Last time: \[\text{[A, Aste]} \]

\[C_1 = R_1 B + \mu_1 G \]

\[C_2 = R_2 B + \mu_2 G \]

\[C_2t = R_2 e^t + \mu_2 Gt = (\mu_2 Gt) + \text{"low norm error"} \]

Want to obtain \(C^* = \text{Enc}(\mu_1,\mu_2) \)

\(C^* \) should decrypt to \(\mu_1\mu_2 \)

We want

\[C^* t = \mu_1\mu_2 Gt + \text{"low norm error"} \]

\[C^* = (C_1 G^{-1}) C_2 \]

\[|e| \rightarrow B, \]

\[C^* t = (C_1 G^{-1}) C_2 t \]

\[\left(\mu_2 Gt + R_2 e \right) \]

\[= C_1 G^{-1} R_2 e + \mu_2 C_1 G^{-1} Gt \]

\[= C_1 \]

\[= (C_1 G^{-1}) R_2 e + \mu_2 C_1 Gt \]

\[= \left(\mu_1 G + R_1 e \right) \]

\[= (C_1 G^{-1}) R e + \mu_2 \mu_1 Gt + \mu_2 R_2 e \]
low norm

\sim m^2 \text{ norm } \text{ of } e

\sim \text{ small }.

= M_\sim \mu, G t + \text{ "low norm error".}

(\text{AND} / \text{XOR} / \text{NOT}) \text{ are universal for classical computations.}

\text{Bootstrapping helps reduce noise in ciphertexts}

\underline{What about Quantum operations?}

\[C = \theta \text{Enc} (\rho) \]
\[= X^x Z^z \rho (X^x Z^z)^+ \text{Enc}_{\text{classical}} (x, z) \]

We want to obtain \[C' = \theta \text{Enc}(X \rho X^+) \]
\(C = (\sigma, \text{ct} = \text{HE-Enc}(x, z)) \)

\[\downarrow \]

\(C' = (\sigma', \text{ct}' = \text{HE-Enc}(?, ?)) \)

such that \(C' = \text{QEnc}(X \rho X^*) \)

\[\text{I know } \sigma = X^x Z^z \rho (X^x Z^z)^+ \text{ for} \]

\[\text{ct} = \text{HE-Enc}(x, z). \]

I would like \(\text{ct}' \) to encrypt \((x', z')\)

\[\sigma = X^{x'} Z^{z'} (X \rho X^*) (X^{x'} Z^{z'}) \]

\[X^x Z^z \rho (X^x Z^z)^+ = X^{x'} Z^{z'} (X \rho X^*) (X^{x'} Z^{z'})^+ \]

\[x' = x \oplus 1 \]

\[z' = z. \]

To evaluate \(X \) and \(Z \) gates, just update the classical encryption.
Clifford Gates.

Include \((X, Z, H, P, \text{CNOT})\) \\
\(\forall C \in \{X, Z, H, P, \text{CNOT}\}\). \\
\[
\begin{bmatrix}
1 & 0 \\
0 & e^{i\phi}
\end{bmatrix}
\] \\
\(\forall (x, z) \mapsto (x', z')\) such that \(C x^z z^z |\psi\rangle = x'^z z'^z C |\psi\rangle\).

Operate on a ciphertext:

\(Ct = (\sum, ct)\) \\
\[
\begin{bmatrix}
X & Z \\
Z & X^\dagger
\end{bmatrix}
\] \(\mapsto \text{Enc} (x, z)\)

To homomorphically evaluate a Clifford gate,

replace quantum part with \(C \otimes C^\dagger\)

By prop. of Clifford:

replace classical part with \(\text{Enc}_{\text{classical}} (x', z')\).
Toffoli gate = CCNOT

\[|a\rangle \rightarrow |a\rangle \]
\[|b\rangle \rightarrow |b\rangle \]
\[|c\rangle \rightarrow |c \oplus ab\rangle \]

Clifford + Toffoli is universal for quantum computation

Mahadev - 2019.
TRAPDOOR CLAW-FREE FUNCTION PAIR:

Pair of functions f_0, f_1 such that:

1. Both injective, same image

2. Hard to find a "claw"
 i.e. (x_0, x_1) such that $f_0(x_0) = f_1(x_1)$

3. There is a trapdoor td that enables efficient inversion, given any $y \in \text{Image}$ and trapdoor td, can efficiently compute (x_0, x_1) s.t. $f_0(x_0) = f_1(x_1) = y$.
How to obtain a superposition over a claw.

\[\begin{split} \text{i.e. given } (f_0, f_1), \text{ compute:} \quad & \frac{1}{\sqrt{2}} |10, x_0\rangle + \frac{1}{\sqrt{2}} |11, x_1\rangle \\ \text{s.t. } f_0(x_0) = f_1(x_1) \end{split} \]

[By property 2 of TCF, outputting both \((x_0, x_1)\) is hard].

