
University of Illinois, Urbana Champaign
CS 598DK Special Topics in Cryptography

Instructor: Dakshita Khurana
Scribe: Sarah Christensen, Siheng Pan,
Nerla Jean-Louis
Date: October 11, 2019

LECTURE

12

Fully Homomorphic Encryption II

In the prior lecture, we were first introduced to the concept of fully homomorphic encryp-
tion (FHE). In particular, we covered the motivation for the problem, its formal definition,
and how FHE schemes can leverage learning with errors (LWE) in their construction. In
this lecture, we continued our discussion of FHE, diving more deeply into the details of how
to construct a leveled-FHE using LWE and why this construction is correct.

The key technical difficulty focused on in this lecture is ensuring that the leveled-FHE
construction is multiplicatively homomorphic, which requires significantly more care than
its additive analog. Indeed, the intuition behind the construction only becomes apparent in
hindsight, after understanding how it behaves under multiplication. The lecture culminated
with a discussion of how leveled-FHE, which allows only a bounded number of homomorphic
operations, can be combined with an additional security assumption to produce FHE with
an unbounded number of homomorphic operations [1]. This result, called bootstrapping, is
one of the most exciting breakthroughs in recent cryptography.

12.1 A leveled-FHE scheme

We begin by describing a leveled fully homomorphic public-key encryption scheme that uti-
lizes LWE (for a review on LWE, see Lecture 10). Recall that any encryption scheme is de-
fined by a tuple of probabilistic polynomial-time algorithms (KeyGen, Encrypt, Decrypt).

KeyGen(prime number q, 1n):

– Construct an n ×m matrix A by drawing its entries uniformly at random from the
space of integers modulo q (i.e., A←− Zn×m

q).

– Construct an n-dimensional vector s by also drawing its entries uniformly at random
from the space of integers modulo q (i.e., s←− Zn

q).

– Construct an m-dimensional vector e by drawing its entries from the χ distribution
(i.e., e ←− χm). With high probability, ||e|| < q/(mc) for some sufficiently large
constant c by the properties of the χ distribution.

– Define an m-dimensional vector b = sA + eT . Notice that these entries are simply
the sums of the LWE system of equations.

– Define the secret key to be the following (n+ 1)-dimensional vector: t =
[−s

1

]
– Define the public key to be the following (n+ 1)×m dimensional matrix: B =

[
A
b

]
– Output the public key B.

Encrypt(public key B, message µ ∈ {0, 1}):

– Construct an m×m matrix R by drawing its entries uniformly at random from {0, 1}.
(i.e., R←− {0, 1}m×m).

– Define a linear operator G using matrix multiplication. In particular, G can be repre-

sented with an (n+ 1)×
(

(n+ 1)(blog qc+ 1)
)

matrix as follows:

G :=


1 2 . . . 2blog qc 0 . . . 0 . . . 0
0 0 . . . 0 1 . . . 2blog qc . . . 0
...

...
... 0 . . . 0 . . . 0

0 0 . . . 0 0 . . . 0 . . . 2blog qc


In other words, G is a matrix with the sequence [1, 2, ..., 2blog qc] repeated in each row;
in the ith row, this pattern begins in column j = i·(blog qc+1). We state the entries of
G here for completeness, but the intuition behind it will only make sense in hindsight
when proving this scheme is multiplicatively homomorphic.

– Define the ciphertext to be the following:

C = BR + µG.

Note that BR has dimension (n + 1) × m. For this matrix multiplication to make

sense, we need to set m =
(

(n+ 1)(blog qc+ 1)
)

.

– Output the ciphertext C.

