
CS 598CSC: Topics in Graph Algorithms Lecture date: 08/27/2024
Instructor: Chandra Chekuri Scribe: CC

1 MST

Finding the minimum cost spanning tree (MST) in a connected graph is a basic algorithmic problem
that has been long-studied. Standard algorithm that are covered in most undergraduate courses are
Kruskal’s algorithm, Jarnik-Prim’s (JDP) algorithm (which is typically attributed usually to Prim
but first described by Jarnik), and (sometimes) Boruvka’s algorithm. There are many different
algorithms for MST and their correctness relies on two simple rules (structural properties). We will
assume that the input is a graph G = (V,E) with edge costs. Note that the edge costs need not be
positive but we can make them positive by adding a large number without affecting correctness.
Why?

Lemma 1 (Cut rule). Let G = (V,E) be a connected graph with edge costs c : E → R. Suppose
e is a minimum cost edge in a cut δ(S) for some S ⊆ V . Then there is some MST T of G that
contains e. In particular, if e is the unique cheapest cost edge in the cut then e is every MST of G.

We call an edge safe/light if there is a cut such that e is the cheapest cost edge crossing the cut.

Lemma 2 (Cycle rule). Let G = (V,E) be a connected graph with edge costs c : E → R. Suppose
e is a highest cost edge in a cycle C. Then there is some MST T of G that does not contain e. In
particular, if e is the unique highest cost edge in C then e cannot be in any MST of G.

We call an edge unsafe/heavy if there is a cycle C such e is the heaviest cost edge in C.

Corollary 3. Suppose the edge costs are unique and G is connected. Then the MST is unique and
consists of the set of all safe/light edges.

It is relatively easy to ensure that edge costs are unique so we will assume this property. We
quickly recall the three standard algorithms, the data structures they use, and the run-times that
they yield.

Kruskal’s algorithm sorts the edges in increasing cost order and greedily inserts edges in this
order while maintaining a maximal forest F at each step. Soring takes O(m log n) time. When
considering the i’th edge ei, the algorithm needs to decide if F + ei is a forest or whether adding
e creates a cycle. The standard solution for this is to use a union-find data structure. Union-find
data structure with path compression yields a total run time, after sorting, of O(mα(m,n)) where
α(m,n) is inverse Ackerman function which is extremely slowly growing. Thus the bottleneck is
sorting and the run-time is O(m log n).

JP algorithm grows a tree starting at some arbitrary root vertex r while maintaining a tree
T rooted at r. In each iteration it adds the cheapest edge leaving T until T becomes spanning.
Thus the algorithm takes n− 1 iterations. To find the cheapest edge leaving T one typically uses a
priority queue data structure where we maintain vertices not yet in the tree with a key for v equal
to the cost of the cheapest edge from v to the current tree. When a new vertex u is added to T the
algorithm scans the edges in δ(u) to update the keys of neighbors of v. Thus, one sees that there

are a total of O(m) decrease-key operations, O(n) delete-min operations and initially we set up an
empty queue. Standard priority queues implement decrease-key and delete-min in O(log n) time
each so the total time is O(m log n). However, Fibonacci heaps and related data structures show
that one can implement decrease-key in amortized O(1) time which reduces the total run time to
O(m+ n log n). Thus the algorithm runs in linear-time for moderately dense graphs!

Boruvka’s algorthm seems to be the first MST algorithm. It has very nice properties and
essentially uses no data structures. The algorithm works in phases. We describe it recursively to
simplify the description. In the first phase the algorithm finds, for each vertex v the cheapest edge
in δ(v). By the cut rule this edge is in every MST. Note that an edge e = uv may be the cheapest
edge for both u and v. The algorithm collects all these edges, say F , and adds them to the tree. One
can easily implement this in O(m) time by a linear scan of the adjacency lists. It then shrinks the
connected components induced by F and recurses on the resulting graph H = (V ′, E′). Computing
H can be done in O(m) time. The main observation is that |V ′| ≤ |V |/2 since each vertex v is in
a connected component of size at least 2 since we add an edge leaving v to F . Thus the algorithm
terminates in O(log n) phases for a total of O(m log n) time. Note that this algorithm is easy to
parallelize unlike the other two algorithms.

