
CS 598CSC: Topics in Graph Algorithms Lecture date: 10/15/2024
Instructor: Chandra Chekuri Scribe: CC

1 Single-Source Shortest Paths with Negative Weights

Dijkstra’s algorithm for SSSP in directed graphs with non-negative weights can be implemented
to run in O(m + n log n) time. We will consider SSSP in directed graphs with negative weights
allowed. The input is a directed graph G = (V,E) with weights w : E → R and a source vertex
s ∈ V . The goal is to check if G has a negative weight cycle or to output shortest path distances
from s to each vertex v ∈ V (which are well-defined when there is no negative weight cycle). The
classical Bellman-Ford algorithm runs in O(mn) time and the Floyd-Warshall runs in O(n3) time.
These are algorithms from 50’s and 60’s. Goldberg [Gol95] described a scaling algorithm for integer
weighted case in 1993 that ran in O(m

√
n logW) time where W = max{|w(e)| | e ∈ E,w(e) < 0}

is the absolute value of the least negative weight. In a recent breakthrough, Bernstein, Nanongkai
and Wulff-Nilsen obtained a randomized near-linear time scaling algorithm for the integer weighted
case.

Theorem 1 ([BNWN22]). There exists a randomized (Las Vegas) algorithm that takes O(m log8 n logW)
time with high probability (and in expectation) for an m-edge input graph G = (V,E,w) and a source
s ∈ V . It either returns a shortest path tree from s or returns a negative-weight cycle.

Building on [BNWN22], Bringmann, Cassis and Fisher [BCF23] further improved the running
time to O(m log2 n log log n log(nW)).

Fineman [Fin24] obtained a strongly poly-time algorithm that beat Bellman-Ford for the first
time. His randomized algorithm runs in Õ(mn8/9)-time. Huang, Jin and Quanrud [HJQ24] refined
the algorithm with additional ideas and obtained a randomized algorithm that runs in Õ(mn4/5)-
time.

We will discuss the approach [BNWN22] with some insights from [BCF23].

1.1 Background

We will work extensively with the idea of potentials introduced by Johnson in the context of all-
pairs-shortest paths. Potentials allow one to reduce the SSSP problem with negative weights to
SSSP problem with non-negative weights and one can then use the simpler Dijkstra’s algorithm.

Definition 1. A potential φ : V → R is a simply a weight function on the vertices of G = (V,E).
Given w : E → R and a potential φ the reduced weights wφ : E → R is defined as follows: for each
edge (u, v) ∈ E, wφ(u, v) = φ(u) + w(u, v)− φ(v).

Claim 2. Let φ be any potential. Then for any s-t walk P we have wφ(P) = w(P) + φ(s)− φ(t).
Hence for any two s-t walks P and Q, w(P) − w(Q) = wφ(P) − wφ(Q) which implies that P is a
shortest s-t walk respect to w iff it is a shortest s-t walk with respect to wφ. If P and Q are closed
walks starting and ending in s (in particular cycles) then w(P) = wφ(Q).

Lemma 3. G has no negative weight cycle iff there is a potential φ such that wφ(e) ≥ 0 for all
e ∈ E.

Definition 2. We say that a potential φ neutralizes a set of negative length edges S ⊆ E if
wφ(e) ≥ 0 for all e ∈ S.

Thus the goal is to either detect that G has a negative cycle (we use this as a shortcut for
negative weight cycle) or find a potential that neutralizes all the negative weight edges while not
introducing any new negative weight edges. In the rest of these notes we will only be interested in
potentials that neutralize some set of negative weight edges while not introducing any new negative
weight edges.

Reducing degree: Since we are shooting for a running time that is linear in m we can do a simple
reduction that increases the number of vertices from n to O(m) while ensuring that the out-degree
of every vertex is O(1). Suppose we have a vertex u with out-edges (u, v1), (u, v2), . . . , (u, v`). For
simplicity assume ` is a power of 2. We can create a directed binary out-tree with root as u and
depth log ` where we associate the leaves with v1, v2, . . . , v`. The edge incoming to vi in the binary
tree inherits the weight w(u, vi) and all other edges in the binary tree that are not incident to leaves
have weight 0. This increase the number of vertices to O(m).

