right which must contain the 
corresponding pixel position 

Epipole

Epipolar
line
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Epipolar constraint: Calibrated case (math version)

Given the intrinsic parameters of the cameras:
1. Convert to normalized coordinates by pre-multiplying all points with the 

inverse of the calibration matrix; set first camera’s coordinate system to 
world coordinates 

XxKx 1 == −ˆ XxKx 1 ′=′′=′ −ˆ
Homogeneous 2d point 
(3D ray towards X) 2D pixel coordinate 

(homogeneous)

3D scene point

3D scene point in 2nd

camera’s 3D coordinates
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Epipolar constraint: Calibrated case

Given the intrinsic parameters of the cameras:
1. Convert to normalized coordinates by pre-multiplying all points with the 

inverse of the calibration matrix; set first camera’s coordinate system to 
world coordinates  

2. Define some R and t that relate X to X’ as below

txRx +′= ˆˆ
XxKx 1 == −ˆ XxKx 1 ′=′′=′ −ˆ

for some scale factor



Epipolar constraint: Calibrated case

x x’

X

t

XxKx 1 == −ˆ XxKx 1 ′=′′=′ −ˆ

txRx +′= ˆˆ 0)]ˆ([ˆ =′×⋅ xRtx
(because �𝑥𝑥,𝑅𝑅 �𝑥𝑥′, and 𝑡𝑡 are co-planar)

�𝑥𝑥′
�𝑥𝑥



Essential Matrix
(Longuet-Higgins, 1981)

Essential matrix

0)]ˆ([ˆ =′×⋅ xRtx [ ] RtExExT
×==′ with0ˆˆ

X

x x’



X

Properties of the Essential matrix

• E x’ is the epipolar line associated with x’ (l = E x’)
• ETx is the epipolar line associated with x (l’ = ETx)
• E e’ = 0   and   ETe = 0
• E is singular (rank two)
• E has five or six degrees of freedom 

– (3 for R; 2 for t because it’s up to a scale, or 3 for t if scale is known) 

0)]ˆ([ˆ =′×⋅ xRtx
Drop ^ below to simplify notation

[ ] RtExExT
×==′ with0ˆˆ

x x’

Skew-
symmetric 
matrix



Simplest Case: Parallel images
• Cameras have no relative rotation
• Translation is purely in horizontal 

direction
• Intrinsic parameters are the same

When this is only approximately true, 
the images can be “rectified” to make 
it true, assuming they are calibrated



Simplest Case: Parallel images
• Cameras have no relative rotation
• Translation is purely in horizontal 

direction
• Intrinsic parameters are the same
• Then, epipolar lines fall along the 

horizontal scan lines of the images



Simplest Case: Parallel images
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Depth from disparity
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Correspondence Problem

• We have two images taken from calibrated cameras with 
different positions

• How do we match a point in the first image to a point in the 
second?  How can we constrain our search?

x ?



Matching cost

disparity

Left Right

scanline

Correspondence search

• Slide a window along the right scanline and compare contents of that 
window with the reference window in the left image

• Matching cost
• SSD: sum squared distance
• SAD: sum absolute distance
• NCC: normalized cross correlation
• SSIM: structural similarity index measure (compromise of SSD and NCC) 



Left Right

scanline

Correspondence search

SSD



Left Right

scanline

Norm. corr

Correspondence search



Basic stereo matching algorithm

• If necessary, rectify the two stereo images to transform 
epipolar lines into scanlines

• For each pixel x in the first image
– Find corresponding epipolar scanline in the right image
– Search the scanline and pick the best match x’
– Compute disparity x-x’ and set depth(x) = fB/(x-x’)



What are the assumptions in detecting correspondences?

• Surfaces have constant appearance across viewpoints
– Lambertian material: non-reflective, non-transparent
– Same lighting and camera gain, or measures like NCC that factor out mean and 

variance within patch

• Appearance is distinctive enough to identify correspondences
– Textured surfaces

• Depth is uniform within the patch
– Can extend to locally planar if surface normal also estimated
– Violated at object edges and non-frontal or non-smooth surfaces

• Depth in nearby pixels is similar or co-planar (for global optimization)



Failures of correspondence search

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularities



Reflective Surface

Patch Size = 1 pixel



Patch Size = 7 pixels

Reflective Surface
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Smooth Surface