2 Faster Algorithms

A natural question is whether there is a linear-time MST algorithm, that is an algorithm that runs
in time O(m). Very early on Yao [cY75], in 1975, obtained an algorithm that ran in O(m log logn)
time. Note that this is before many developments in data structures — it was inspired by and
partly based on the linear-time Selection algorithm that was discovered in 1974. Fredman and
Tarjan [FT87] obtained an algorithm, via Fiboannci heaps, that runs in O(mβ(m,n))-time where
β(m,n) is the minimum value of i such that log(i n ≤ m/n where log(i) n is the logarithmic func-
tion iterated i times. Since m ≤ n2, β(m,n) ≤ log∗ n. This was further improved by Gabow et al
[GGST86] to O(m log log∗ n). Karger, Klein and Tarjan [KKT95] obtained a linear time random-
ized algorithm that will be the main topic of this lecture. Chazelle’s algorithm [Cha00] that runs
in O(mα(m,n)) where α(m,n) is the inverse Ackerman function is the fastest known determinis-
tic algorithm. Pettie and Ramachandran [PR02] gave an optimal deterministic algorithm in the
comparison model without knowing what its actual running time is!

A potentially easier question is the following. Given a graph G and a tree T , is T an MST of
G? This is called the MST verification problem. Clearly, one can always use an MST algorithm
to solve the verification problem, but not necessarily the other way around. Interestingly there is
indeed a linear-time MST verification algorithm. It is based on several non-trivial ideas and data
structures and was first developed in the RAM model by Dixon, Rauch, and Tarjan [DRT92] based
on insights from Komlos [Kom85]. King [Kin97] simplified it. The RAM model allows bit-wise
operations on O(log n) bit words in O(1) time.

Theorem 4. There is a linear-time MST verification algorithm in the RAM model.

In fact the algorithm is based on a more general result that we will need.

Theorem 5. Given a graph G = (V,E) with edge costs and a spanning tree T = (V, F), there is
an O(m)-time algorithm that outputs all the F -heavy edges of G.

The original algorithm is quite complicated and it has been simplified over the years. See lecture
notes of Gupta and Assadi for accessible explanations (also the MST surveys by Eisner [Eis97] and
Mares [Mar08]).

Fredman-Tarjan algorithm: Here we briefly describe Fredman and Tarjan’s algorithm via Fi-
bonacci heaps. See [FT87, Mar08] for a precise description. The algorithm is reasonably simple
to describe and analyze modulo a few implementation details that we will gloss over for sake of
brevity.

First, we develop a simple O(m log log n) time algorithm by combining Boruvka and JP algo-
rithms. Recall that JP algorithm takes O(m+n log n) time via Fibonacci heaps, and this is already
very good if m is large. The bottleneck is when m = o(n log n). Boruvka’s algorithm starts with
a graph on n nodes and after i phases reduces the number of nodes to ≤ n/2i; each phase takes
O(m) time. Suppose we run Boruvka’s algorithm for k phases and then run JP algorithm once
the number of nodes is reduced. We can see that the total run time is O(mk) for the k phases
of Boruvka, and O(m + n

2k
log n

2k
) for the JP algorithm on the reduced graph. Thus, if we choose

k = log log n we obtain a total run-time of O(m log log n).
Fredman and Tarjan obtained a more sophisticated scheme based on the JP algorithm but the

basic idea is to reducing the number of vertices. The algorithm runs in phases. We describe the
first phase. Let us choose an integer parameter t (with 1 < t ≤ n) that we will set later. Pick
an arbitrary root r1 and grow a tree T1 following the JP algorithm with a Fibonacci heap. We
stop the tree growth when the heap size exceeds t for the first time or if we run out of vertices.
All the vertices in the tree are marked as visited. Now pick an arbitrary unmarked vertex as root
r2 ∈ V − T and grow a tree T2. We stop growing T2 if touches T1, in which case it merges with it,
or if the heap size exceeds t or if we run out of vertices. Note that the heap, while growing T2, may
contain previously marked vertices. It is only when the algorithm finds one of the marked vertices
as the cheapest neighbor of the current tree that we merge the trees and stop. The algorithm
proceeds in this fashion by picking new roots and growing them until all nodes are marked. We see
that the algorithm correctly adds a set of MST edges F .

