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1 Introduction to Oblivious Routing

Oblivious routing originated in parallel and distributed computing and also has connections to
online algorithms. Consider a communication network represented by a graph G = (V,E) with
edge capacities c : E → R+. This network is used to route/satisfy demands between source-sink
pairs. In most networks the actual demands are not known in advance and come and go in an
online fashion. Which route/path(s) should the demand for some specific pair (s, t) be routed
on? It depends on other demands. To feasibly route a given set of demands in the network we
need to essentially solve a multicommodity flow problem which helps to balance the network’s
capacity among many competing pairs. This is a non-trivial computational problem. There are
also various issues on how to specify the end-to-end routes and how to implement the routing. Some
of these practical issues have motivated interesting theoretical problems, some of which have led to
fundamental breakthroughs that seem quite far from the original motivation. Oblivious routing is
one such problem.

The goal in oblivious routing, in some sense, is to bridge the static setting where the demands
are all fully known to the fully online setting where we specify a route to a new demand when
it arrives. In oblivious routing, for each pair of vertices (u, v) we specify a static probability
distribution over the paths from u to v in G (denoted by Pu,v). This may seem wild because there
could be an exponential number of paths in Pu,v. For now, think of a distribution over a small
number of paths or an implicit and compact specification. When a demand to route D(u, v) units
of flow between u and v arrives online, the scheme will pick a path P ∈ Pu,v according to the
static distribution and route the flow along that path. Alternatively, we can also think of sending
the D(u, v) demand fractionally along the paths in proportion to the probability. This scheme
explains the name oblivious because the distributions are required to be computed before knowing
any of the actual demands. Clearly, if we knew the entire set of demands in advance we can
compute an optimal routing via some sort of multicommodity flow computation. How well can an
oblivious routing do when compared to a static routing? How do we measure the quality? And do
good oblivious routings exist? The initial paper that motivated this is due to Valiant and Brebner
[VB81] who showed that good deterministic oblivious routings exist in special classes of graphs
such as hypercubes. Later, the need for randomization in the sense of picking paths randomly as
we described was realized.

How do we measure the quality of oblivious routing? There are several ways but historically
the main one, and the one which has had the most theoretical impact, is the one that focused on
congestion. We first digress towards defining routable demands and some properties before formally
defining the quality of oblivious routing.

1.1 Routable demands in a network

We will work with directed graphs since flow is more naturally defined in such graphs and later
indicate the changes needed for undirected graphs. Let G = (V,E) be a directed graph with edge



capacities c : E → R+. It is common in networking literature to use the notion of demand matrices.
D ∈ Rn×n is a matrix that specifies the demand between every ordered pair of vertices (u, v) (in
networking they often use indices 1 to n to specify vertices and hence the use of matrix notation).

Definition 1. A demand matrix D is routable in G if there is a multicommodity flow in G that
routes D(u, v) amount of demand for every pair of vertices (u, v). D is said to be routable with
congestion ρ where ρ > 0 is a non-negative scalar if D is routable in G where edge capacities are
multiplied by ρ.

Thus ρ = 1 corresponds to a routable demand matrix. The following claim is easy but quite
useful.

Claim 1. If D and D′ are routable matrices then so is λD + (1 − λ)D′ for any scalar λ ∈ [0, 1].
Let DG be the set of all demand matrices that are routable in G. Then DG is a convex set in Rn2

.

Note that the set of all demand matrices routable in G with congestion ρ, for any fixed ρ, is
also convex. Given a demand matrix D we can efficiently check if D is routable in G via solving an
LP for multicommodity flow. Thus, we have a membership oracle for the convex set DG. The flow
LP is nice because the LP is also linear in D(u, v) values. Thus, we can claim something stronger.
There is an efficient optimization oracle over DG. What does this mean? That is, given weights
w(u, v) for each pair (u, v) of vertices we can efficient solve the problem

∑
u,v w(u, v)D(u, v) such

that D ∈ DG.

Exercise 1. Argue formally why we have an efficient optimization oracle over DG.