Decrypt(secret key t, ciphertext C):

– Compute the matrix product of the secret key with the ciphertext.

tTC = tT (BR + µG)

= tTBR + µtTG

= [−s 1]
[

A
sA+eT

]
R + µtTG

= eTR + µtTG

= Low norm error term + µtTG (12.1)

=

{
Low norm error term µ = 0

Low norm error term + tTG µ = 1

12-2

– The 1×m vector tTG = [−s1 ·1,−s1 ·2, . . . ,−s1 ·2blog qc,−s2 ·1, . . . , 1 ·2blog qc] is then
sufficiently big enough to create separation and allow us to reliably distinguish between
the case where µ = 0 and µ = 1. To see this, recall that ||eTR|| < m||eT || < q/c
with high probability by construction. Moreover, ||tTG|| > 2q/c with high probability
since the secret key will likely contain at least one “big” coefficient close to q. Note
that this matrix norm is serving a similar function as q/2 did in previous constructions
(i.e., creating sufficient separation).

12.2 Verifying Additive Homomorphism

In order for this scheme to be fully homomorphic, it is sufficient to show we can homomor-
phically perform the operations of addition and subtraction. Note that we cannot make two
ciphertexts insecure by adding or multiplying them (recall our proof of security in the multi-
message setting) so we focus on correctness exclusively. We begin with addition, which we
already showed in the prior lecture can be achieved with a much simpler encryption scheme.
Here, we use a similar approach to show the above scheme is additively homomorphic.

Assume that we are given two ciphertexts C and C′ encrypting messages µ1 and µ2,
respectively. We wish to show that we can compute the ciphertext encoding µ1+µ2 mod q.

Evaluate(+, ciphertext C, ciphertext C′):

– Return CAdd = C + C′.

What remains to be shown is that Decrypt(secret key t, ciphertext CAdd) is correct. To do
this, we chase through the calculations of our decryption protocol.

tTCAdd = tT (C + C′)

= tT ((BR1 + µ1G) + (BR2 + µ2G))

= tTB(R1 + R2) + (µ1 + µ2)tTG

= eT (R1 + R2) + (µ1 + µ2)tTG

Observe that we have recovered the same functional form as that above in Equation 12.1.
However, the error has likely grown since in the first term eT is now multiplied with (R1 +
R2), which has entries in {0, 2}. The analysis will still go through since the norm is still
bounded: ||eT (R1 + R2)|| < 2m||eT || < 2q/c. It is important though that our choice of c
be large enough to tolerate this increase by a factor of 2.

This raises an important point. Under a leveled-FHE scheme such as this one, error will
accumulate as more operations are performed. For ` additions, the error is proportional to
(R1 + ...+R`) ∈ {0, `}m×m. This implies that the upper bound on the norm of eT fixes an
upper bound on the number of computations that can be performed before the decryption
algorithm becomes unreliable. This is a major limitation since the number of computations
may not be known in advance, reducing flexibility.

12.3 Verifying Multiplicative Homomorphism

We now wish to show that our scheme is multiplicatively homomorphic. Again, assume that
we are given two ciphertexts C and C′ encrypting messages µ1 and µ2, respectively. This

12-3

time we wish to show that we can compute the ciphertext encoding µ1µ2 mod q. The most
natural thing to try for an evaluation algorithm is the following (ignoring dimension issues):

EvaluateNaive(×, ciphertext C, ciphertext C′):

– Return CMult = CC′.

Unfortunately, when we simplify CMult in our decryption step, we run into some difficulties.

tTCMult = tTCC′

= tT (BR1 + µ1G)(BR2 + µ2G)

= tTBR1BR2 + tTBR1µ2G + tTBR2µ1G + tTµ1µ2G
2

= eTR1BR2 + eTR1µ2G + eTR2µ1G + µ1µ2t
TG2

In addition to the obvious dimension problems, we obtain the term µ1µ2t
TG2, which does

not fit the functional form of Equation 12.1. Also, only one of the Bs was reduced to eT in
the first term. This leaves an error term multiplied by the remaining B, which will likely
be too large since entries in B are relatively large.

We modify this evaluation scheme by introducing the operator G−1, which functions as
the inverse to G. The intuition behind doing this is that it will cancel an extra G from the
final term as well as shrink the entries in the extra B of the first term to control error.

