
CS 598CSC: Approximation Algorithms Lecture date: Feb. 6th, 2009
Instructor: Chandra Chekuri Scribe: Tae Hyun Kim

In this lecture, multiprocessor scheduling is explored with precedence constraints. Applications
such as parallel programming and instruction scheduling in multi-issue processors fall into this
category.

1 Multiprocessor Scheduling with Precedence Constraints

1.1 Problem Description

In the Multiprocessor Scheduling with Precedence Constraints, we are given n-jobs de-
noted by {J1, J2, · · · , Jn}, the associated processing time pi, i = 1, · · · , n and m identical machines
to which jobs are needed to be assigned. In addition, jobs have precedence constraints between
them, and we use notation Jj ≺ Ji to imply that Ji cannot be done before completing Jj (the
smaller runs earlier). A directed acyclic graph (DAG) can encode these constraints. The goal of
this problem is to minimize the makespan. Denote the start time and completion time of Jj by sj

and cj , respectively. Then job Jj occupies time slots from sj +1 to cj . The goal is thus minmaxj cj .
This problem is also strongly NP-hard as the scheduling problem without constraints.

1.2 Graham’s List Scheduling

According to the precedence constraints, a DAG is created, where each vertex represents a job,
and a directed edge indicates a precedence constraint. One example of such DAGs is depicted in
Figure 1. In the figure, the numbers in vertices are job indices, and the associated processing times
with the jobs are noted next to vertices. In this DAG, it is noticeable, for instance, that J1 ≺ J4,
J2 ≺ J6, etc. Subsequently, priority between jobs for scheduling is also given by having a DAG.

In Graham’s List Scheduling, jobs are sequentially scheduled on the least loaded machine while
satisfying the precedence constraints. One example of schedules for the jobs in Figure 1 is depicted
in Figure 2. Due to the precedence constraints J5 ≺ J7 ≺ J10, J7 and J10 had to be delayed to c5

and c7, respectively.
It turns out that this scheduling gives the following approximation.

Theorem 1 Graham’s List Scheduling with any list gives a (2− 1
m) approximation.

To prove this theorem, we first need to establish two lower bounds on OPT.

Claim 2 (Lower Bound 1) OPT ≥ 1
m

∑
j pj.

This claim is trivial since the total amount of work (
∑

j pj) should be done on m machines.
Another lower bound for OPT is given by using the concept of a chain. A chain is defined

as a sequence of jobs which have predecessor-successor relationship. Since no two jobs in a chain
can execute simultaneously, we have the following observation, where for a chain A, p(A) denotes∑

j∈A pj .

Figure 1: Directed acyclic graph (DAG) example. Numbers inside vertices are job indices, and the
numbers noted by them are processing times.

Figure 2: Output example of Graham’s List Scheduling. The precedence constraints are from
Figure 1.

Claim 3 (Lower Bound 2)
OPT ≥ max

A:chain
p(A), (1)

We now define a particular chain of interest for the analysis. First, observe the example in
Figure 2 which shows that not all machines are always executing, because of the precedence con-
straints among jobs. Let us define a full time slot to indicate a time slot during which all machines
are busy. Meanwhile, a partial time slot is defined as a time slot in which some of the machines
are not busy, but waiting for certain jobs to be completed. By summing up full and partial time
slots, we can have a lower bound on OPT.

Define cmax := maxj cj . The job i1 is such that ci1 = cmax. Define t2 is a maximum integer
in [0, si1] such that t2 is a partial slot. In case that t2 = 0, the chain including i1 has i1 only.
Inductively we can define the following.

• tk : the maximum integer in [0, sik] such that tk is a partial slot.

• ik+1 : the predecessor of ik that is executing at tk.

The index k is from 1 to k′ such that tk′ = 0. It follows from the definitions that i1 � i2 �
· · · � ik and t1 > t2 > · · · > tk > tk+1. The pictorial description of the terms is given in Figure 3.

Figure 3: Illustrations on the terms ij , tk and sij .

Let A be the chain defined in this manner, and note that some job in A is executing during every
partial time slot of the schedule.

Further, between two consecutive jobs in a chain, all time slots are full. This fact suggests the
following lemma.

