
CS 598CSC: Topics in Graph Algorithms Lecture date: 09/10/2024
Instructor: Chandra Chekuri Scribe: CC

1 Recent Shortest Path Algorithms

Shortest path problems in graphs are fundamental algorithmic primitives. For non-negative edge
lengths, Dijkstra’s algorithm for single-source shortest path (SSPP) can be implemented in O(m+
n log n) time and there is also a complicated O(m+ n)-time algorithm in the RAM model for inte-
ger length [Tho99]. The algorithmic complexity of the all-pairs shortest path problem (APSP)
is quite fundamental and is an active area of study in fine-grained complexity — see https:

//algorithm-wiki.csail.mit.edu/wiki/APSP. The situation for negative lengths saw break-
through progress recently. The well-known Shimbel-Bellman-Ford-Moore algorithm for SSSP in
directed graphs with potential negative length edges runs in O(mn) time on a directed graph and
either finds a negative length cycle or correctly outputs the shortest path distances from the source.
In the past there have been scaling algorithms that improved the running time. Recently there have
been two important results. First, Bernstein, Nanongkai and Wulff-Nielsen describe a randomized
Las Vegas algorithm that runs in O(m log8 n logW)-time where weights are assumed to be integer
and W is the absolute value of least negative length edge [BNWN22]; subsequent work reduced
the number of log factors [BCF23]. Second, a strongly polynomial time algorithm that runs in
randomized Õ(mn8/9) due to Fineman [Fin24]; see recent improvement [HJQ24].

The scaling algorithm of [BNWN22], surprisingly, uses the notion of low-diameter graph de-
composition which was used mainly in distributed algorithms and approximation algorithms in
the past (it is a concept from the 80’s). The recent breakthrough work on min-cost flow that
achieved almost-linear running time is based on dynamic algorithms for shortest paths with neg-
ative lengths. There is a synergy and close connection between algorithms for flows and cuts in
graphs and shortest paths. In the past the main use of these ideas was in approximation algorithms
and distributed algorithms but recent work has shown the utility of these notions for developing fast
algorithms. In order to develop some intuition and background we will first go over some results
on (multicommodity) flows and cuts via metric embeddings and develop necessary tools along the
way.

The rest of the notes below are borrowed from the instructor’s previous notes on approximation
algorithms which were scribed by students — see the course webpage for proper attribution.

2 s-t mincut via LP Rounding and Maxflow-Mincut

Let G = (V,E) be a directed graph with edge costs c : E → R+. Let s, t ∈ V be distinct vertices.
The s-t mincut problem is to find the cheapest set of edges E′ ⊆ E such that there is no s-t path in
G−E′. An s-t cut is often also defined as δ+(S) for some S ⊂ V where s ∈ S, t ∈ V − S. Suppose
E′ is an s-t cut. Let S be the set of nodes reachable from s in G−E′, then δ(S) ⊆ E′ and moreover
δ(S) is an s-t cut. Thus, it suffices to focus on such limited type of cuts, however in some more
general settings it is useful to keep these notions separate.

https://algorithm-wiki.csail.mit.edu/wiki/APSP
https://algorithm-wiki.csail.mit.edu/wiki/APSP

It is well-known that s-t mincut can be computed efficiently via s-t maximumflow which also
establishes the maxflow-mincut theorem. This is a fundamental theorem in combinatorial opti-
mization with many direct and indirect applications.

Theorem 1. Let G = (V,E) be a directed graph with rational edge capacities c : E → Q+ and let
s, t ∈ V be distinct vertices. Then the s-t maximum flow value in G is equal to the s-t minimum
cut value and both can be computed in strongly polynomial time. Further, if c is integer valued then
there exists an integer-valued maximum flow.

The proof of the preceding theorem is typically established via the augmenting path algorithm
for computing a maximum flow. Here we take a different approach to finding an s-t cut via an LP
relaxation whose dual can be seen as the the maxflow LP.

Suppose we want to find an s-t mincut. We can write it as an integer program as follows. For
each edge e ∈ E we have a boolean variable xe ∈ {0, 1} to indicate whether we cut e. The constraint
is that for any path P ∈ Ps,t (here Ps,t is the set of all s-t paths) we must choose at least on edge
from P . This leads to the following IP.

min
∑
e∈E

c(e)xe∑
e∈P

xe ≥ 1 P ∈ Ps,t

xe ∈ {0, 1} e ∈ E.