We prove that there are at most 2m/t vertices after shrinking the connected components in-
duced by F . Let C1, C2, . . . , Ch be the connected components of F . We claim that for each Ci,∑

v∈Ci
deg(v) ≥ t. Suppose this is true then

2m =
∑
u

deg(v) =
h∑

i=1

∑
u∈Ci

deg(v) ≥ ht

which implies that h ≤ 2m/t. To see the claim. Consider the growth of a tree Tj by the algorithm.
If we stop Tj because heap size exceeds t then each of the vertex in the heap is a witness to a
unique edge incident to Tj which proves the desired claim. If Tj merged with a previous tree then
the property holds because the previous tree already had the property and adding vertices can
only increase the total degree of the component. The only reason the property may not hold is if
the algorithm terminates a tree because all vertices are already included in it but then the phase
finishes the algorithm.

What is the running time of the phase? We see that the total time to scan edges and insert
vertices into heaps and do decrease keys is O(m) since an edge is only visited twice, once from
each end point. Since each heap is not allowed to grow to more than size t, the total time for all

the delete-min operations O(n log t). We are utilizing the fact that the initialization of each data
structure is easy because it starts as an empty one. Thus, we have obtained a new algorithm that,
in a single phase, takes O(m+ n log t) time and reduces the number of vertices to 2m/t. This can
be seen as a parameterized version of Boruvka. How should we choose t? If we want linear time in
the first phase we want n log t to be no more than O(m) so it turns out that it make sense to set
t = 22m/n. This choice yields O(m) time per phase.

To bound the overall time, we need to bound the number of phases. Let mi and ni be the
number of edges and vertices at the start of phase i. So we have m1 = m and n1 = n. We have
ni+1 ≤ 2mi/ti by the claim. We set ti = 22m/ni ; technically we choose ti = 2⌈2m/ni⌉ but we will be
bit sloppy and ignore the ceilings here. Therefore, ni+1 ≤ 2mi/ti. We see that

ti+1 = 22m/ni+1 ≥ 22m/(2mi/ti) ≥ 2ti .

Thus ti is a power of twos with t1 = 22m/n. When do we stop? The algorithm stops for sure if
ti ≥ n since it will grow a single tree and finish (the algorithm may stop even if this is not the
case due to trees merging). Thus the algorithm needs at most β(m,n) phases and each phase, by
design, takes O(m) time. Hene the total time is O(mβ(m,n)).

3 Linear-time Randomized Algorithm

Karger, Klein and Tarjan developed a randomized linear-time algorithm.

Theorem 6 ([KKT95]). There is an algorithm that computes the MST of a graph in O(m) time
with high probability (at least 1− 1/poly(m)).

We will only prove an expected running time bound and refer the reader to the paper for details
on the high probability guarantee.

3.1 Sampling Lemma

The algorithm uses the MST verification result, captured by Theorem ??, as a black box. This is
the only complicated part of the algorithm.

The algorithm is inspired by Karger’s random sampling work for graphs (see his thesis [Kar95])
and the crucial lemma is the following which is independently interesting outside of its algorithmic
application.

Lemma 7. Let G = (V,E) be a graph with edge costs. Suppose E′ ⊆ E is a random subset of E
obtaining by picking each edge independently with probability p ∈ (0, 1). Let F ⊆ be a minimum
cost spanning forest in the graph induced by E′. Then the expected number of F -light edges in G is
at most n/p.

Note that if we choose p = 1/2, it is saying that the number of F -light edges from E is at most
2n. Thus, we can eliminate most of the edges from E \ E′ from consideration if we can efficiently
compute the F -light edges (equivalently the F -heavy edges) which we know how to do via the MST
verification algorithm. We will describe how this leads to the desired randomized algorithm after
we prove the lemma. The proof is short and simple but subtle one if one is not used to tricks in
probabilistic proofs. In particular it is based on the principle of deferred decisions in randomized

analysis. Our own Timothy Chan has an alternate slick proof though we will go with the longer
route.

Let A be the set of F -light edges. Note that both A and F are random sets that are generated
by the process of sampling E′. To analyze E[A] we considers Kruskal’s algorithm to obtain F from
E′. We will sort edges of E as e1, e2, . . . , em according to increasing cost and will generate E′ on
the fly.