Lemma 4 For the chain A defined above:

cmax ≤ p(A) +
1
m

n∑
j=1

pj . (2)

Proof: The completion time cmax is given by the sum of the number of partial and the number
of full time slots in the schedule. The former is at most p(A), and the total amount of work done
in the full time slots cannot exceed the sum of processing times for all jobs on m machines. The
number of full time slots is 1/m times the amount of work done in those slots, and so we obtain
(2). 2

Using the two lower bounds on OPT, Theorem 4 immediately gives us a 2-approximation.
This analysis can be further improved by observing that the upper bound for the sum of full

time slots can be tighter as follows.

Claim 5
cmax ≤ 2− 1

m
OPT. (3)

Proof: Let n′ denote the number of partial time slots in which a job of A is executing; we have
cmax ≤ n′ + 1

m

(∑
j pj − n′

)
; since the total amount of work done in full slots is no more than∑

j pj − n′. Thus, we have cmax ≤ n′
(
1− 1

m

)
+ 1

n

∑
j pj . But n′ ≤ p(A), and from the two lower

bounds on OPT, we obtain the desired result. 2

1.3 Hardness of the Problem

Some problems related to Multiprocessor Scheduling with Precedence Constraints remain open.

• Is the m = 3 case with unit processing times NP-hard?

• For fixed m, is there a (2− ε) approximation where ε > 0?

Even with unit processing times, we have the following hardness result:

Theorem 6 Unless P = NP, there is no approximation better than (4
3 − ε) for any ε > 0.

This theorem is proved by a reduction from the clique problem. Given a graph G = (V,E) and
integer k, the clique problem is to find out if G has a clique of size k. This problem is known to be
NP-complete.

Given G = (V,E) and k, the scheduling instance is created as follows.

• There are m identical machines where m = 1
2n(n− 1) + 1 and n = |V |.

• There are 3m jobs with unit processing time.

• Jobs are grouped into graph jobs and dummy jobs where graph jobs are from all vertices and
edges of G, and dummy jobs are additionally introduced as three sets D1, D2 and D3 which
respectively have

|D1| = m− k, (4)

|D2| = m− 1
2
k(k − 1)− n + k, and (5)

|D3| = m− |E|+ 1
2
k(k − 1) (6)

jobs.

• The precedence constraints are constructed as follows.

1. The jobs from vertices connected by an edge are predecessors for the job from that edge.
(For edge e = uv, jobs Ju and Jv are predecessor to Je.)

2. Each job in D1 is a predecessor to each job in D2.

3. Each job in D2 is a predecessor to each job in D3.

In this scheduling instance, it is clear that OPT ≥ 3 even if there are only dummy jobs.
We have the following claims.

Claim 7 If G has a clique of size k, then OPT = 3.

Proof: Consider 3 time slots. The jobs from clique vertices are scheduled in the first slot since
they are all predecessors to edge jobs. In the second slot, the edges of the clique are scheduled.
For the remaining vertices and edges, the vertex jobs are scheduled in the second slot in addition
to the edges of the clique. This allows the remaining edge jobs to be scheduled in the last slot.
Regarding dummy jobs, each job in Di is scheduled in ith slot. They ensure that all the machines
are always busy during three slots, thus giving us OPT = 3. 2

Claim 8 If OPT = 3, then G has a clique of size k.

Proof: Suppose G does not have a clique of size k. We want to show that all jobs in this case
cannot be scheduled in 3 time slots (OPT > 3).

To use only 3 time slots, all dummy jobs in D1, D2 and D3 should be scheduled in time slot 1, 2
and 3, respectively. Then, the time slots respectively have k, 1

2k(k−1)+(n−k), |E|− 1
2k(k−1) idle

machines to schedule all edge and vertex jobs; since the total amount of processing time remaining
is n + |E|, each slot must be used fully if we are to complete the jobs in 3 time slots.

Since no edge job can be scheduled in the first slot, only k vertex jobs corresponding to a set
of vertices V ′ are scheduled. Now, the only edge jobs that can be scheduled in the second slot are
those corresponding to edges that have both their endpoints in V ′. But since V ′ is not a clique,
there are strictly fewer than 1

2k(k− 1) such edge jobs, and even if all the remaining (n− k) vertex
jobs are scheduled in the second time slot, some machine must be idle in this slot. Thus, we cannot
schedule all the jobs in 3 slots. 2

	Multiprocessor Scheduling with Precedence Constraints
	Problem Description
	Graham's List Scheduling
	Hardness of the Problem

