
Fall 2024, CS 598: Topics in Graph Algorithms
Homework 1

Due: Tue, 17th Sept, 2024

Instructions and Policy: You can work in groups of up to two. Each group needs to submit
only one solution. You need to indicate the names of the people you discussed a problem with.
Solutions to most of these problems can be found from one source or the other. Try to solve on
your own first, and cite your sources if you do use them.

Please write clearly and concisely. Refer to known facts. You should try to convince me that you
know the solution, as quickly as possible.

Problem 1 Yao’s O(m log log n)-time algorithm for MST. See Prob 3 from CMU’s homework
https://www.cs.cmu.edu/˜15850/hws/h1.pdf.

Problem 2 Let G = (V,E) be an undirected graph with non-negative edge weights w : E → R+.

• For a spanning tree T = (V,ET) define its bottleneck weight, denoted by b(T), as the weight
of the maximum weight edge in T , that is b(T) = maxe∈ET

w(e). Describe a deterministic
linear time algorithm, that given a graph, outputs a spanning tree with minimum bottleneck
weight. Hint: You may want to recall the linear-time Selection algorithm.

• For a path P we define its bottleneck weight, denote by b(P), to be the weight of the maxi-
mum weight edge on P , that is b(P) = maxe∈P w(e). The bottleneck shortest path distance
between two distinct vertices s, t, denoted by db(s, t), is defined as db(s, t) = minP∈Ps,t b(P)
where Ps,t is the set of all s-t paths in G. Prove that, in an undirected graph, the MST is a
compact structure that contains a bottleneck weight path for every pair of vertices s, t.

• Now let G = (V,E) be a directed graph with non-negative edge-weights. Give a source
vertex s we wish to compute the single source shortest bottleneck weight distances to every
vertex in G, that is we wish to compute db(s, v) for all v. Describe an algorithm based on
Fibonacci heaps that can do this in O(m + n log n) time. Note that this is the same time as
that for Dijkstra’s shortest path algorithm. Extra credit: Obtain faster running time without
looking at the known literature.

Problem 3 Consider the dual of the tree packing LP given by

min
∑
e∈E

cexe s.t
∑
e∈ET

xe ≥ 1 ∀T ∈ T , xe ≥ 0 ∀e ∈ E.

In the above T is the set of spanning trees of G. Suppose we are given a feasible solution x′ to
the LP. Describe a near-linear time algorithm that outputs a partition P of the vertex set such that

1

https://www.cs.cmu.edu/~15850/hws/h1.pdf

c(EP)
|P |−1 ≤

∑
e cexe. In lecture we saw proof that relies on x′ being an optimum solution, and used

complementary slackness. Here we want a fast algorithm that converts any fractional solution to
a good partition with respect to the value of the solution. Hint: Try running Kruskal’s algorithm
with x′ and consider partitions along the way.

Problem 4 Let G = (V,E) be a directed graph and let c : E → Z+ be non-negative edge
capacities. Let r be a root vertex and we can assume that it has no in-coming arcs. A spanning
arborescence rooted at r is a directed out-tree with root r that contains an r-v path for each vertex
v ∈ V . Let λ(r, v) be the minimum r-v cut value in G. A famous theorem of Edmonds shows that
G has k arc-disjoint spanning arborescences rooted at r iff λ(r, v) ≥ k for all v ∈ V − {r}. The
integer packing version implies the fractional packing version. That is, the value of a maximum
fractional packing of spanning-arborescences in G rooted at r (subject to edge capacities given
by c) is equal to minv λ(r, v). Prove the fractional packing theorem via the primal-dual method.
Write down an LP for the maximum fractional packing problem and use complementary slackness
like we did in the proof of the fractional packing version of the Tutte-Nash-Williams tree packing
theorem.

Problem 5 Let G = (V,E) be a directed graph with edge lengths ` : E → Z (which could be
negative). Suppose we are promised that each vertex v has a shortest path from s with at most k
negative length edges. Show how to compute all d(s, v) distances in O(mk log n) time.

Problem 6 Let G = (V,E) be a directed graph with edge capacities c : E → Q+, and let h be an
integer between 1 and |V |. Typically we write the s-t maximum flow via edge-variables but there
is an advantage to using an exponential number of path variables. This is particularly useful when
one wants to restrict flow to paths of length at most h. Let Ph be the set of all s-t paths which
contain at most h edges.

• Write an exponential sized LP that maximizes flow along paths only restricted to paths from
Ph. Write this as a packing LP with variables xp for each path p ∈ Ph.

• Write its dual.

• Prove that there is a polynomial-time separation oracle for the dual.

2