One can also do a transformation where the number of negative weight edges is O(n) by splitting
each vertex u into u− and u+ in the standard way and making w(u−, u+) equal the most negative
weight edges in the out-edges of u (0 if there is no negative weight edge) and adjusting the weights
going out of u appropriately (they now all become non-negative). We won’t need this reduction
but this is useful in [Fin24, HJQ24].

Verification: One of the useful facts about single-source shortest path trees and distances is
that we can check in linear time whether a given tree or set of distances are valid or not in linear
time. We simply relax all edges and see if any of the distances change - if they do not change then
the distances are valid, otherwise they are obviously not. This verification is useful when running
randomized algorithms that may work only under the assumption that G has no negative cycle but
may still produce some (potentially incorrect) output when G has a negative cycle.

1.2 The high-level scaling approach

The algorithm is based on the following approach. Suppose we have a graph G = (V,E,w) with
w(e) ≥ −2B for all e ∈ E. The goal is to find a potential φ : V → R such that the new reduced
weights with respect to φ, denoted by wφ have the property that wφ(e) ≥ −B for all e ∈ E. We
call such a potential a halving potential. Suppose we have an algorithm A that can either output a
halving potential or detects a negative cycle in G in (randomized) T (m,n,W) time. One can use
A when weights are integer valued to get an algorithm for SSSP as follows.

Given G with integer weights w : E → Z. Consider new weights w′ where w′(e) = nw(e) for all
e ∈ E. We now have W ′ = nW . Let G′ be this new graph. Note that G′ has a negative cycle iff G
has. The important property of G′ is the following which is easy to see because we have assumed
integer weights for w.

Claim 4. Let P and Q be any two s-v walks in G′. Then |w′(P)−w′(Q)| = 0 or |w′(P)−w′(Q)| ≥ n.
This also holds for the weight function w′φ where φ is any potential on V .

We can use the claimed algorithm A to detect a negative cycle in which case we stop. (Finding
a negative cycle is trickier and we will discuss later how to do it.) We will now focus on finding

shortest path tree from s when there is no negative cycle. We apply A sequentially to find a
potential φ to reduce the least negative weight to −1; each invocation reduces the least negative
weight by a factor of 2. This takes O(log(nW)) invocations. At the end, we have a potential φ
such that w′φ(e) ≥ −1 for all e ∈ E. Note that shortest paths in G′ are the same as the shortest
paths in G′ and hence also in G. Now we truncate the negative weights to 0. That is, we let w′′ be
the weight function where w′′(e) = max{0, w′φ(e)}. Let G′′ be the copy of G with weights w′′. We
compute a shortest path tree from s via Dijkstra’s algorithm in G′′. We simply output this shortest
path tree — note that the shortest path disances in G can be computed from this tree easily.

Claim 5. If G has no negative cycle then the shortest path tree rooted at s in G′′ is a correct
shortest path tree for s in G.

Proof. Let Pv be the shortest path from s to v found in G′′ and let Qv be a shortest path from s
to v in G′ with weight w′φ. Note that w′′ differs from w′φ only in truncating edges with weight −1
to 0. Thus

w′φ(Qv) ≤ w′φ(Pv) ≤ w′′(Pv) ≤ w′′(Qv) ≤ w′φ(Qv) + (n− 1)

since Qv has at most n− 1 edges. We claim that w′φ(Pv) = w′φ(Qv) which would imply that Pv is a
correct shortest path inG′. To see this, if w′φ(Pv) 6= w′φ(Qv) then via Claim 4, |w′φ(Pv)−w′φ(Qv)| ≥ n
but this contradicts the preceding set of inequalities. Shortest paths in G′ are the same as in G. �

1.3 Low Diameter Decomposition for Directed Graphs

We saw LDDs in the context of undirected graphs and metrics. Here we are interested in directed
graphs and distances. LDDs for directed graphs were implicit in algorithms for cut and flow
problems for symmetric demands [KPRT97, Sey95, ENRS00] but the utility of their randomized
variants have only recently been explored. Since reachability is asymmetric in directed graphs, in
several problems of interest, we are focus on diameter of strongly connected components. Further,
we also think of cuts as removing subsets of edges rather than edges leaving a set. With this in
mind, a low-diameter decomposition of a directed graph G = (V,E,w) with non-negative weights
w : E → R+ is to remove a set weight subset of edges E′ ⊆ E such that the diameter of each strong
connected component in G − E′ is at most some given parameter D. The diameter of a strong
connected component C ⊆ V is maxu,v∈C dG(u, v) where dG(u, v) is the distance between u and v
in G. Note that this is a notion of “weak-diameter” since we are using distances in G. We can
also ask for a strong diameter guarantee where dC(u, v) ≤ D for all u, v ∈ C where dC(u, v) is the
distance using only edges inside G[C].