Patch Size = 1 pixels



Patch Size = 7 pixels

Smooth Surface



Textured Surface
Patch Size = 1 pixel

Patch Size = 7 pixels



Results with window search

Window-based matching Ground truth

Data



2 min break



Add constraints and solve with graph cuts

Graph cuts Ground truth

For the latest and greatest:  http://www.middlebury.edu/stereo/

V. Kolmogorov and R. Zabih, Computing Visual Correspondence with 
Occlusions via Graph Cuts, ICCV 2001

Before

* 

http://www.middlebury.edu/stereo/
https://www.cs.cornell.edu/rdz/Papers/KZ-ICCV01-tr.pdf


Graph cut optimization
• Minimize

– Data: disparity per pixel should have low photometric cost 
– Occlusion: cost for not assigning a depth value
– Smooth: cost for assigning neighboring pixels to different depths

• Optimization is over “cost volume”, i.e. there is a unary cost for each 
disparity for each pixel 

• Use graph cuts with label expansion to get good solution
– Iteratively assign all labels to a particular disparity that improve the global cost
– Optimal assignment within each step but may be globally suboptimal
– Relatively slow



• Cost: SSD, NCC, SAD, …
• Aggregation: pixel, fixed window, 

adaptive window, …
• Optimization: winner-take-all, graph 

cuts, dynamic program
• Priors: smoothness (improve 

speed/quality), piecewise-planar
• Refinement: parabolic fit, Lucas-

Kanade

Taxonomy of solutions and designs



How does deep learning apply?

• Replace intensity-based photometric cost with learned 
features

• Regress disparity based on cost volume



Benchmarks
• Middlebury: https://vision.middlebury.edu/stereo/data/

• KITTI: http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

• Papers with code: 
https://paperswithcode.com/datasets?q=Stereo&v=lst&o=match&mod=stereo&page=1

https://vision.middlebury.edu/stereo/data/
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
https://paperswithcode.com/datasets?q=Stereo&v=lst&o=match&mod=stereo&page=1


Kinect: Depth from Projector-Sensor

Only one image:  How is it possible to get 
depth?

Projector Sensor

Scene 
Surface



Same stereo algorithms apply

Projector Sensor



Example: Book vs. No Book
Source: http://www.futurepicture.org/?p=97

http://www.futurepicture.org/?p=97


Example: Book vs. No Book
Source: http://www.futurepicture.org/?p=97

http://www.futurepicture.org/?p=97


Region-growing Random Dot Matching
1. Detect dots (“speckles”) and label them unknown
2. Randomly select a region anchor, a dot with unknown 

depth
a. Windowed search via normalized cross correlation along 

scanline
– Check that best match score is greater than threshold; if not, mark 

as “invalid” and go to 2
b. Region growing (dynamic program)

1. Neighboring pixels are added to a queue
2. For each pixel in queue, initialize by anchor’s shift; then search 

small local neighborhood; if matched, add neighbors to queue
3. Stop when no pixels are left in the queue

3. Repeat until all dots have known depth or are marked 
“invalid”

http://www.wipo.int/patentscope/search/en/WO2007043036

http://www.wipo.int/patentscope/search/en/WO2007043036


Projected IR vs. Natural Light Stereo

• What are the advantages of IR?
– Works in low light conditions
– Does not rely on having textured objects
– Not confused by repeated scene textures
– Can tailor algorithm to produced pattern

• What are advantages of natural light?
– Works outside, anywhere with sufficient light
– Uses less energy
– Resolution limited only by sensors, not projector

• Difficulties with both
– Very dark surfaces may not reflect enough light
– Specular reflection in mirrors or metal causes trouble



Summary

• 3D points can be triangulated from corresponding pixels in two images, 
constrained by epipolar lines (usually scanlines)

• Stereo involves solving for disparity of each pixel by
– Matching: Comparing pixel intensities, patches, deep features
– Optimization: WTA, smoothness, and other priors
– Refinement: subpixel optimization via parabolic fit or gradient

• Stereo works best on the interior of highly textured, non-reflective surfaces

• Stereo algorithms also apply when light is projected with a known pattern 
and other cases like varying light sources



Next class
• Choose paper with your group today 
• Read paper and submit individual review. Can discuss with 

group, but write your review on your own.
• Discuss with your group in class Tues and make summary slide 

– 20 minutes
• Groups present their slides in order of publication date (oldest 

to newest) – 30-50 minutes
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