By the equivalence of optimization and separation, we have an efficient separation oracle over
DG! That is, there is an efficient algorithm, that given D ∈ Rn2

, either outputs that D ∈ DG or
outputs a separating hyperplane that separates D (viewed as a point in n2 dimensional space) from
the convex set DG. This is a convoluted but easy way of deriving a useful fact. You may suspect
that there would be more direct ways of deriving this. The following is often referred to as the
Japanese theorem on multicommodity flow which can be derived from LP duality which we saw
when discussing sparsest cut.

Exercise 2. Let D be a demand matrix. Then D is routable in G iff for all length functions
` : E → R+, ∑

e∈E
ce`(e) ≥

∑
(u,v)∈V×V

D(u, v)dist`(u, v)

where dist`(u, v) is the shortest path distance from u to v induced by edge lengths given by `.

Thus, to prove that D is not routable in G it suffices to produce one length function ` : E → R+

that violates the inequality in the preceding exercise. Thus, one can view DG as being defined by
an infinite set of linear inequalities, one for each non-negatively length function.

Undirected graphs: For the most part we will be interested in undirected graphs. Typically we
will consider demands as unordered pairs uv, that is, we specify a demand matrix D as a symmetric
matrix with the understanding that we wish to route D(uv) demand for the pair uv. Undirected
multicommodity flow is somewhat clunky to define compactly (but it can be done by bi-directing



the edges and capping the total flow on both copies of the edges by the original capacity c(e))
but easy to specify via path flow. For this reason we defined things via directed graphs. We will
see that the optimal oblivious routing can be computed in directed graphs as well but the optimal
value can be large unlike in undirected graphs.

1.2 Oblivious routing to minimize congestion

Recall that in oblivious routing we wanted to specify a probability distribution over paths for
each pair (u, v). One can view such a probability distribution as a flow of one unit from u to v
where the flow on a path P ∈ Pu,v is equal to the probability of P . Thus, one compact way to
represent a probability distribution over paths is via a unit flow via flow values on edges which
can be specified using only m numbers. Note that an edge-based flow does not uniquely specify a
path-based flow so we are losing information by using the compact representation but it is helpful
in some computational situations.

Definition 2. An edge-based oblivious routing for a network G = (V,E) is a collection of unit
flows in G, one for each pair (u, v) ∈ V × V , specified via edge-based flows. A path-based oblivious
routing for a network G = (V,E) is similar where the unit flow is specified via a path based flow.

We will use f
(u,v)
e to denote the amount of flow on edge e for pair (u, v) specified by the

oblivious routing; note that this is a number in [0, 1]. Whether the oblivious routing is specified
via edge-based flow or path-based flow, this quantity is well defined.

Definition 3. Let D be a demand matrix. The congestion incurred for D via the oblivious routing

specified by values, f
(u,v)
e , e ∈ E, (u, v) ∈ V ×V is maxe∈E

∑
u,v D(u,v)f

(u,v)
e

ce
. We say that D is routed

with congestion ρ by the oblivious routing.

Definition 4. Let G = (V,E) be a network with edge capacities c : E → R+. The congestion
of an oblivious routing is the smallest ρ ≥ 1 such every routable demand D ∈ DG is routed with
congestion at most ρ by the oblivious routing. An optimal oblivious routing for G is the one which
achieves the smallest ρ among all oblivious routings.

In other words, we are asking how much should we scale up the capacities of G so that any
demand matrix D that is routable in G (statically with full knowledge of D), can be routed in G
via the oblivious routing.

Exercise 3. Prove that every graph G admits an n2-congestion oblivious routing.

Some fundamental results on oblivious routing: In roughly chronological order.

• Harald Räcke [Rac02], in a breakthrough result, proved that every undirected graph admits
an oblivious routing with congestion O(log3 n). His initial proof used an optimal algorithm
for sparsest cut and hence did not lead to an efficient algorithm to construct the oblivious
routing. Soon after, [BKR03] and [HHR03] obtained efficient algorithms with the [HHR03]
obtaining a congestion of O(log2 n log log n). These results are based on a hierarchical ex-
pander decomposition of the graph which results in a compact cut representation of every
graph. It is a non-trivial a fundamental structural result on graphs which has found many
applications in fast graph algorithms recently (see [GRST21] for instance).



• Azar et al [ACF+03] proved, via a simple idea in retrospect, that the optimal oblivious routing
can be computed efficiently via LP techniques even for directed graphs. We will see it in the
next section. Note that being able to compute an optimum oblivious routing for any given
graph does not tell us an easy to understand universal bound such as log n or

√
n.