The LP relaxation is obtained by changing xe ∈ {0, 1} to xe ≥ 0 since we can omit the
constraints xe ≤ 1. We note that the LP has an exponential number of constraints, however, we
have an efficient separation oracle since it corresponds to computing the shortest s-t path. The
LP can be viewed as assigning lengths to the edges such that the shortest path between s and t
according to the lengths is at least 1. This is a fractional relaxation of the cut.

Rounding the LP: We will prove that the LP relaxation can be rounded without any loss! The
rounding algorithm is described below.

Theta-Rounding(G, s, t)

1. Solve LP to obtain fractional solution y

2. For each v ∈ V let dy(s, v) be the shortest path distance from s to v according to edge lengths
ye.

3. Pick θ uniformly at random from (0, 1)

4. Output E′ = δ+(B(s, θ)) where B(s, θ) = {v | dy(s, v) ≤ θ} is the ball of radius θ around s

It is easy to see that the algorithm outputs a valid s-t cut since dy(s, t) ≥ 1 by feasibility of the
LP solution y and hence t ̸∈ B(s, θ) for any θ < 1.

Lemma 2. Let e = (u, v) be an edge. P[e is cut by algorithm] ≤ y(u, v).

Sykora
s

ff'I n

s
so

ortext

3

0 0 55

0.5

Figure 1: Example of fractional solution to s-t LP and balls of different radii.

Proof. An edge e = (u, v) is cut iff dy(s, u) ≤ θ < dy(s, v). Hence the edge is not cut if dy(s, v) ≤
dy(s, u). If dy(s, v) > dy(s, u) we have dy(s, v) − dy(s, u) ≤ y(u, v). Since θ is chosen uniformly at
random from (0, 1) the probabilty that θ lies in the interval [dy(s, u), dy(s, v)] is at most y(u, v). ■

Corollary 3. The expected cost of the cut output by the algorithm is at most
∑

e c(e)ye.

The preceding corollary shows that there is an integral cut whose cost is at most that of the
LP relaxation which implies that the LP relaxation yields an optimum solution. The algorithm
can be easily derandomized by trying “all possible value of θ”. What does this mean? Once we
have y we compute the shortest path distances from s to each vertex v. We can think of these
distances as producing a line embedding where we place s at 0 and each vertex v at dy(s, v). The
only interesting choices for θ are given by the n values of dy(s, v) and one can try each of them and
the corresponding cut and find the cheapest one. It is guaranteed to be at most

∑
e c(e)ye.

What is the dual LP? We write it down below and you can verify that it is the path version of
the maxflow!

max
P∈Ps,t

zP∑
P :e∈P

zP ≤ c(e) e ∈ E

zP ≥ 0 P ∈ Ps,t.

Thus, we have seen a proof of the maxflow-mincut theorem via LP rounding of a relaxation for
the s-t cut problem.

A compact LP via distance variables: The path based LP relaxation for the s-t mincut
problem is natural and easy to formulate. We can also express shortest path constraints via
distance variables. We first write a bigger LP than necessary via variables d(u, v) for all ordered
pairs of vertices (hence there are n2 variables). We need triangle inequality constraints to enforce
that d(u, v) values respect shortest path distances.

min
(u,v)∈E

c(u, v)d(u, v)

d(u, v) + d(v, w)− d(u,w) ≥ 0 u, v, w ∈ V

d(s, t) ≥ 1

d(u, v) ≥ 0 (u, v) ∈ V × V

Although the preceding LP is wasteful in some ways it is quite generic and can be used for
many cut problems where we are interested in distances between multiple pairs of vertices.

Now we consider a more compact LP formulation. We have two types of variables, x(u, v) for
each edge (u, v) ∈ E and dv variables for each v ∈ V to indicate distances from s.

min
(u,v)∈E

c(u, v)x(u, v)

dv ≤ du + x(u, v) (u, v) ∈ E

dt ≥ 1

dv ≥ 0 v ∈ V

x(u, v) ≥ 0 (u, v) ∈ E

Exercise 1. Write the dual of the above LP and see it as the standard edge-based flow formulation
for s-t maximum flow.