1. A,F,E′ ← ∅

2. For i = 1 to m do

(a) toss a biased coin that is heads with prob p

(b) If coin is heads then

• E′ ← E′ + ei
• If F + ei is a forest then add ei to F and to A

(c) Else If ei is F -light, add ei to A

3. Output F,A

You should be convinced that the above algorithm is equivalent to the sampling process. We
now consider an alternative algorithm which is a small twist.

1. A,F ← ∅

2. For i = 1 to m do

(a) If ei is F -light then

• A← A+ ei
• toss a biased coin that is heads with prob p

• If coin is heads then F ← F + ei

3. Output F,A

Note that the second algorithm does not keep track of E′ but you should convince yourself that
it produces the same A,F as the previous algorithm. In particular, the sorting of edges implies
that F + ei is a forest iff ei is F light. One can adjust the algorithm to keep track of E′ as well.
The second algorithm makes the following clear. An edge ei is added to A implies that it is added
to F with probability p. Thus E[F] = pE[A]. However, |F | ≤ n − 1 deterministically. Thus
E[A] ≤ (n− 1)/p as desired.

Sometimes it is useful to peel the banana so we add more detail. Let Xi be the indicator random
variable for ei ∈ A and similarly let Yi be the indicator for ei ∈ F . Let Ri denote the random string
of the first i choices. When considering ei we condition on Ri=1 = r which fixes subset of first i− 1
edges that were sampled in E′ and this also fixes the subset of those edges that are included in F
after i− 1 edges. Conditioned on r, Xi is a deterministic choice — either ei is F -light or it is not.
However, conditioned on r, Yi is still a random variable. If Xi = 0 then Yi = 0 but if Xi = 1 then
Yi = 1 with probability p and Yi = 0 with probability (1 − p). Since Xi, Yi are indicator random
variables this implies that E[Yi | Ri=1 = r] = pE[Xi | Ri−1 = r]. This implies that E[Xi] = pE[Yi].
By linearity of expectation, we have E[A] =

∑m
i=1E[Xi] and E[F] =

∑
iE[Yi].

This finishes the simple proof.

3.2 Algorithm

The sampling lemma naturally suggests a recursive divide and conquer algorithm, reminiscent of
the linear-time deterministic algorithm for Selection. However, there is a small extra step that
needs to be done to make it work out.

First, the sampling lemma and the natural recursion that it implies means that we need to work
with a slightly more general problem than MST, namely the problem of computing the minimum
cost spanning forest (MSF). MSF and MST are very closely related and one is reducible to the
other in linear time. The cut and cycle properties are easy to generalize to MSF and we won’t do
it formally.

A natural recursive randomized algorithm based on the sampling lemma for MSF is the follow-
ing.

1. If |V | < n0 for some constant n0 use a standard deterministic algorithm and output its result.

2. Sample each edge independently with probability 1/2 to obtain E1 ⊆ E and let G1 = (V,E1).

3. Recursively compute MSF F1 in G1.

4. Use linear time MST verification algorithm to compute all the F1-light edges in G. Let E2

be the set of F1-light edges

5. Recursively compute MSF F2 in graph G2 = (V,E2).

6. Output F2.

The correctness of the algorithm should be clear from the cut and cycle properties. The only
issue is the running time. The expected number of edges in G1 is m/2. The expected number of
edges in G2, via the sampling lemma, is at most 2n. The algorithm does O(m+n) work outside of
these two recursive calls. Let T (m,n) be the expected running time of the algorithm. Informally,
one can see that we have the following recurrence:

T (m,n) ≤ T (n,m/2) + T (n, 2n) +O(m+ n).

Does this lead to linear running time? If we take the problem size to be n+m then the algorithm
is generating two problems of expected size (n + m/2) and (n + 2n) for a total expected size of
4n+m/2. If m > 10n say, then the total problem size is shrinking by a constant factor. However
when m is closer to n, we are not necessarily reducing the overall problem size. Here is where one
can use a trick. We run Boruvka’s algorithm for a few iterations as a preprocessing step so that
the number of vertices goes down.