• Oblivious routing in directed graphs requires congestion Ω(
√
n) [ACF+03]; this lower bound

holds even for the restricted case of single-source demands. A similar lower bound was shown
to hold also for undirected graphs with node capacities [HKRL07]. More recently, the lower
bound for directed graphs has been improved to Ω(n) [EMPS16].

• In another breakthrough, Räcke [Räc08], made a beautiful and surprising connection be-
tween oblivious routing and probabilistic tree embeddings for metric distortion, and obtained
an optimal O(log n)-congestion tree-based oblivious routing scheme. Via this algorithm he
obtained an O(log n)-approximation for the minimum bisection problem in graphs. In addi-
tion the tree-based oblivious routing has a number of applications in network design including
some recent work of the instructor [CJ24].

2 Efficient Algorithm to Compute an Optimal Oblivious Routing

In this section we prove that one can find an optimal edge-flow based oblivious routing in polynomial
time. This is due to [ACF+03] and is quite simple in retrospect. We will work with directed graphs
since it is easier to define edge-based flows. Recall that any oblivious routing can be specified by

variables f
(u,v)
e , e ∈ E, (u, v) ∈ V × V such that for any pair (u, v) the variables f

(u,v)
e , e ∈ E define

a unit flow from u to v in G. To find an oblivious routing with minimum congestion we write the
following LP essentially following the definitions. (Recall that DG is the set of all demand matrices
that are routable in G. )

min ρ

s.t

f
(u,v)
e , e ∈ E is a unit flow from u to v ∀(u, v) ∈ V × V∑

(u,v)∈V×V

D(u, v)f (u,v)e ≤ ρce ∀D ∈ DG

f (u,v)e ≥ 0 ∀e ∈ E,∀(u, v) ∈ V × V

Remark 2. We did not write down the full description of the LP to keep the high-level ideas clean.

It is easy to write down linear constraints that capture the fact that f
(u,v)
e , e ∈ E define a unit flow

from u to v for each (u, v). We leave this as an exercise.

The only catch in solving the LP is that it has an infinite number of constraints but notice
that the number of variables is large but polynomial; a total of mn2 variables. We can use the
Ellipsoid method if we have an efficient separation oracle. We understand what is required of

the separation oracle. Suppose we are given a set of numbers y
(u,v)
e , e ∈ E, (u, v) ∈ V × V and

a number ρ′. The oracle needs to correctly verify that these satisfy the constraints or output a
constraint that is violated. It is easy to check that the values define a unit flow for each pair. In



fact these constraints are polynomial in number. Thus, the interesting constraints are about the
demand matrices. Suppose we fix an edge e. To know if there is any demand matrix D ∈ DG

such that
∑

(u,v)∈V×V D(u, v)y
(u,v)
e ≥ ρ′ce we can solve an LP over DG! The objective weights are

y
(u,v)
e , (u, v) ∈ V ×V . We saw that we can optimize/maximize linear objectives over DG efficiently.

And thus, we can check each edge to see if there is any demand matrix which violates the congestion
constraint for the choice of ρ′.

Exercise 4. Verify that there is an efficient separation oracle for the LP to compute an optimum
oblivious routing in a given network G.

Of course the resulting algorithm is not every efficient but it shows the power of the Ellipsoid
method and working with large implicit LPs fearlessly. One can use multiplicative weight updates
and other techniques to obtain fast approximation algorithms for some of these problems and we
will see this later in the course.

The preceding technique to design optimum oblivious routing is fairly general. We do not need
to consider the full set of demand matrices DG. As long as we have a nice convex set of demand
matrices that we can optimize over, we can find an optimum oblivious routing when restricted to
those demand matrices. See [AC03] for an empirical evaluation of this idea. See [Che07] for some
pointers to work on dealing with uncertainty in the demand matrix (these articles are somewhat
dated but it is possible to trace more recent literature via citations).

