
Fall 2024, CS 598: Topics in Graph Algorithms
Homework 2

Due: 10/03/2024

Instructions and Policy: You can work in groups of up to two. Each group needs to submit
only one solution. You need to indicate the names of the people you discussed a problem with.
Solutions to most of these problems can be found from one source or the other. Try to solve on
your own first, and cite your sources if you do use them.

Please write clearly and concisely. Refer to known facts. You should try to convince me that you
know the solution, as quickly as possible.

For this home work submit solutions to Problems 1- 4. The other two are for you to read and try if
you are interested.

Problem 1 Hypergraphs generalize graphs. A hypergraph G = (V,E) consists of a finite set of
vertices and set of hyper-edges E. Each hyper-edge e is a subset of V ; in graphs each edge is a
subset of size 2 while in a hypergraph the hyper-edges can have different sizes. See examples here
https://en.wikipedia.org/wiki/Hypergraph. The parameters of a hypergraph are
n the number of vertices, m the number of hyper-edges and p =

∑
e∈E |e|. Note that in graphs

p = 2m and hence we do not need to keep track of p. Each hypergraph can also be represented via
a bipartite incidence graph H = (V ∪E,F ) where one side is V and the other side is E and a vertex
v and a hyper-edge e are connected by an edge in H iff v ∈ e. We say that s and t are connected in
G iff there is a path from s to t in H . We write δG(S) = {e | e ∩ S ̸= ∅, e ∩ (V − S) ̸= ∅} as the
set of edges crossing a set S.

• Not for submission: Given a hypergraph and s, t ∈ V an s-t cut is a set of hyper-edges
F ⊆ E such that s and t are not connected in G− F . Prove that if F is an s-t cut then there
is some S ⊂ V with s ∈ S and t ∈ V − S such that δG(S) ⊆ F . This is mainly for your
understanding.

• Suppose we have non-negative costs/capacities c : E → R+ on the hyper-edges. Describe a
way to compute the minimum cost s-t cut in a hypergraph via a reduction to a-b maxflow in
a directed graph. Suppose the running time of the directed maxflow routine is T (m′, n′) on
a graph with m′ edges and n′ vertices, what is the run-time of your algorithm as a function
of n,m, p of the given hypergraph?

• A global mincut in a hypergraph G = (V,E) is a the minimum capacity cut that separates
some two vertices. Suppose you had an algorithm for a-b-maxflow algorithm in a directed
graph that runs in O(m′ + n′)polylog(n)-time where n′ and m′ are the number of nodes and
edges. Describe a randomized algorithm to compute the global mincut in a hypergraph based
on the isolating cut approach. What is the running time of your algorithm in terms of n,m, p.
Explain why the isolating cut approach applies and explain the running time carefully.
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Problem 2 Spanners. See Prob 2 from CMU’s homework https://www.cs.cmu.edu/˜15850/
hws/h2.pdf.

Problem 3 This problem is on sparsest cut and embedding based proofs for flow-cut gap.

• We saw a proof that the integrality gap of the sparsest cut LP is 1 on trees. Argue that the
integrality gap of the sparsest cut LP in a graph on n vertices is O(log n) via the probabilistic
tree embedding result that we saw in class.

• Suppose we want to solve the sparsest cut problem in a cycle graph. That is we have G =
(V,E) where the edge set forms a cycle and there are non-negative edge capacities c : E →
R+. The demand graph H = (V, F ) and d : F → R+ is arbitrary. Describe a simple
combinatorial algorithm to find the sparsest cut in a cycle.

• Prove that the integrality gap of the sparsest cut LP is 1 on a cycle graph.

Problem 4 One of the motivations for expanders is their good routing ability. We will explore
this aspect in this problem. Given a supply graph G = (V,E) with edge capacities c : E → R+

and a demand graph H = (V, F ) with demands d : F → R+, we say that H is routed in G with
congestion γ if there is a multicommodity flow that routes all the demands in F when the edge
capacities of G are scaled up by γ. Equivalently, the maximum concurrent flow for H in G is at
least 1/γ.

• Suppose G is an expander. Let M be any matching on V . Prove that the demand graph
(V,M) can be routed in G with congestion O(log n).

• Suppose G has conductance at least 1. Let H be any demand graph such that degH(v) ≤
degG(v). Prove that H can be routed in G with congestion O(log n).

• Suppose G is an expander. Let M be any matching of cardinality at most n/ log n. Prove that
H = (V,M) can be routed in G with congestion O(1). Hint: Use a spanning tree T in G and
use it to distribute flow from each terminal (an end point of M ) to Θ(log n) non-terminals
and use uniform multicommodity flow.