KKT-MST-Algorithm(G):

1. If |V | < n0 for some sufficiently large constant, use standard algorithms. Assume no connected
component of G is small.

2. Run Boruvka’s algorithm for two phases to obtain graph G1 = (V1, E1) with |V1| ≤ |V |/4.
Let F1 be the set of edges added.

3. Sample each edge in G1 independently with probability 1/2 to obtain E2 ⊆ E1 and let
G2 = (V,E2).

4. Recursively compute MSF F2 in G2.

5. Use linear time MST verification algorithm to compute all the F2-light edges in G. Let E3

be the set of F2-light edges

6. Recursively compute MSF F3 in graph G2 = (V,E3).

7. Output F1 ∪ F3.

The correctness is easy to see as before. What about the run time? Recall that Boruvka’s
algorithm takes O(m) time for each phase so the total time for step 2 is O(m). We can now write
a recurrence for T (m,n) which is

T (m,n) ≤ T (n/4,m/2) + T (n/4, n/2) +O(m+ n)

With this recurrence we see that the sum of the expected problem sizes of the two problems is
n+m/2 which is a constant factor smaller than n+m (we can assume m ≥ n−1 since we eliminate
small components including singletons). Thus, by a simple inductive proof, one can show that
T (n,m) = O(n + m). See notes of Assadi for a rigorous derivation of the recurrence and time
bounds. A more refined analysis of the sampling lemma can be used to show that the running time
is linear with high probability.

Odds and Ends

Many properties of forests and spanning trees can be understood in the more general context of
matroids. In many cases this perspective is insightful and also useful. The sampling lemma applies
in this more general context and has various applications. See Karger’s work on this [Kar98, Kar95].

Obtaining a deterministic O(m) time algorithm is a major open problem. Obtaining a simpler
linear-time MST verification algorithm, even randomized, is also a very interesting open problem.

See [Pet14] for algorithms on a related problem called MST sensitivity analysis where the goal
is to find for each edge the minimum amount of perturbation in its cost to make it enter/leave the
MST.

References

[Cha00] Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type
complexity. Journal of the ACM (JACM), 47(6):1028–1047, 2000.

[cY75] Andrew Chi chih Yao. An O(|E| log log |V |) algorithm for finding minimum spanning
trees. Information Processing Letters, 4(1):21–23, 1975.

[DRT92] Brandon Dixon, Monika Rauch, and Robert E Tarjan. Verification and sensitivity analy-
sis of minimum spanning trees in linear time. SIAM Journal on Computing, 21(6):1184–
1192, 1992.

[Eis97] Jason Eisner. State-of-the-art algorithms for minimum spanning trees. Unpublished sur-
vey/report, https://www.cs.jhu.edu/~jason/papers/eisner.mst-tutorial.pdf,
1997.

[FT87] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615,
1987.

[GGST86] Harold N Gabow, Zvi Galil, Thomas Spencer, and Robert E Tarjan. Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2):109–122, 1986.

[Kar95] David Ron Karger. Random sampling in graph optimization problems. PhD thesis,
stanford university, 1995.

[Kar98] David R Karger. Random sampling and greedy sparsification for matroid optimization
problems. Mathematical Programming, 82(1):41–81, 1998.

[Kin97] V King. A simpler minimum spanning tree verification algorithm. Algorithmica, 18:263–
270, 1997.

[KKT95] David R Karger, Philip N Klein, and Robert E Tarjan. A randomized linear-time
algorithm to find minimum spanning trees. Journal of the ACM (JACM), 42(2):321–
328, 1995.

[Kom85] János Komlós. Linear verification for spanning trees. Combinatorica, 5(1):57–65, 1985.

[Mar08] Martin Mareš. The saga of minimum spanning trees. Computer Science Review,
2(3):165–221, 2008.

[Pet14] Seth Pettie. Sensitivity analysis of minimum spanning trees in sub-inverse-ackermann
time. arXiv preprint arXiv:1407.1910, 2014.

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm.
Journal of the ACM (JACM), 49(1):16–34, 2002.

https://www.cs.jhu.edu/~jason/papers/eisner.mst-tutorial.pdf

	MST
	Faster Algorithms
	Linear-time Randomized Algorithm
	Sampling Lemma
	Algorithm