We state a theorem from [BNWN22] on existence and fast computation of probabilistic LDDs.

Theorem 6 ([BNWN22]). There is a randomized algorithm for low-diameter-decomposition of
directed graphs with the following properties. It takes as input a directed graph G = (V,E,w) with
non-negative edge weights w : E → R+ and a diameter bound D > 0. It outputs a random set of
edges Erem ⊆ E such that

• The weak diameter of each strong connected component of G − Erem is at most D. More
formally, for any u, v ∈ V such that u and v are in the same strong connected component of
G− Erem, dG(u, v) and dG(v, u) are at most D.

• The probability that an edge is cut, that is, P[e ∈ Erem] is at most (O(log2 n)w(e)D + n−10).

The algorithm runs in time O(m log2 n+ n log3 n).

The term n−10 is negligible and is for technical reasons to obtain a fast algorithm. We will
ignore it for the rest of the notes to keep it simpler. We will not describe the details of the above
algorithm in these notes and the refer the reader to [BNWN22].

Remark 7. [BCF23] describes an algorithm that guarantees strong diameter decomposition (where
the distances in each strong connected component rather in the original graph are at most D),
however the cutting probability increases to O(log3 n)w(e)/D. [BCF23] also describes a different
decomposition procedure which helps them obtain a faster algorithm while not necessarily giving a
low-diameter-decomposition.

2 The main algorithm and its analysis

In this section we describe the main algorithm that forms the basis of the scaling algorithm. We
call this algorithm ScaleDown.

Theorem 8. There is a randomized algorithm ScaleDown that takes as input an edge-weighted
graph G = (V,E,w) with w(e) ≥ −2B for all e and has the following properties.

• If the algorithm terminates it outputs a halving potential φ : V → R such that wφ(e) ≥ −B
for all e.

• If G has no negative cycle then the algorithm terminates in expected time O(m log4 n) time.

• If G has a negative cycle the algorithm may not terminate but if it does terminate it outputs
a halving potential.

Note that we can check whether a given potential φ is a halving potential.
One can use ScaleDown and combine with the scaling approach that we discussed to obtain

the following theorem.

Theorem 9. There is a randomized algorithm SPMain that takes as input an edge-weighted graph
G = (V,E,w) with integer weights and has the following properties.

• If the algorithm has a negative cycle it does not terminate. terminates in expected time
O(m log4 n log(nW)) time and outputs a valid shortest path tree.

Proof. We simply follow the scaling approach that we discussed in Section 1.2 and use the algorithm
ScaleDown. �

The algorithm ScaleDown is based on a hop-reduction step based on LDD and the use of two
easy special cases that we describe next.

2.1 Two easy but important cases

It is easy to find shortest paths in DAGs (directed acyclic graphs) in O(m+n) time via topological
sort. This holds even with negative weights. This can be extended easily to obtain the following
lemma.

Lemma 10. Let G = (V,E,w) be a directed graph such that the edges inside each strong connected
component are non-negative. Then one can find a potential φ that neutralizes all negative weight
edges in O(m+ n) time.

Proof. Let C1, C2, . . . , Ch be the strong connected components of G and without loss of generality
assume that the numbering of the components is a topological sort of the DAG G∗ which is the
SCC graph of G. Consider the potential φ : V → R where φ(v) = −iW for each v ∈ Ci. It is
easy to check this potential neutralizes all negative weight edges and does not introduce any new
negative weight edges. Computing the strong connected components and the topological sort can
be done in linear time. �

a a c Ce

H H He

Figure 1: FixDagEdges. Set potential of all vertices in Ci to be −iW . Does not affect the edges
inside the strong connected components since potential is same for all vertices of each components.
Neutralizes all the green dag edges.