3 Multicut and Approximation via Randomized Decomposition

In the Multicut problem, we are given a graph G = (V,E), a capacity function that assigns a
capacity ce to each edge e, and a set of pairs (s1, t1), ..., (sk, tk). The Multicut problem asks
for a minimum capacity set of edges F ⊆ E such that removing the edges in F disconnects si
and ti, for all i. Multicut is NP-Hard even on trees. We describe an O(log k) approximation
algorithm for Multicut which, as a corollary, also proves a multicommodity flow-cut gap result.
It turns out that the bound of O(log k) is tight in general graphs. For planar graphs one can get
an O(1)-approximation and flow-cut gap. These results are for undirected graphs. The situation is
more complicated in directed graphs and we will discuss that later. The rest of the section is about
undirected graphs.

We start by describing an LP formulation for the problem. For each edge e, we have a variable
de. We interpret each variable de as a distance label for the edge. Let Psi,ti denote the set of all
paths between si and ti. We have the following LP for the problem:

min
∑
e∈E

cede

s.t. ∑
e∈p

de ≥ 1 p ∈ Psi,ti , 1 ≤ i ≤ k

de ≥ 0 e ∈ E

The LP assigns distance labels to edges so that, on each path p between si and ti, the distance
labels of the edges on p sum up to at least one. Note that, even though the LP can have exponentially
many constraints, we can solve the LP in polynomial time using the ellipsoid method and the
following separation oracle. Given distance labels de, we set the length of each edge to de and, for
each pair (si, ti), we compute the length of the shortest path between si and ti and check whether
it is at least one. If the shortest path between si and ti has length smaller than one, we have a
violated constraint. Conversely, if all shortest paths have length at least one, the distance labels
define a feasible solution.

Ideas
4ft.at

s

diff.am

syao v Vid
aooo

s

Ioot
off's

0 3

uaaot
5 1,213

3

Figure 2: Example of fractional solution to a Multicut instance. Note that even when (s3, t2) is
not an input pair, the LP solution separates them fractionally.

We also consider the dual of the previous LP. For each path p between any pair (si, ti) we have
a dual variable fp. We interpret each variable fp as the amount of flow between si and ti that is
routed along the path p. We have the following dual LP:

max
k∑

i=1

∑
p∈Psi,ti

fp

s.t. ∑
p: e∈p

fp ≤ ce e ∈ E(G)

fp ≥ 0 p ∈ Ps1,t1 ∪ ... ∪ Psk,tk

The dual is an LP formulation for the Maximum Throughput Multicommodity Flow problem.
In the Maximum Throughput Multicommodity Flow problem, we have k different commodities.
For each i, we want to route commodity i from the source si to the destination ti. Each commodity
must satisfy flow conservation at each vertex other than its source and its destination. Additionally,
the total flow routed on each edge must not exceed the capacity of the edge. The goal is to maximize
the sum of the commodities routed.

The dual LP tries to assign an amount of flow fp to each path p so that the total flow on
each edge is at most the capacity of the edge (the flow conservation constraints are automatically
satisfied). Note that the endpoints of the path p determine which kind of commodity is routed
along the path.

Exercise 2. Write the Multicut LP and its dual in a compact form with polynomially many
constraints.

4 Upper Bound on the Integrality Gap

In this section, we will show that the integrality gap of the LP is O(log k) using a randomized round-
ing algorithm due to Calinescu, Karloff, and Rabani [CKR01]. The first algorithm that achieved
an O(log k)-approximation for Multicut is due to Garg, Vazirani, and Yannakakis [GVY93] (see
[Vaz13] and [WS11]), and it is based on the region growing technique introduced by Leighton and
Rao [LR99]. The reason that we choose to present the randomized rounding algorithm is due to
its future application for metric embeddings.

Let Bd(v, r) denote the ball of radius r centered at the vertex v in the metric induced by the
distance labels de.

CKR-RandomPartition:
Solve the LP to get the distance labels de
Pick θ uniformly at random from [0, 1/2)
Pick a random permutation σ on {1, 2, ..., k}
for i = 1 to k

Vσ(i) = Bd(sσ(i), θ)\
⋃
j<i

Vσ(j)

Output
k⋃

i=1
δ(Vi)

Lemma 4. CKR-RandomPartition correctly outputs a feasible multicut for the given instance.