Problem 5 Not for submission: This problem is regarding the notion of element connectivity
which is useful in bridging edge and vertex connectivity. Let G = (V,E) be a graph and let V
be partitioned into two sets B and W where B is the set of terminals and W is the set of non-
terminals. The elements are E ∪ W . For any two distinct terminals s, t the element-connectivity
between s and t is the maximum number of elment-disjoint paths between s and t. Note that the
paths need not be disjoint in terminals. We denote the element connectivity between s and t by
κ′
G(s, t). An alternative definition is via cuts: κ′

G(s, t) is the minimum number of elements whose
removal disconnects s from t. See figure. Note that κ′ is defined only between the terminals.
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Figure 1: The black vertices are the terminals. The left image shows 4 element-disjoint st-paths.
The right image shows removing 4 elements disconnects s and t. κ′(s, t) = 4.

• Given G = (V,E) and s, t ∈ B describe an algorithm to compute the κ′
G(s, t) via a reduction

to maxflow in an associated graph. Note that κ′(s, t) = κ′(t, s).

• Given three terminals a, b, c prove that κ′(a, b) ≥ min{κ′(a, c), κ′(b, c)}.

• Let f : 2B → Z+ be a symmetric function where f(S) is defined as the minimum element
cut between S and B − S in G. Prove that f is submodular.

• Suppose we have an s-t-maxflow algorithm that runs in O(m′ + n′)polylog(n)-time in a di-
rected graph with n′ nodes and m′ edges. Given an instance of element connectivity, let the
global mincut of the given instance be defined as the minx,y∈B,x ̸=y κ

′
G(x, y). Describe an ef-

ficient randomized algorithm to compute this global-mincut using the isolating cut approach
and the fast maxflow algorithm.

Problem 6 Not for submission: As we discussed in lecture, tree packings are best understood as
special cases of matroid base packing. Some nice properties emerge by considering the submod-
ularity of the associated rank function. We do not have time to develop that machinery but we
can nevertheless figure out some structure from first principles. Let G = (V,E) be a connected
multi-graph. Recall that we defined the upper bound for tree packing via vertex partitions. Sup-
pose P is a partition of V , then the maximum number of edge disjoint spanning trees is at most
|EP |
|P |−1

. We can view this from a purely edge set point of view which will abstract out the vertices.
For any subset A ⊆ E of edges define rank(A) as n − comp(A) where comp(A) is the number
of connected components induced by A. Note that rank(E) = n − 1 since G is connected. Note
that if k is the maximum number of edge disjoint trees then for any A ⊆ E, each spanning tree
must contain at least n − 1 − rank(A) edges from E − A to connect the connected components.
Thus if k is the maximum number of edge disjoint spanning trees than k ≤ |E−A|

rank(E)−rank(A)
. Thus,

minA⊆E
|E−A|

rank(E)−rank(A)−1
. For a given A we define α(A) = |E−A|

rank(E)−rank(A)
.

• Argue that if A is an edge set then there is a partition P corresponding to A such that
α(A) = |EP |

|P |−1
.

• Suppose A,B are two edge sets that α(A) ≤ λ and α(B) ≤ λ. Then argue that α(A∩B) ≤
λ. Use this to argue that there is a unique minimal edge set A∗ such that α(A) = τfrac(G),
the fractional tree packing number of G. This corresponds to a partition P ∗.
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• τfrac(G) is also called the network strength of strength of G (to distinguish it from the mincut).
For each edge e ∈ E − A∗ we assign its strength λe as τfrac(G). Consider any component
of P ∗, and let the corresponding graph be H = (Vi, Ei). Show that τfrac(H) > τfrac(G). We
can find the network strength of H and assign it to all the edges crossing its unique maximal
partition P ∗

i . By using the implicit recursive procedure, we obtain a strength value for each
edge e ∈ E. These strength values turn out to be very useful in graph sparsification.

• Suppose you want to solve the k-cut problem which is defined as follows. Given G = (V,E)
and an integer k > 1, we wish to partition V into k non-empty parts V1, V2, . . . , Vk such that
we minimize the number of edges crossing the parts. Let P ∗ = (V1, V2, . . . , Vh) be the
optimum Tutte-NW partition of G and without loss of generality assume that |δ(V1)| ≤
|δ(V2)| ≤ . . . ≤ |δ(Vh)|. Show that if k = h then P ∗ is an optimum k-cut. Suppose k < h.
Argue that the partition given by V1, V2, . . . , Vk−1,∪i≥kVi is a 2(1− 1/k)-approximation for
the optimum k-cut.

4