3 Tree-based Oblivious Routing via Duality and Low Stretch Trees

In this section we will prove that in undirected graphs there is always an oblivious routing with
congestion O(log n) which is an optimal bound. Räcke prove this result via an elegant connection
to tree embeddings for distance preservation. The bound, the connection, and the tree-based aspect
are all important. As we discussed previously, probabilistic approximation of a graph by spanning
trees for distances incurs an O(log n log log n) distortion while we can obtain an optimal O(log n)
distortion if we allow dominating tree metrics. It is easier to understand the ideas in Räcke’s proof,
and in particular the notation, by working with spanning trees than with general hierarchical tree
representations of graphs (in some cases the spanning tree result is useful/needed). The difference
in the distortion is not significant for our purposes here and we will use these results in a black
box fashion. At the end of the section we sketch how to use dominating tree metrics rather than
spanning trees. We let α(n) denote the best bound that we can obtain for approximating the
distances in a n-node graph G = (V,E) with edge lengths ` : E → R+ by a probability distribution
over spanning trees. Currently we have α(n) = O(log n log logn) [ABN08] and it is conjectured
that α(n) = O(log n). A simple implication of this result is the following claim.

Claim 3. Let G = (V,E) be a graph with non-negative edge lengths ` : E → R+. Let w : E →
R+ be any set of non-negative edge weights. Then there is a spanning tree T ∈ TG such that∑

uv∈E w(uv)distT (u,v)∑
e∈E w(e)`(e) ≤ α(n) where distT (u, v) is the length of the unique path from u to v in T .

Proof. Recall that there is a probability distribution p : TG → [0, 1] such that for every pair
of vertices u, v ∈ V , E[distT (u, v)] ≤ α(n)distG(u, v) where distances are induced by the edge
lengths ` : E → R+. Now fix any weight function w over pairs of vertices. Then by linearity of
expectation, E[

∑
u,v w(uv)distT (u, v)] ≤ α(n)

∑
u,v w(uv)distG(u, v). Thus, there is at least one



tree T such that
∑

u,v w(uv)distT (u, v) ≤ α(n)
∑

u,v w(uv)distG(u, v). Now consider the case when
the support of the weights w is only on the edges of G, that is w(uv) = 0 if uv 6∈ E. In this case
distG(u, v) ≤ `(u, v). And distT (u, v) is the shortest path length along the path in T . Thus, we
obtain

∑
uv∈E w(uv)distT (u, v) ≤ α(n)

∑
uv∈E w(uv)dG(u, v) ≤ α(n)

∑
uv∈E w(uv)`(u, v). �

Tree based oblivious routing: We will consider a specific type of oblivious routing. Consider
any probability distribution p over the spanning trees of G. We observe that this distribution
induces an oblivious routing. How? Fix any pair u, v. For each tree T ∈ TG there is unique
path PT (u, v) between u and v in G. Thus, the probability distribution over TG induces a prob-
ability distribution over paths between u and v. Note that the distribution over trees induces a
distribution for every pair of vertices simultaneously. We call such an oblivious routing scheme a
tree-distribution-based oblivious routing (this is not necessarily a standard terminology). It is a
restricted class of oblivious routings. This class of oblivious routing is particularly nice, at least
from a theoretical point of view. We sample a tree from the distribution and whenever a demand
arrives we simply route it along the unique path in the tree. Two natural questions arise.

• How good is the best tree-distribution-based oblivious routing?

• Can the best tree-distribution-based oblivious routing be efficiently computed?

Räcke showed that tree-distribution-based oblivious routings have a nice structural property
that allow one to characterize the congestion in a simple way. To understand this, we set up some
notation. Let T be a spanning tree and consider an edge e ∈ ET . T − e induces a partition of the
vertex set into two sets (S, V −S). We define the load on e due to T , denoted by L(T, e) as c(δ(S)).
Why? Think of all the edges crossing the cut (S, V −S). For each of those edges e′ = (s, t) ∈ δ(S),
the path from s to t in T has to go via e, and hence if we want to route demands corresponding to
edges then the congestion on e will be L(T, e)/c(e). We will let L(T, e) = 0 if e 6∈ T .

Definition 5. Let p : TG → [0, 1] be a probability distribution that induces an oblivious routing.
For edge e let L(e) =

∑
T p(T )L(T, e) be the expected load on e and let ρ(e) = L(e)/c(e) be the

expected congestion on e.

The simple yet important observation is the following which characterizes the quality of the
oblivious routing based on the expected congestion of the edges. Note that there is no reference
to routable demands in this characterization and the proof will make it clear as to why that is the
case.