Proof. Let F be the set of edges output by the algorithm. Suppose F is not a feasible multicut.
Then there exists a pair of vertices (si, ti) such that there is a path between si and ti in G − F .
Therefore there exists a j such that Vj contains si and ti. Since Vj ⊆ Bd(sj , θ), both si and ti are
contained in the ball of radius θ centered at sj . Consequently, the distance between sj and si is at
most θ and the distance between sj and ti is at most θ. By the triangle inequality, the distance
between si and ti is at most 2θ. Since θ is smaller than 1/2, it follows that the distance between
si and ti is smaller than one. This contradicts the fact that the distance labels de are a feasible
solution for the LP. Therefore F is a multicut, as desired. ■

Lemma 5. The probability that an edge e is cut is at most 2Hkde, where Hk is the k-th harmonic
number and de is the distance label of the edge e.

Proof. Fix an edge e = (u, v). Let:

Li = min{d(si, u), d(si, v)}

Ri = max{d(si, u), d(si, v)}

We may assume without loss of generality that L1 ≤ L2 ≤ ... ≤ Lk (be reindexing the pairs as
needed). See Fig 3.

Figure 3: For a fixed edge e = (u, v) we renumber the pairs such that L1 ≤ L2 ≤ ... ≤ Lk.

Ideas
4ft.at

s

diff.am

syao v Vid
aooo

s

Ioot
off's

0 3

uaaot
5 1,213

3

Figure 4: Rounding example.

Let Ai be the event that the edge e is cut first by si. More precisely, Ai is the event that |Vi ∩
{u, v}| = 1 and |Vj ∩ {u, v}| = 0 for all j such that σ(j) < σ(i). Note that |Vi ∩ {u, v}| = 1 simply
says that si cuts the edge e. If si is the first to cut the edge e, for all j that come before i in the
permutation, neither u nor v can be in Vj (if only one of u and v is in Vj , sj cuts the edge e; if
both u and v are in Vj , si cannot cut the edge e).
Note that the event that the edge e is cut is the union of the disjoint events A1, ..., Ak. Therefore
we have:

P[e is cut] =
∑
i

P[Ai].

Let us fix r ∈ [0, 1/2) and consider P[Ai | θ = r]. Note that si cuts the edge e only if one of u, v is
inside the ball of radius r centered at si and the other is outside the ball. Differently said, si cuts
the edge only if r ∈ [Li, Ri):

P[Ai | θ = r] = 0 if r /∈ [Li, Ri)

Now suppose that r ∈ [Li, Ri). Let us fix j < i and suppose j comes before i in the permutation
(that is, σ(j) < σ(i)). Recall that, since j < i, we have Lj ≤ Li ≤ r. Therefore at least one of u, v
is inside the ball of radius r centered at sj . Consequently, si cannot be the first to cut the edge e.
Therefore si is the first to cut the edge e only if σ(i) < σ(j) for all j < i. See Fig 4. Since σ is a
random permutation, i appears before j for all j < i with probability 1/i. Therefore we have:

P[Ai | θ = r] ≤ 1

i
if r ∈ [Li, Ri)

Figure 5: If σ(j) < σ(i), si cannot be the first to cut the edge e = (u, v). On the left sj also cuts
the edge. On the right sj captures both end points and therefore si cannot cut it.

Since θ was selected uniformly at random from the interval [0, 1/2), and independently from σ, we
have:

P[Ai] ≤
1

i
P[θ ∈ [Li, Ri)] =

2

i
(Ri − Li)

By the triangle inequality, Ri ≤ Li + de. Therefore:

P[Ai] ≤
2de
i

Consequently,

P[e is cut] =
∑
i

P[Ai] ≤ 2Hkde.

■

Corollary 6. The integrality gap of the Multicut LP is O(log k).

Proof. Let F be the set of edges outputted by the Randomized Rounding algorithm. For each edge
e, let χe be an indicator random variable equal to 1 if and only if the edge e is in F . As we have
already seen,

Eχe = P[χe = 1] ≤ 2Hkde

Let c(F) be a random variable equal to the total capacity of the edges in F . We have:

E c(F) = E
∑
e

ceχe =
∑
e

ceP[χe] ≤ 2Hk

∑
e

cede = 2Hk OPTLP

Consequently, there exists a set of edges F such that the total capacity of the edges in F is at most
2Hk OPTLP. Therefore OPT ≤ 2Hk OPTLP, as desired. ■

Corollary 7. The algorithm achieves an O(log k)-approximation (in expectation) for the Multi-
cut problem.