Evaluate(×, ciphertext C, ciphertext C′):

– We first define the operator G−1, which takes as input a Z(n+1)×m
q matrix and outputs

a {0, 1}((n+1)(blog qc+1))×m matrix. In particular, G−1 expands an input matrix into
its component-wise binary decomposition. For instance, given an input matrix

X :=

x0,0 x0,1 . . . x0,m−1
...

...
. . .

...
xn,0 xn,1 . . . xn,m−1


We define G−1 on that matrix as follows:

G−1(X) :=



Bin(x0,0)0 Bin(x0,1)0 . . . Bin(x0,m−1)0
Bin(x0,0)1 Bin(x0,1)1 . . . Bin(x0,m−1)1

...
... . . .

...
Bin(x0,0)(blog qc) Bin(x0,1)(blog qc) . . . Bin(x0,m−1)(blog qc)

...
...

. . .
...

Bin(xn,0)(blog qc) Bin(xn,1)(blog qc) . . . Bin(xn,m−1)(blog qc)


where Bin(x0,0)0 is the first bit in the binary decomposition of x0,0 ∈ Zq into ((n +
1)(blog qc+ 1)) bits. Note that the number of columns does not change. Each element
in the input matrix gets expanded into (blog qc + 1) rows, so the number of rows in
the output matrix increases by a factor of (blog qc+ 1).

– Return the (n + 1) × m dimensional matrix CMult = CG−1(C′). Recall that we
fixed m = (n + 1)(blog qc + 1) when defining our encryption scheme so the matrix
multiplication here is well-defined.

12-4

G−1(G) =



I
0 . . .
0 . . .

0 0
...

...
I

. . . 0
...

0 . . .
0 . . .

0 0
...

...
...
0 . . .

. . .
...
0

. . . 0
I


Figure 12.1: Each identity sub-matrix I corresponds to the expansion of the sequence
[1, 2, ..., 2blog qc] for one row in G. Each I is of dimension (blog qc+ 1)× (blog qc+ 1).

Remark 12.1. G and G−1 are both operators. G performs binary recomposition, and G−1

performs binary decomposition. While G is a linear operator (whose operations can therefore
be encoded in a matrix), G−1 is not a linear operator.

Remark 12.2. G−1 takes as input a small matrix with large entries and creates a large
matrix with small entries. How convenient!

Fact 12.3. For any matrix X ∈ Z(n+1)×m
q , G(G−1(X)) = X. Similarly, G−1(G) is equal to

the identity matrix Im×m.

To convince yourself of the second half of this fact, recall that each row in the matrix
representation of G has the sequence [1, 2, ..., 2blog qc]. When expanded into a component-
wise binary decomposition, this sequence is just the identity matrix I(blog qc+1)×(blog qc+1).
Next, observe that the spacing of the sequences in G is such that these identity sub-matrices
line up along the diagonal of the output matrix, forming a full identity matrix as claimed
(see Figure 12.3).

Now, we finally show that with this modified evaluation function, our decryption scheme
returns the correct result.

CMult = CG−1(C′)

= (BR1 + µ1G)G−1(BR2 + µ2G)

= (BR1 + µ1G)(G−1(BR2) + G−1(G)µ2)

= BR1G
−1(BR2) + BR1µ2 + µ1BR2 + µ1µ2G

Multiplying by the secret key, we have

tTCMult = tT
(
BR1G

−1(BR2) + BR1µ2 + µ1BR2 + µ1µ2G
)

= tTBR1G
−1(BR2) + tTBR1µ2 + tTBR2µ1 + tTµ1µ2G

= eTR1G
−1(BR2) + eT

(
R1µ2 + R2µ1

)
+ µ1µ2t

TG

This is very close to the invariant functional form that we are looking for. Note that the
final term is exactly in the same form as Equation 12.1. The middle term is bounded above

12-5

by eT
(
R1 + R2

)
, which we already analyzed as being sufficiently small in the additive

homomorphism section. What remains is showing eTR1G
−1(BR2) is sufficiently small.