We will call the algorithm implied by the preceding lemma as FixDagEdges(G).
A second case is when we are guaranteed that G has s-v shortest paths with at most h negative

weight edges for each v. Then one can adapt Bellman-Ford and Dijkstra to obtain shortest paths
(equivalently a potential that neutralizes all negative weight edges) in O(mh) time. We need a
refinement when we don’t have a fixed bound h for each vertex but an average bound.

Lemma 11 ([BNWN22]). Suppose G = (V,E,w) has no negative cycle. Let hv be the maximum
number of negative weight edges in an s-v shortest path. Then there is an algorithm that runs
in O(log n(n +

∑
v∈V |δ+(v)|hv) time that returns all the shortest path distances from s. If the

guarantee does not hold then the algorithm may not terminate or return incorrect shortest path
distance values.

We leave the proof of the above as an exercise or refer the reader to [BNWN22]. Note that we
ensured that the out-degree of each vertex is O(1) which increased n to O(m). Thus, when applied
to our setting the running time is O(m log n + (

∑
v hv) log n). We can also find a potential that

neutralizes all the negative weight edges in the same time. We call this procedure ElimNegEdges.

2.2 ScaleDown via hop reduction and fixing

We will assume that G has no negative cycle following earlier discussion. The algorithm is based
on defining two graphs GB and GB≥0 which basically modify the weights of the edges. We will use

wB and wB≥0 to refer to these weights.

We set wB(e) = w(e) + B if w(e) < 0 and wB(e) = w(e) otherwise. In other words we add B
to each negative weight edge. Note that edges that remain negative in GB are those with weight
in the range [−2B,B). We set wB≥0(e) = max{0, wB(e)} so essentially we are setting all negative

weight edges in wB to 0 to generate non-negative weights. Note that GB also does not have neg
cycle since G does not have one (and also GB≥0 for obvious reasons).

Let H = (VH , EH) be any subgraph of G. We will use the notation HB and HB
≥0 to the

corresponding subgraphs of GB and GB≥0.

Claim 12. Suppose we find a potential φ that neutralizes all negative weight edges in GB. Then
wφ(e) ≥ −B for all e ∈ E.

Proof. Fix e = (u, v). If w(e) ≥ 0 the potential φ does not effect it (note that this is our assumption)
since wB(e) = w(e). If w(e) < 0 then there are two cases. If w(e) ≥ −B then wB(e) ≥ 0 and by
our assumption wBφ (e) ≥ 0 which implies that

wφ(e) = φ(u) + w(e)− φ(v) = φ(u) + wB(e)−B − φ(v) = wBφ (e)−B ≥ −B.

If w(e) < B then e is still negative in GB and wB(e) = w(e) + B and wBφ (e) ≥ 0 and it can be
easily verified that wφ(e) ≥ −B. �

Thus our goal is to find a potential to neutralize all edges in GB. It is not quite obvious why
it is easier to work with GB but a high-level intuition is that if G does not a negative length cycle
then GB is making the problem easier. [BCF23] uses a slightly different scheme which ensures that
the minimum mean cycle length is ≥ 1 which formalizes more explicitly the change in the graph
by adding B to the negative weight edges.

To find a potential to neutralize negative weight edges in GB we add a dummy source s with
edges of length 0 to each vertex v and try to find shortest path distances from s. We will use the
notation GB + s to indicate the graph obtained by adding such a dummy vertex.

A key definition is the following.

Definition 3. Let η(GB, v) denote the maximum number of negative weight edges among all short-
est s-v paths in GB + s and let η(GB) = maxv∈V η(GB, v). For each v let P (GB, v) be a shortest
s-v path that achieves h(GB, v).

In other words we are interested in the negative weight hop distance. Note that if η(GB) is small
or even if the average 1

n

∑
v η(GB, v) is small (say a poly-logarithmic factor) then via Lemma 11

we can solve the problem in near-linear time. Our goal is to reduce the problem to this setting by
using LDD, recursion, and DAG edge fixing.