Proof. As we have already seen,

E c(F) ≤ 2Hk OPTLP

where F is the set of edges output by the algorithm and c(F) is the total capacity of the edges in
F . Since OPTLP ≤ OPT,

E c(F) ≤ 2Hk OPT = O(log k)OPT

■

Remark 8. The expected cost analysis can be used to obtain an algorithm, via repetition, a random-
ized algorithm that ouputs an O(log k)-approximation with high probability. The algorithm can also
be derandomized but it is not straight forward. As we remarked there is an alternative deterministic
O(log k)-approximation algorithm via region growing.

Flow-Cut Gap: Recall that when k = 1 we have the well-known maxflow-mincut theorem. The
integrality gap of the standard LP for MulitCut is the same as the relative gap between flow and
cut when k is arbitrary. The upper bound on the integrality gap gives an upper bound on the gap.

Corollary 9. We have:

max
m.c. flow f

|f | ≤ min
multicut C

|C| ≤ O(log k)

(
max

m.c. flow f
|f |

)
where |f | represents the value of the multicommodity flow f , and |C| represents the capacity of the
multicut C.

Proof. Let OPTLP denote the total capacity of an optimal (fractional) solution for the Multicut
LP. Let OPTdual denote the flow value of an optimal solution for the dual LP. Since OPTLP is a
lower bound on the capacity of the minimum (integral) multicut, we have:

max
m.c. flow f

|f | = OPTdual = OPTLP ≤ min
multicut C

|C|

As we have already seen, we have:

min
multicut C

|C| ≤ 2Hk OPTLP = 2Hk OPTdual = 2Hk

(
max

m.c. flow f
|f |

)
■

5 Lower Bound on the Integrality Gap

In this section, we will show that the integrality gap of the LP is Ω(log k). That is, we will give
a Multicut instance for which the LP gap is Ω(log k). This is a non-trivial lower bound and
requires the use of expander graphs and their properties. But before that we observe that there
is an integrality gap of 2 on trees. This is implicitly obtained by the fact that Vertex Cover in
general graphs reduces to Multicut in trees. Take G to be a star graph with center r connected
to n leaves v1, v2, . . . , vn; each edge has cost 1. Consider the demand edges to be all pairs (vi, vj).
It is clear that the optimum integer cut is n − 1. On the other hand a feasible fractional solution
is to assign 1/2 to each edge. Thus the integrality gap is 2(1− 1/n).

5.1 Expander Graphs

Definition 1. A graph G = (V,E) is an α-edge-expander if, for any subset S of at most |V |/2
vertices, the number of edges crossing the cut (S, V \S) is at least α|S|.

Note that the complete graph Kn is a (|V |/2)-edge-expander. However, the more interesting ex-
pander graphs are also sparse. Cycles and grids are examples of graphs that are very poor expanders.

Definition 2. A graph G is d-regular if every vertex in G has degree d.

Note that 2-regular graphs consist of a collection of edge disjoint cycles and therefore they have
poor expansion. However, for any d ≥ 3, there exist d-regular graphs that are very good expanders.

Theorem 10. For every d ≥ 3 there exists an infinite family of d-regular 1-edge-expanders.

Figure 6: The top half of the cycle has |V |/2 vertices and only two edges crossing the cut. The left
half of the grid has roughly |V |/2 vertices and only

√
|V | edges crossing the cut.

We will only need the following special case of the previous theorem.

Theorem 11. There exists a universal constant α > 0 and an integer n0 such that, for all even
integers n ≥ n0, there exists an n-vertex, 3-regular α-edge-expander.

Proof Idea. The easiest way to prove this theorem is using the probabilistic method. The proof
itself is beyond the scope of this lecture1. The proof idea is the following.

Let’s fix an even integer n. We will generate a 3-regular random graph G by selecting three
random perfect matchings on the vertex set {1, 2, ..., n} (recall that a perfect matching is a set of
edges such that every vertex is incident to exactly one of these edges). We select a random perfect
matching as follows. We maintain a list of vertices that have not been matched so far. While there
is at least one vertex that is not matched, we select a pair of distinct vertices u, v uniformly at
random from all possible pairs of unmatched vertices. We add the edge (u, v) to our matching
and we remove u and v from the list. We repeat this process three times (independently) to get
three random matchings. The graph G will consist of the edges in these three matchings. Note
that G is actually a 3-regular multigraph since it might have parallel edges (if the same edge is in
at least two of the matchings). There are two properties of interest: (1) G is a simple graph and
(2) G is an α-edge-expander for some constant α > 0. If we can show that G has both properties
with positive probability, it follows that there exists a 3-regular α-edge-expander (if no graph is a
3-regular α-edge-expander, the probability that our graph G has both properties is equal to 0).