Claim 4. Let p : TG → [0, 1] be a probability distribution that induces an oblivious routing. The
congestion of this oblivious routing is at most maxe∈E ρ(e).

Proof. Let D ∈ DG be any routable demand in G. Fix some routing of D in G and let x(e) be the
total flow on edge e in the routing. Clearly x(u, v) ≤ c(u, v) for all (u, v) ∈ E. Let L′(T, e) the total
flow on e induced by the oblivious routing scheme for routing D on tree T . It suffices to prove that
L′(T, e) ≤ L(T, e) for each e which would imply that L′(e) =

∑
T pTL

′(T, e) ≤ L(e). This is easy
for the following reason. L′(T, e) is equal to the sum of demands for vertex pairs that are separated
in T −e. In other words if T −e induces the cut (S, V −S) then L′(T, e) =

∑
(u,v):|S∩{u,v}|=1D(u, v).

Since D is routable, the total demand across the cut (S, V − S) is at most c(δ(S)) but the load
L(T, e) is defined as c(δ(S)). �



LP for optimum tree-based oblivious routing: The preceding characterization of the con-
gestion allows us to write an LP to find the best tree-distribution based oblivious routing scheme.
We will use variable xT to denote the probability that T ∈ TG is chose in the probability distribu-
tion. We use ρ to denote the congestion that we wish to minimize. We write down constraints that
express x as a probability distribution and to express the load on each edge being bound by ρc(e).

min ρ

s.t∑
T∈TG

xT = 1

∑
T

xTL(T, e) ≤ ρc(e) ∀e ∈ E

xT ≥ 0 ∀T ∈ TG

We write its dual below.

maxβ

s.t∑
e∈E

c(e)ze = 1∑
e∈T

L(T, e)ze ≥ β ∀T ∈ TG

ze ≥ 0 ∀e ∈ E

It is useful to rewrite the dual in an equivalent ratio form.

max
z∈Rm

+

min
T∈TG

∑
e∈T L(T, e)ze∑
e∈E c(e)ze

.

Exercise 5. Argue that the max-min formulation is equivalent to the LP dual.

Bounding the dual value: The main “observation” is that Claim 3 implies that the optimal
dual value is α(n) which corresponds to the bound for tree-based distance approximation! Suppose
this was true then we have shown that there exists a tree-distribution based oblivious routing with
congestion O(log n log log n). We now proceed to prove this observation.

Lemma 5. The optimal dual value is at most α(n).

Proof. Fix any optimum solution z∗ to the dual program

max
z∈Rm

+

min
T∈TG

∑
e∈T L(T, e)ze∑
e∈E c(e)ze

.

We observe, by using the definition of L(T, e) and interchaning the order of summation, that∑
e∈T

L(T, e)ze =
∑
uv∈E

c(uv)
∑

e∈PT (u,v)

ze



where PT (u, v) is the path from u to v in T . Note that
∑

e∈PT (u,v ze can be thought of as the length
of the path from u to v in T according to lengths given by z.

We wish to use Claim 3. We think of c(e) as a weight w(e) and think of ze as length `(e). With
this interpretation and the preceding paragraph, we see that the dual can be written as

max
`∈Rm

+

min
T∈TG

∑
uv∈E w(uv)distT (u, v)∑
uv∈E w(u, v)`(u, v)

.

By Claim 3, this is at most α(n). �

3.1 Going beyond spanning trees

To obtain the optimal O(log n)-bound for oblivious routing we can use the optimum result for em-
bedding a finite metric space on n points into a distribution over dominating tree metrics [FRT03].
This requires some notational work to set up but the proof is essentially the same as it is for span-
ning trees. Even though it is possible to work with trees that include Steiner vertices, the notation
is still cumbersome. For this reason we go one step further than spanning trees and work with trees
that only contain vertices in V and these suffice for most applications.