It is useful to consider the structure of shortest paths P (GB, v) in GB. Note that since s is
connected to each vertex v with edge of weight 0 the shortest path distances from s are at most 0.
Thus, if η(GB, v) > 0 for a path P (GB, v) then the weight of any prefix of that path is at most 0.
See Fig ??.

Key lemma on using LDD: The key lemma that enables recursion is to reduce η(GB, v).

Lemma 13. Suppose η ≥ η(GB) is an upper bound on η(GB). Suppose we do an LDD via
Theorem 6 on GB≥0 with diameter parameter D = η

2B and let Erem be the edges removed by the
LDD procedure. Then,

• For any SCC H = (VH , EH) of G− Erem we have η(HB) ≤ η/2.

a
mo onmo mx

V

S

HB

P HPV

mm

I

Figure 2: Shortest s-v path in GB with negative weight edges shown in red. Note that some of the
original negative weigh edges in G may no longer be negative in GB. Since dummy source s has
edge of 0 weight to each vertex the weight of any prefix of the path (say to vertex a) has to be at
most 0.

• For any vertex v, E[|P (GB, v) ∩ Erem|] ≤ O(log2 n).

Proof. The first property is the trickier one. We refer to Fig 3. We will consider all three graphs
G,GB, GB≥0 as well as H so it is important to keep track of the argument closely.

Consider the SCC H = (VH , EH) and the graph HB +s. Fix a vertex v ∈ VH and a shortest s-v
path P (HB, v) in HB. This path starts with an edge (s, u) where u ∈ VH . Let P ′ be the part of the
path from u to v. Note that u, v ∈ H which is a strong connected component with diameter at most
D in GB≥0. This implies that there is a path Q from v to u in G such that wB≥0(Q) ≤ D = ηB/2.

Note that w(Q) ≤ wB(Q) ≤ wB≥0(Q) ≤ D since edge weights only increased by going from G to

GB≥0.

We now want to understand w(P ′). Note that this is the weight of the path in G. Since P (HB, v)
is a shortest path from s to v in HB and s has 0 weight edges to each vertex, wB(P ′) ≤ 0. Consider
any negative weight edge e on P ′ with respect to wB. Since wB(e) < 0, it implies that w(e) =
wB(e)−B since we added B to each negative weight edge of G to get GB. Suppose P (HB, v) has
more than η/2 negative weight edges. This means that w(P ′) ≤ wB(P ′)−(η/2+1)B ≤ −(η/2+1)B
since wB(P ′) ≤ 0. But then w(P ′) + w(Q) < −(η/2 + 1)B +D < 0 since D = ηB/2. This implies
that we have a closed walk of negative weight in G which implies that G has a negative weight
cycle contradicting our assumption.

For the second part we consider P (GB, v). What is its weight according wB≥0? We have

wB(P (GB, v)) ≤ 0. Since it has at most η negative weight edges according to wB, when we
make those edges 0 we increase the weight of the path to ηB since each negative weight edge in
wB is ≥ −B. Thus wB≥0(P (GB, v)) ≤ ηB. An edge of weight x is cut with probability x

DO(log2 n).

Thus, by linearity of expectation the total number of edges in P (GB, v) that are cut by the LDD
procedure is

≤ O(log2 n)
wB≥0(P (GB, v))

D
≤ ηB

ηB/2
O(log2 n) = O(log2 n).

�

Remark 14. A reader may wonder about the following. Consider a vertex v and a path P (GB, v)
with η negative weight edges. Why does that path not exist in HB since we proved that in HB the
shortest path to v can only contain η/2 negative weight edges? The point is the following. Suppose
P (GB, v) has (s, u′) as its first edge. Then the proof is showing that there cannot be a (v, u′) path

a
mo onmo mx

V

S

HB

P HPV

mm

I

Figure 3: Proof of the key lemma. w(Q) ≤ wB(Q) ≤ wB≥0(Q) ≤ D = ηB/2. If P (HB, v) has more

η/2 negative weight edges then w(P (HB, v)− u) ≤ −(η/2 + 1)B which implies closed walk in G of
negative weight.

in G with weight at most D = ηB/2. Thus u′ and v cannot be in the same SCC with diameter
bound D. Thus the shortest path to v inside HB is not going to be able to use u′.