\(\triangleright\) Prepare a uniform superposition

\[|\Psi\rangle = \sum_{b \in \{0, 1\}, x \in \{0, 1\}^n} |b\rangle |x\rangle |0\rangle. \]

\(\triangleright\) Apply unitary

\[(b, x, y) \mapsto (b, x, y \oplus f_b(x)), \]

to \(|\Psi\rangle\).

Result:

\[\sum_{b \in \{0, 1\}} |b\rangle |x\rangle |f_b(x)\rangle. \]
3) Measure Y register.

collapse to:

$$10, x_0 > + 11, x_1 > \otimes y$$

s.t. $f_0(x_0) = y$ and $f_1(x_1) = y$.

end of how to get a superposition over claws.

EXTRA PROPERTY OF TCFS:

4) There is a hidden bit s associated with (f_0, f_1) such that for all claws $\{i.e. \text{ all } (x_0, x_1) \text{ s.t. } f_0(x_0) = f_1(x_1)\}$, we have $\forall \{i\} \in A \times \{i\} \Rightarrow s$.

\[(f_0, f_1) \text{ is an encoding/encryption of } S. \]

If claws were easy to find, \(S \) would not be hidden.

Therefore, \(S \) is hidden \(\Rightarrow \) claw-freeness.
We review here the key update rules for performing stabilizer/Clifford operators on quantum data encrypted with the quantum one-time pad [Got98].

\[X^{f_{a,i}} Z^{f_{b,i}} |\psi\rangle \xrightarrow{X_i} c \quad f_{a,i} \leftarrow f_{a,i} \]

Figure 15: Protocol for measurement on the \(i \)-th wire: Simply perform the measurement. The resulting bit, \(c \), can be decrypted by applying \(X^{f_{a,i}} \) (The key \(f_{b,i} \) is no longer relevant).

\[|0\rangle \xrightarrow{X_i} X^0 |0\rangle \quad f_{a,i} \leftarrow 0, \quad f_{b,i} \leftarrow 0 \]

Figure 16: Protocol for auxiliary qubit preparation on a new wire, \(i \): Initialize a new wire labelled \(X_i \) and new key-polynomials \(f_{a,i} = f_{b,i} = 0 \).

\[X^{f_{a,i}} Z^{f_{b,i}} |\psi\rangle \xrightarrow{X_i} X^{f_{a,i}} Z^{f_{b,i}} X|\psi\rangle \quad f_{a,i} \leftarrow f_{a,i}, \quad f_{b,i} \leftarrow f_{b,i} \]

Figure 17: Protocol for an X-gate on the \(i \)-th wire: Simply apply the X-gate.

\[X^{f_{a,i}} Z^{f_{b,i}} |\psi\rangle \xrightarrow{X_i} X^{f_{a,i}} Z^{f_{b,i}} Z|\psi\rangle \quad f_{a,i} \leftarrow f_{a,i}, \quad f_{b,i} \leftarrow f_{b,i} \]

Figure 18: Protocol for a Z-gate on the \(i \)-th wire: Simply apply the Z-gate.

\[X^{f_{a,i}} Z^{f_{b,i}} |\psi\rangle \xrightarrow{H} X^{f_{a,i}} Z^{f_{b,i}} H|\psi\rangle \quad f_{a,i} \leftarrow f_{b,i}, \quad f_{b,i} \leftarrow f_{a,i} \]

Figure 19: Protocol for an H-gate on the \(i \)-th wire: Apply the gate and swap the key-polynomials.

\[X^{f_{a,i}} Z^{f_{b,i}} |\psi\rangle \xrightarrow{P} X^{f_{a,i}} Z^{f_{b,i}} \oplus f_{a,i} |\psi\rangle \quad f_{a,i} \leftarrow f_{a,i}, \quad f_{b,i} \leftarrow f_{b,i} \oplus f_{a,i} \]

Figure 20: Protocol for a P-gate on the \(i \)-th wire: Apply the gate and update \(f_{b,i} \).

\[(X^{f_{a,i}} Z^{f_{b,i}} \oplus X^{f_{a,i}} Z^{f_{b,j}}) |\psi\rangle \xrightarrow{X_i} (X^{f_{a,i}} Z^{f_{b,i}} \oplus X^{f_{a,i}} Z^{f_{b,j}}) \text{CNOT}(|\psi\rangle) \]

\[f_{a,i} \leftarrow f_{a,i}, \quad f_{b,i} \leftarrow f_{b,i} \oplus f_{a,j}, \quad f_{a,j} \leftarrow f_{a,i} \oplus f_{a,j}, \quad f_{b,j} \leftarrow f_{b,j} \]

Figure 21: Protocol for a CNOT-gate with control wire \(i \) and target wire \(j \): Apply the gate and update \(f_{b,i} \) and \(f_{b,j} \).