It is not very hard to show that the probability that G does not have property (1) is small. To
show that the probability that G does not have property (2) is small, for each set S with at most
n/2 vertices, we estimate the expected number of edges that cross the cut (S, V \S) (e.g., we can
easily show that |δ(S)| ≥ |S|/2). Using tail inequalities (e.g., Chernoff bounds), we can show that
the probability that |δ(S)| differs significantly from its expectation is extremely small (i.e., small
enough so that the sum – taken over all sets S – of these probabilities is also small) and we can use
the union bound to get the desired result. ■

Note that explicit constructions of d-regular expanders are also known. Margulis [Mar73] gave
an infinite family of 8-regular expanders. There are many explicit construction by now and it is a
very important topic of study — we refer the reader to the survey on expanders by Hoory, Linial

1A more accurate statement is that the calculations are a bit involved and not terribly interesting for us.

and Wigderson [HLW06]. The vertex set of a graph Gn in Margulis’ construction is Zn×Zn, where
Zn is the set of all integers mod n. The neighbors of a vertex (x, y) in Gn are (x+ y, y), (x− y, y),
(x, y+x), (x, y−x), (x+y+1, y), (x−y+1, y), (x, y+x+1), and (x, y−x+1) (all operations are
mod n). Another example is the following infinite family of 3-regular expanders. For each prime
p, we have a 3-regular graph Gp. The vertex set of Gp is Zp. The neighbors of a vertex x in Gp are
x + 1, x − 1, and x−1 (as before, all operations are mod p; x−1 is the inverse of x mod p, and we
define the inverse of 0 to be 0)2.

We conclude this section with the following observations (they will be very useful in showing
the Ω(k) lower bound on the integrality gap of the LP).

Claim 12. Let G be an n-vertex d-regular α-edge-expander, for some constants d ≥ 3 and α > 0.
Then the diameter of G is Θ(log n).

Proof. For any two vertices u and v, let dist(u, v) denote the length of a shortest path between u and
v (the length of a path is the number of edges on the path). Let’s fix a vertex s. Let Li be the set of
all vertices v such that dist(s, v) is at most i. Now let’s show that (1+α/d)|Li−1| ≤ |Li| ≤ d|Li−1|.
Clearly, |L1| = d (since s has degree d). Therefore we may assume that i > 1. Every vertex in Li

is in Li−1 or it has a neighbor in Li−1. Therefore it suffices to bound |Li\Li−1|.
Note that any vertex in Li−1 has at least one neighbor in Li−1. Therefore the vertices in Li−1

have at most (d− 1)|Li−1| neighbors outside of Li−1. Consequently, |Li| ≤ d|Li−1|.
Now one of Li−1, V \Li−1 has at most |V |/2 vertices. Let’s assume without loss of generality

that Li−1 has at most |V |/2 vertices (the other case is symmetric). Let A = Li−1 and let B be
the set of all vertices in V \Li−1 that have a neighbor in Li−1 (note that |Li| = |A| + |B|). Let
F be the set of all edges that cross the cut (Li−1, V \Li−1). Now let’s look at the bipartite graph
H = (A,B, F). Since G is an α-edge-expander, we have |F | ≥ α|A|. Moreover, |F | =

∑
v∈B dH(v),

where dH(v) is the degree of v in H. Since dH(v) is at most d, we have α|A| ≤ |F | ≤ d|B|. Therefore
we have:

Li = |A|+ |B| ≥ (1 + α/d)|A| = (1 + α/d)|Li−1|

It follows by induction that d(1 + α/d)i−1 ≤ |Li| ≤ di. Therefore dist(s, v) is O(log n) for all v
and there exists a vertex v such that dist(s, v) is Ω(log n). Since this is true for any s, it follows
that the diameter of G is Θ(log n). ■

Claim 13. Let G be an n-vertex 3-regular α-edge-expander and let B(v, i) be the set of all vertices u
such that there is a path between u and v with at most i edges. For any vertex v, |B(v, log3 n/2)| ≤√
n.