Recursive algorithm: The properties of the key lemma point to a (reasonably natural in ret-
rospect) recursive algorithm that reduces the hop length, recurses and fixes the remaining edges.
Recall that the goal is to find a potential φ that neutralizes all negative weight edges in GB.

The algorithm start with an upper bound of η = n on η(GB) and computes a set of edges
Erem using the LDD procedure with D = ηB/2. For each SCC H in G − Grem we recurse since
η(HB) ≤ η/2. This recursively yields a potential φH1 on vertices of H that neutralizes all the edges
inside H. We find potentials separately in each SCC and since the SCCs partition the vertex set we
find an overall potential φ1 that neutralizes all edges inside the SCCs. Note that G−Erem consists
of other edges which are not inside any SCC. We call these the DAG edges since they induce a
DAG on the SCCs. Once all the edges inside SCCs are neutralized via φ1, we can use the procedure
FixDAGEdges to neutralize these edges via a potential ψ. Now we consider φ2 = φ1 + ψ. Thus
the only negative weight edges in GB with respect to the potential φ2 are the edges in Erem which
have been removed. The crucial property we can exploit is the following which is simply a property
of potentials.

Claim 15. With respect to the potential φ2, P (GB, v) is a shortest path from s to v.

The key lemma showed that E[|P (GB, v) ∩ Erem|] = O(log2 n). Thus, in the graph GB with
potential φ2, for each vertex v there is a shortest path from s with O(log2 n) negative weight edges
in expectation. Then we are done since we can use linearity of expectation and the algorithm
implied by Lemma 11.

Now we formally state the algorithm. We call it ReduceHopsAndFix(GB, η) with the guar-
antee that η(GB) ≤ η and outputs a potential that neutralizes all negative weight edges.

Algorithm ReduceHopsAndFix(GB, η)

a a c Ce

H H He

Figure 4: Illustration of hop reduction followed by fixing. Blue edges are Erem removed by LDD
procedure. The green edges are the DAG edges in GB − Erem. H1, H2, . . . ,H` are the strong
connected components of GB − Erem in topological order.

1. If (η ≤ 2) then use algorithm implied by Lemma 11 to find potential φ and return it

2. Erem is output LDDProcedure(GB≥0, D = ηB/2)

3. Let H1, H2, . . . ,H` be the SCCs in G − Erem and let Edag be edges of G − Erem not inside
the SCCs

4. For i = 1 to ` do

(a) Compute φi1 : VHi → R on vertices ofHi via recursive call ReduceHopsAndFix(HB, η/2)

5. φ1 : V → R is obtained by amalgamating φi1, i ∈ [`].

// φ1 neuralizes all edges inside SCCs in GB − Erem

6. Use FixDagEdges in (GB − Erem)φ1 to neutralize all DAG edges. Let ψ be the potential
computed.

7. φ2 = φ1 + ψ.

// Only negative weight edges left in GB with respect to φ2 are those in Erem.

8. Use ElimNegEdges on graph (GB)φ2 via Algorithm in Lemma 11 to neutralize edges in
Erem. Let φ3 be the potential computed in this step.

9. Let φ = φ1 + ψ + φ3.

10. If wBφ (e) < 0 for any edge e then go into an infinite loop

11. Return φ

Correctness: Correctness essentially follows from the key lemma, the properties of potentials, the
correctness of the algorithms to fix dag edges and to find shortest paths with small number of
negative hops, and induction. Note that, under the assumption that G has no negative cycle, each
step of the algorithm correctly computes its output and the algorithm becomes a correct Las Vegas
algorithm. If G has a negative cycle then the algorithm is not guaranteed to terminate. Since we
check validity of φ before returning it, we ensure that it returns a valid output if it terminates.