And finally we understand all the fuss about G and G−1. We have defined G−1 precisely
so that it can shrink the norm of B! The Frobenious norm of BR is O(q

√
nm) since there are

O(nm) entries in BR with value of O(q). By comparison, the Frobenious norm of G−1(BR)
is O(

√
mm) = O(m) = O(n log q). This is because there are m2 entries in this binary

matrix. We are operating in a regime where q = O(2n), so this is a significant reduction.
Putting this all together to get an upper bound on error we have:

||eT
(
R1G

−1(BR2) + R1µ2 + R2µ1

)
||F ≤ ||eT

(
R1G

−1(BR2) + R1 + R2

)
||F

≤ ||eT ||F · ||R1G
−1(BR2) + R1 + R2||F

≤ ||eT ||F ·
(
||R1G

−1(BR2)||F + ||R1||F + ||R2||F
)

≤ q

mc
(m+ 2m)

=
3q

c

Again, we see that the error is bounded and that for sufficiently large c, we can decrypt the
message. In fact, the norm of the error grows by roughly m, which limits how many times
you can multiply before experiencing decryption error. Since q, n,m are all fixed ahead of
time, there is an apriori bounded number of operations. In the next section, we see how to
fix the problem with needing to bound the number of operations in advance.

Open Problem 12.4. Construct a FHE without using a variation of LWE.

12.4 Gentry’s Bootstrapping

To achieve a FHE with unbounded homomorphism, we introduce the infamous bootstrap-
ping technique first proposed by Gentry [1]. The key to performing an unbounded number
of operations is to be able to reduce the accumulation of noise. Given an ciphertext with lots
of accumulated noise, we want to obtain a new ciphertext that still encrypts the same mes-
sage, but with much less noise. The idea for achieving this is as follows: Take a ciphertext
with high noise homomorphically decrypt it with an encrypted secret key.

We begin with a high noise ciphertext encrypting some message µ as well as a ciphertext
encrypting the secret key (i.e., CNoise = Enc(µ),CSecret = Enc(t)). We then define d
as the fixed number of operations the decryption algorithm Dec requires on CNoise and
CSecret. We then obtain a new ciphertext CDenoise as follows:

CDenoise = Eval(Dec,CNoise,CSecret)

= Encpk2(Dec(CNoise))

= Encpk(µ)

Notice that the noise CDenoise is independent of the noise in CNoise, and instead CDenoise

always has noise proportional to d. If we set q to be sufficiently large enough based on an
upper bound for d, we can reduce the error of the ciphertext.

Notice that this construction requires us to publish an encryption of the secret key, which
not allowed under the standard definition of security we have been using. Recall that under

12-6

CPA-security, we have that for all messages µ0, µ1 Encpk(µ0) ≈ Encpk(µ1). Under some-
thing called Circular-Security, we have that all messages µ0, µ1 Encpk

(µ0), Encpk
(sk) ≈

Encpk
(µ1), Encpk

(sk). Note that it is not known that CPA-security implies Circular-
Security, and that Circular-Security is a stronger assumption. What we have shown is
that if we had leveled-FHE with Circular-Security, then we can build a true FHE with
unbounded homomorphism.

Remark 12.5. FHE with bounded homomorphism is often referred to as leveled-FHE. FHE
with unbounded homomorphism is often just referred to as FHE.

Open Problem 12.6. Construct a FHE with unbounded homomorphism without relying
on the additional circular security assumption.

Acknowledgement

These scribe notes were prepared by editing a light modification of the template designed
by Alexander Sherstov.

References

[1] C. Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC, volume 9,
pages 169–178, 2009.

12-7

	A leveled-FHE scheme
	Verifying Additive Homomorphism
	Verifying Multiplicative Homomorphism
	Gentry's Bootstrapping