Proof. Note that B(v, log3 n/2) is the set of all vertices w such that dist(v, w) is at most log3 n/2.
As we have seen in the proof of the previous claim, we have |B(v, log3 n/2)| ≤ 3log3 n/2 =

√
n. ■

5.2 The Multicut Instance

Let n0, α be as in Theorem 7. Let n ≥ n0 and let G be an n-vertex 3-regular α-edge-expander. For
each edge e in G, we set the capacity ce to 1. Now let X = {(u, v)|u /∈ B(v, log3 n/2)}. The pairs

2Note that, unlike Margulis’ construction, this construction is not very explicit since we don’t know how to generate
large primes deterministically.

in X will be the pairs (si, ti) that we want to disconnect. Let (G,X) be the resulting Multicut
instance.

Claim 14. There exists a feasible fractional solution for (G,X) of capacity O(n/ log n).

Proof. Let de = 2/ log3 n, for all e. Note that, since G is 3-regular, G has 3n/2 edges. Therefore
the total capacity of the fractional solution is∑

e

de =
3n

2
· 2

log3 n
=

3n

log3 n

Therefore we only need to show that the solution is feasible. Let (u, v) be a pair in X. Let’s
consider a path p between u and v. Since u is not in B(v, log3 n/2), the path p has more than
log3 n/2 edges (recall that B(v, i) is the set of all vertices u such that there is a path between u
and v with at most i edges). Consequently,∑

e∈p
de >

log3 n

2
· 2

log3 n
= 1

■

Claim 15. Any integral solution for (G,X) has capacity Ω(n).

Proof. Let F be an integral solution for (G,X). Let V1, ..., Vh be the connected components of
G − F . Fix an i and let v be an arbitrary vertex in the connected component Vi. Note that,
for any u in Vi, there is a path between v and u with at most log3 n/2 edges (if not, (u, v) is a
pair in X which contradicts the fact that removing the edges in F disconnects every pair in X).
Therefore Vi is contained in B(v, log3 n/2). It follows from Claim 13 that |Vi| ≤

√
n. Since G is an

α-edge-expander and |Vi| ≤ |V |/2, we have |δ(Vi)| ≥ α|Vi|, for all i. Consequently,

|F | = 1

2

h∑
i=1

|δ(Vi)| ≥
α

2

h∑
i=1

|Vi| =
αn

2

Therefore F has total capacity Ω(n) (recall that every edge has unit capacity). ■

Theorem 16. The integrality gap of the Multicut LP is Ω(log k).

Proof. Note that k = |X| = O(n2). It follows from claims 10 and 11 that the LP has integrality
gap Ω(log n) = Ω(log k), as desired. ■

References

[BCF23] Karl Bringmann, Alejandro Cassis, and Nick Fischer. Negative-weight single-source
shortest paths in near-linear time: Now faster! In 2023 IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS), pages 515–538. IEEE, 2023.

[BNWN22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight
single-source shortest paths in near-linear time. In 2022 IEEE 63rd annual symposium
on foundations of computer science (FOCS), pages 600–611. IEEE, 2022.

[CKR01] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-extension
problem. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 8–16. Society for Industrial and Applied Mathematics Philadelphia,
PA, USA, 2001.

[Fin24] Jeremy T Fineman. Single-source shortest paths with negative real weights in Õ(mn8/9)
time. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing,
pages 3–14, 2024.

[GVY93] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi) cut
theorems and their applications. In Proceedings of the twenty-fifth annual ACM sym-
posium on Theory of computing, pages 698–707. ACM New York, NY, USA, 1993.

[HJQ24] Yufan Huang, Peter Jin, and Kent Quanrud. Faster single-source shortest paths with
negative real weights via proper hop distance. arXiv preprint arXiv:2407.04872, 2024.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their appli-
cations. Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[LR99] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832,
1999. Conference version is from 1988.

[Mar73] G.A. Margulis. Explicit constructions of expanders. Problemy Peredaci Informacii,
9(4):71–80, 1973.

[Tho99] Mikkel Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM (JACM), 46(3):362–394, 1999.

[Vaz13] Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms.
Cambridge university press, 2011.

	Recent Shortest Path Algorithms
	s-t mincut via LP Rounding and Maxflow-Mincut
	Multicut and Approximation via Randomized Decomposition
	Upper Bound on the Integrality Gap
	Lower Bound on the Integrality Gap
	Expander Graphs
	The Multicut Instance