Time analysis: We now analyze the time complexity. Note that the algorithm has recursion depth
O(log η∗) where η∗ is the parameter used for the first call. We use η∗ = n because that is a
valid upper bound on η(GB). Hence recursion depth is O(log n). We consider the expected time
outside of the recursion. In the base case it is easy to see that the running time is O(m log n) via
Lemma 11. The LDD procedure takes O(m log3 n). We use the algorithm implied by Lemma 11
in the last step when neutralizing the negative weigh edges in Erem. Here we use the second
property of the key lemma. Recall that E[|P (GB, v) ∩ Erem|] = O(log2 n). Thus, by linearity
of expectation E[

∑
v |P (GB, v) ∩ Erem|] = O(n log2 n). Thus, the expected running time of the

algorithm from Lemma 11 in the last step is O(m log3 n). Thus, the total time outside of the
recursion is O(m log3 n). In each recursive call we reduce the parameter η by half and the total
sum of the edges inside the SCCs is at most m, thus the total expected time of the algorithm is
simply the depth of the recursion times the time outside the recursion. Thus, the expected time of
the algorithm is O(m log4 n).

ScaleDown(G) is nothing but ReduceHopsAndFix(GB, n). We had argued the desired
properties of this algorithm which proves Theorem 9.

3 Putting things together

We now use ScaleDown and SPMain to obtain a Montecarlo algorithm.

Theorem 16. There is a randomized algorithm SPMonteCarlo that given a graph G = (V,E,w)
with integer weights and a source s ∈ V behaves as follows.

• If G contains a negative weight cycle it returns an error message.

• If G does not contain a negative weight cycle then the algorithm returns a shortest path tree
rooted at s with high probability. It may return an error message even if there is no negative
cycle.

The algorithm runs in O(m log5 n log(nW))) time.

Proof. We first consider the following intermediate algorithm SPIntermediate. It runs SPMain
on input G, s; if it terminates before twice its expected run time and returns a shortest path tree
then SPIntermediate returns the same output. If SPMain exceeds twice its expected run time
then the algorithm is stopped and SPIntermediate returns error. By Markov’s inequality, this
intermediate algorithm has the following features: (i) if G has no negative cycle it returns a correct
a shortest path tree with probability 1/2 (ii) if G has negative cycle it always returns error and
(iii) it may return error even if G has no negative cycle with probability at most 1/2.

The desired algorithm SPMonteCarlo is simply running SPIntermediate O(c log n) times
independently and returning error if all of the invocations return error. It is easy to check that it
has the desired properties. The run-time is O(c log n) times the expected run-time of SPMain. �

SPMonteCarlo can be viewed as almost what we would like because it returns a valid shortest
path tree with high probability when it exists. But it may return an error with a small probability
even when there is no negative cycle. Ideally we would also like an algorithm that can detect and
output a negative cycle with high probability when G has one. Suppose we had such an algorithm
then we can run the two algorithms. In the next subsection we discuss an algorithm to find a
negative cycle.

3.1 Finding a negative cycle

In this section we discuss a scaling algorithm to find a negative cycle assuming we have an algorithm
A with the following properties: A detects when G has a negative cycle and otherwise outputs a
valid potential that neutralizes all negative weight edges. We dont’ have a deterministic algorithm
of that form but we do have SPMonteCarlo which can act as a substitute. We will not dwell
into all the details to make the whole process work with the weaker algorithm and refer the reader
to [BNWN22, BCF23].

Finding a negative cycle is not quite as easy as it may appear. First, we assume that A has
detected that G has a negative cycle. Given G = (V,E,w) with integer weights we start scaling all
weights by n3 so we set w′(e) = n3w(e). Let G0 be this new graph.

Claim 17. If G has a negative cycle then G0 has a negative cycle with weight ≤ −n3.

Given G and an integer M ≥ 0 we define a graph G+M as the graph obtained by adding M
to each edge weight. Note that we add M to all edges, not just negative weight edges as we did
earlier in defining GB.

Let M∗ be the smallest integer such that G+M∗

0 does not have a negative cycle. It means that

G
+(M∗−1
0 has a negative cycle.

Claim 18. M∗ ≥ n2 and M∗ ≤ n3W . Given access to A that can detect a negative cycle using
binary search one can find M∗ using O(log(nW)) calls to A.

Proof. Since there is a negative weight cycle C in G0 of weight ≤ −n3, to make it postive we need
to add at least n2 to each edge since |C| ≤ n. The second part is easy to see. �

The following claim is easy to see.

Claim 19. Since G+M∗

0 does not have a negative cycle there is a potential φ : V → Z such φ
neutralizes all negative weight edges in G+M∗

0 and this can be computed by A.

The main lemma that leads to the algorithm is the following.

