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Tree Packing

Given an undirected graph G = (V,E), we are interested in finding edge-disjoint spanning trees.
We let τ(G) denote the maximum number of edge-disjoint spanning trees.

There is a beautiful theorem that provides a min-max formula for this. We introduce some
notation: Let P be a partition of the vertex set V . We use |P | to denote the number of parts in
P . Let EP denote the set of edges crossing the partition, i.e., e ∈ EP if and only if its endpoints
are in different parts of P .
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Figure 1: Illustration of P,EP .

It is easy to see that any spanning tree must contain at least |P | − 1 edges from EP . Thus, if
G has k edge-disjoint spanning trees, then:

k ≤ |EP |
|P | − 1

A classical theorem in graph theory is the following.

Theorem 1 (Tutte-Nash-Williams)). The maximum number of edge-disjoint spanning trees in a
graph G is given by:

τ(G) = bmin
P

|EP |
|P | − 1

c

The preceding theorem is a special case of a theorem on matroid base packing where it is
perhaps more natural to see (see [Sch03]). A weaker version of the theorem is regarding fractional
packing. In fractional packing, we allow one to use a fractional amount of a tree. The total amount
to which an edge can be used is at most 1 (or c(e) in the capacitated case). Clearly, an integer
packing is also a fractional packing. The advantage of fractional packings is that one can write a
linear program (LP) for it, and they often have some nice properties. Let τfrac(G) be the fractional
tree packing number. Clear τfrac(G) ≥ τ(G).

One corollary of the Tutte-Nash-Williams theorem is the following:



Corollary 2.

τfrac(G) = min
P

|EP |
|P | − 1

.

Do you see why the integer packing version implies the preceding corollary?
It is illustrative to see a tight example. Consider the cycle on n vertices. It is easy to see that

τ(G) = 1. We can see that τfrac(G) ≤ n/(n − 1) since each tree has n − 1 edges and there are n
edges in the graph. This bound is tight by considering the n trees in the graph (corresponding to
deleting each of the n edge) and assigning a fractional value of 1/(n − 1) for each of them. Thus
τfrac(G) = n/(n− 1) and the corresponding tight partition consists of the n singleton vertices.

A second important corollary that is frequently used is the following.

Corollary 3. Let G be a capacitated graph and let λ(G) be the global minimum cut, then:

τfrac(G) ≥ λ(G)

2

|V |
|V | − 1

.

Proof. Consider the partition P that defines τfrac(G). Let the parts of P be V1, V2, . . . , Vh. Since
λ(G) is the mincut, |δ(Vi)| ≥ λ(G) for each i. We have |EP | =

∑h
i=1 |δ(Vi)|/2 since each edge of

EP connects two parts. Thus

τfrac(G) =
|EP |
h− 1

≥ hλ(G)

2(h− 1)
≥ λ(G)

2

h

h− 1
≥ λ(G)

2

|V |
|V | − 1

.
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The theorem and corollaries naturally extend to the capacitated case. For integer packing, we
can assume ce is an integer for each edge e, and the formula is changed to

τ(G) = bmin
P

c(EP )

|P | − 1
c.

Typically, one uses the connection between tree packing and mincut to argue about the existence
of many disjoint trees, since the global minimum cut is easier to understand than τ(G). However,
we will see that one can use tree packing to compute λ(G) exactly which may seem surprising at
first due to the approximate relationship.

First, we prove the fractional version of the Tutte-Nash-Williams theorem via LP duality. This
proof is taken from [CQX20]. We can write τfrac(G) as the following LP problem: Let T = {T :
T is a spanning tree of G} be the set of all spanning trees of G.

Primal LP:

maximize
∑
T∈T

yT subject to
∑
T3e

yT ≤ ce ∀e ∈ E, yT ≥ 0 ∀T ∈ T

Dual LP:

minimize
∑
e∈E

cexe subject to
∑
e∈T

xe ≥ 1 ∀T ∈ T , xe ≥ 0 ∀e ∈ E



The dual can be interpreted as a relaxation for the minimum cut problem. In fact, if xe is
required to be in {0, 1}, it is an exact relaxation. Let y∗ and x∗ be optimum fractional solutions to
the primal and dual LPs. Both exist because the problems have finite optima. By strong duality,
we have: ∑

T∈T
y∗T =

∑
e∈E

cex
∗
e

Claim 4. Suppose x∗e = 0 for some e. Let G′ = (V,E′) be the graph obtained by contracting e.
Then:

τfrac(G
′) = τfrac(G)

Proof. Contracting an edge cannot decrease the fractional tree packing value. Thus, τfrac(G
′) ≥

τfrac(G). We can see that if x∗ is restricted to E′, it is feasible for G′ (why?) . Thus, by weak
duality, ∑

e∈E′

cex
∗
e ≥ τfrac(G′).

Putting together, we have τfrac(G
′) = τfrac(G). �

Thus, we can essentially contract all edges e such that xe = 0. This does not affect the value
of the packing. An intuitive reason is the following. If x∗e = 0 we can effectively increase ce to
∞ without affecting the value of the dual solution which means that e is not a bottleneck in the
primal tree packing and hence safe to contract.

Claim 5. Suppose x∗e > 0 for all e ∈ E. Then consider the partition P consisting of the singletons.
Then:

τfrac(G) =

∑
e∈E ce

|V | − 1
.

Proof. By complementary slackness, since x∗e > 0, we have that the corresponding primal constraint
is tight. That is, ∑

T∈T :e∈T
y∗T = ce.

Let n = |V |.

(n− 1)
∑
T∈T

y∗T =
∑
T

∑
e∈T

y∗T

=
∑
e∈E

∑
T3e

y∗T

=
∑
e∈E

ce.

Thus, ∑
T∈T

y∗T =
1

n− 1

∑
e∈E

ce =
c(EP )

|P | − 1

where P is the partition consisting of each vertex in a separate part. �



We can use the preceding claims give us the desired conclusion τfrac(G) = minP
c(EP )
|P |−1 via

induction. By the preceding claim it is true if x∗e > 0 for all e. Otherwise, we contract edges with
x∗e = 0 and reduce to this case.

Finding an optimum tree packing: Can we solve the LP efficiently to obtain τfrac(G)? Note
that this also yields an algorithm for the value of the integer packing τ(G) since it is the floor of
τfrac(G). We may also be interested in finding a (compact) representation of the packing itself.
First, we note that the Ellipsoid method applied to the dual of the tree packing LP. The dual
has variables xe for each e ∈ E. We need a separation oracle. Given x ∈ RE , is it the case that∑

e∈T xe ≥ 1 for all T ∈ T ? If not, find a tree T such that
∑

e∈T xe < 1. This corresponds
to solving Minimum Spanning Tree (MST) problem. Hence, the dual admits an efficient solution
via the Ellipsoid method. One can convert an exact algorithm for the dual to finding an exact
algorithm for the primal. There are combinatorial algorithms for solving the tree packing problem
(both integer version and fractional versions) in strongly polynomial-time. See [Sch03].

Approximate tree packing : Can we find a faster algorithm for tree packing if one allows
approximation? [CQ17] showed that a (1− ε)-approximate fractional tree packing can be found in
O( 1

ε2
m log3 n) time using an adaptation of the Multiplicative Weights Update (MWU) method and

data structures for MST maintenance. We may see it later in the course.

Exercise 1. Suppose x is a (1 − ε)-approximate solution to the dual. How do we use it to find a
(1 +O(ε))-approximat approximation for the optimum Tutte-Nash-Williams partition?
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