Path-mapped spanning trees: Given G let T ′G be the set of all spanning trees over the complete
graph on V — note that a tree T may now have an edge uv where uv is not an edge of G. When
working with metric distortion we only keep track of the length of such edges but for the oblivious
routing application we need more information. Thus, for each T = (V,ET ) ∈ TG we also maintain
a map MT : ET → PG where PG is the set of all paths/walks in G. For the map to make sense, we
require that MT has the following property: it maps an edge uv ∈ ET to a path p ∈ PG(u, v) where
PG(u, v) is the set of all u-v paths in G. Thus, given any s, t ∈ V we can map the unique s-t path
in T to an s-t walk in G by using the map MT . We use MT (s, t) to denote this walk. To make it
easier to understand, we call the pair (T,MT ) a path-mapped spanning tree (pmst for short). We
overload notation and use T ′G to denote the set of all pmsts of G. Note that this is not standard
terminology in the literature but we are using it to make it easier to describe and understand. An
important thing to note is the following: given (T,MT ) an edge e′ ∈ E (of the original graph G)
can be in several paths associated with edges of T .

We now consider probability distributions over pmsts for a given graph G. We first consider
such mappings for approximating distances.

Path-mapped spanning trees for approximating distances: Given a graph G = (V,E)
with edge lengths ` : E → R+ a pmst (T,MT ) naturally defines a dominating tree metric for the
metric (V, d) induced by the shortest path distances. For each edge e ∈ T we associate a length
equal to the length of the path MT (e). Thus for an pair s, t, we have distT (s, t) = `(MT (s, t))
where MT (s, t) is a path in G. Clearly `(MT (s, t)) ≥ distG(s, t). It is not too difficult to prove that
the O(log n) approximation of a n-point metric (V, d) by dominating tree metrics [FRT03] that we
saw earlier, implies the following.

Theorem 6. For any graph G = (V,E) with non-negative edge lengths ` : E → R+ there is
a probabilisty distribution D over T ′G such that for any pair of vertices u, v, E[`(MT (u, v)] ≤
O(log n)dist`(u, v).



We leave the proof as an exercise to the reader. One can then obtain a natural generalization
of Claim 3.

Claim 7. Let G = (V,E) be a graph with non-negative edge lengths ` : E → R+. Let w : E → R+ be

non-negative weights on edges. Then there is a pmst (T,MT ) ∈ T ′G such that
∑

uv∈E w(uv)`(MT (u,v))∑
uv∈E w(uv)`(u,v)) ≤

O(log n).

Path-mapped spanning trees for oblivious routing: Let G = (V,E) be a graph with edge
capacities c : E → R+. Fix a pair of vertices (s, t). Each pmst (T,MT ) defines a path MT (s, t) for
pair (s, t). And hence any probability distribution over T ′G naturally defines an oblivious routing
for G.

As we did with spanning trees, we can characterize the congestion induced by a probability
distribution over T ′G. For a given edge e ∈ E and a tree T we would like to characterize load L(T, e)
induced by using T . Note that e can be in multiple paths associated with the edges of T . For each
edge e′ ∈ ET we let (Se′ , V − Se′) be the partition of V induced by T − e′. We define

L(T, e) =
∑

e′∈ET :MT (e′)3e

c(δG(Se′))

and observe that this corresponds to the load induced on e by the pmst-based oblivious routing
scheme. Given a probability distribution p : T ′G → [0, 1] the expected load on e ∈ E can be naturally
defined as: L(e) =

∑
T pTL(T, e). This defines the congestion on e ∈ E, ρ(e), as L(e)/c(e) and the

max congestion of the scheme as: ρ = maxe∈E ρ(e).
We obtain the following claim, similar to Claim 4.

Claim 8. Let p : T ′G → [0, 1] be a probability distribution that induces an oblivious routing. The
congestion of this oblivious routing is at most maxe∈E ρ(e).

The rest of the proof is very similar to the one for spanning trees where we write an LP
relaxation to find the best probability distribution to minimize the congestion of the resulting
oblivious routing (based on the preceding claim’s characterization). We bound the dual’s objective
using Claim 7. This yields the optimal O(log n)-congestion tree-based oblivious routing. We leave
the formal derivation as a useful exercise for the reader.

3.2 Computational aspects

The proof of tree-based oblivious routings was based on duality. It is not immediately clear that it
leads to an efficient algorithm but it does. As one would expect, we need an efficient algorithm for
the dual separation oracle. This is the problem of approximating distances in the graph by spanning
trees/pmsts and we have seen efficient algorithms for it. It is not obvious that we can use such
approximate algorithms in the dual but there are standard techniques via the the multiplicative
weight update (MWU) method and related ideas. See [Räc08].
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