Lemma 20. Let φ be a potential that neutralizes the negative weight edges in G+M∗

0 . Let E′ = {e |
w+M∗

0 (e) > n}. Let G1 = (V,E−E′). Then G1 contains a cycle, and any cycle in G1 is a negative
cycle in G.

Proof. There is a negative cycle C in G
+(M∗−1)
0 which is also a negative weight cycle in G. How

much does its weight increase in G
+(M∗)
0 ? Only by |C|. Thus the weight of C in G

+(M∗)
0 is at most

n. Note that φ neutralizes all negative weights in G
+(M∗)
0 and thus all edge weights of C become

non-negative with respect to φ but the total weight of C does not change with respect to φ since
potentials do not change cycle weights. Thus (w+M∗

0)φ(C) ≤ n and it contains only non-negative
edge weights. Thus any edge in C must have weight at most n with respect to the weight function
(w+M∗

0)φ. This means E(C)∩E′ = ∅ and thus all edges of C survives in G1 which implies that G1

must have a cycle.
Now we argue that any cycle in G1 is a negative weight cycle in G. Let C be an arbitrary

cycle in G1. Since C does not have any edges from E′ we have (w+M∗

0)φ(C) ≤ n|C| ≤ n2. Since
potentials do not change cycle weights we have w+M∗

0 (C) ≤ n2. We have

w0(C) = w+M∗

0 (C)−M∗|C| ≤ w+M∗

0 (C)− 2M∗ ≤ n2 − 2n2 < 0.

We used the fact that |C| ≥ 2 and the fact that M∗ ≥ n2. Thus the weight of C in G0 is negative
which implies it is negative in G as well. �

Based on the above discussion we see that the following algorithm outputs a negative cycle
assuming access to A and moreover it invokes A only O(log(nW)) times.

FindNegCycle(G,w)

1. Let G0 be a copy of G where w0(e) = n3w(e) for all e

2. Fine smallest M∗ using O(log(nW)) calls to A such that G+M∗

0 does not have a negative
cycle

3. Use A to find a potential φ that neutralizes all negative weight edges in G+M∗

0 .

4. Let E′ = {e | w+M∗

0 (e) > n}

5. Find any cycle C in G− E′ and output it.

Note that we can use SPMonteCarlo in place of A. The resulting algorithm may make
mistakes and fail but we can detect failure in finding a negative cycle, and thus we can obtain a
Monte Carlo algorithm that can find a negative cycle with high probability if G has one.

References

[BCF23] Karl Bringmann, Alejandro Cassis, and Nick Fischer. Negative-weight single-source
shortest paths in near-linear time: Now faster! In 2023 IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS), pages 515–538. IEEE, 2023.

[BNWN22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight
single-source shortest paths in near-linear time. In 2022 IEEE 63rd annual symposium
on foundations of computer science (FOCS), pages 600–611. IEEE, 2022.

[ENRS00] Guy Even, Joseph Seffi Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer ap-
proximation algorithms via spreading metrics. Journal of the ACM (JACM), 47(4):585–
616, 2000.

[Fin24] Jeremy T Fineman. Single-source shortest paths with negative real weights in Õ(mn8/9)
time. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing,
pages 3–14, 2024.

[Gol95] Andrew V Goldberg. Scaling algorithms for the shortest paths problem. SIAM Journal
on Computing, 24(3):494–504, 1995.

[HJQ24] Yufan Huang, Peter Jin, and Kent Quanrud. Faster single-source shortest paths with
negative real weights via proper hop distance. arXiv preprint arXiv:2407.04872, 2024.

[KPRT97] Philip N Klein, Serge A Plotkin, Satish Rao, and Eva Tardos. Approximation algo-
rithms for steiner and directed multicuts. Journal of Algorithms, 22(2):241–269, 1997.

[Sey95] Paul D. Seymour. Packing directed circuits fractionally. Combinatorica, 15(2):281–288,
1995.

	Single-Source Shortest Paths with Negative Weights
	Background
	The high-level scaling approach
	Low Diameter Decomposition for Directed Graphs

	The main algorithm and its analysis
	Two easy but important cases
	ScaleDown via hop reduction and fixing

	Putting things together
	Finding a negative cycle

