
CS 598CSC: Topics in Graph Algorithms Lecture date: 11/04/2024
Instructor: Chandra Chekuri Scribe: CC

1 Fast Algorithms for Sparsest Cut

Let G = (V,E) be a graph. We are interested in a fast algorithm to check if G is an expander. More
generally we also want fast algorithms for Expansion, Conductance and Uniform Sparsest
Cut. There are basically three approximation algorithms that we have discussed or mentioned. One
is based on multicommodity flow and yields an O(log n)-approximation [LR99]. The other is via
SDP and yields an O(

√
log n)-approximation [ARV09]. For Conductance there is an O(

√
OPT)-

approximation via spectral method. The spectral method is very fast but does not yield good
approximation in the regime when the conductance is low. The other two methods are based on
solving slow mathematical programming relaxations. We discussed MWU based methods for fast
solutions to LPs and one of the motivations for these algorithms was to speed up the max-concurrent
flow LP for Uniform Sparsest Cut. However, even with several ideas the fastest way we know
how to solve the LP takes O(mn) time for a constant factor approximation.

In a beatiful work, Khandekar, Rao and Vazirani showed that one can approximate expansion to
within an O(log2 n)-factor via O(log2 n) calls to an (approximate) single-commodity s-t flow routine
[KRV09]. We now have near-linear time algorithms graphs for a constant factor approximation to
s-t flow in undirected graphs [Pen16], and an almost-linear time exact algorithm for s-t flow in
directed graphs [CKL+22]. KRV obtained their algorithm via the so-called Cut-Matching Game
which has since become a powerful tool in several applications. The Cut-Matching Game has been
further improved to yield an O(log n)-approximation [OSVV08]. Arora and Kale [AK07] developed
a more systematic approach via matrix-multiplicative weight updates to obtain fast primal-dual
algorithms that yield O(log n) and O(

√
log n)-approximation algorithms; these also use appropriate

flow sub-routines.
Here we discuss the approach and proof of KRV. We also take a flow-cut gap perspective and

point out some other applications. These notes are based mainly on Kent Quanrud’s exposition
and from [KRV09].

2 Cut Matching Game

We want to check if G = (V,E) is an γ-expander. We would like an algorithm that either returns
a cut to prove that G is not a γ-expander or somehow proves that G is a γ/α-expander for some
approximation factor α ≥ 1. We will assume that γ = 1 since we can scale the edge capacities by
1/γ. If we have a routine for checking approximate expansing with a given threshold, we can do
binary search to find an approximate sparsest cut.

To motivate the cut-matching game we recall the notion of well-linkedness and its connection
to expansion.

Definition 1. Let A,B be two disjoint sets of equal seize. An A-B linkage is a set of |A| edge-
disjoint paths such that each vertex in A ∪ B is the end-point of exactly one of the paths. We say
that A and B are linked in G if they there is an A-B linkage.



As we saw previously, one can check if A,B are linked by an s-t flow computation. Moreover
a linkage can be viewed as creating a perfect matching between A and B where the edges of the
matching correspond to the paths in the A-B linkage.

Definition 2. Let G = (V,E) be a graph. A set X is well-linked in G if for any two A,B ⊆ X
with |A| = |B|, the sets A,B are linked.

We had seen the following lemma previously.

Lemma 1. A graph G = (V,E) is an expander iff V is well-linked in G.

What is the advantage of the notion of well-linkedness? To prove that G is not an expander
it suffices to exhibit an equal-sized bipartition (A,B) of V and one can check via an s-t flow
computation if A,B are not linked. Of course it is much easier to exhibit a cut S which is not
expanding. However, our goal here is to do the following. To verify that G is an expander we
could generate several bipartitions (Ai, Bi), i ∈ [k] and check each of them. If we find a violating
linkage then we have found that G is not an expander. Otherwise we create some perfect matchings
M1,M2, . . . ,Mk where eachMi is routable in G. LetH = (V,

∑k
i=1Mi) be the multi-graph obtained

by the union of the matchings. Our goal is to find a small number of bipartitions and corresponding
perfect matchings in some adaptive fashion such that H becomes an expander. If k is small enough
then we have shown that an expander H can be “embedded” in G with congestion k since each
Mi is routable in G. Thus, we will certify that G is a 1

k -expander. Thus, our goal is to minimize k
while ensuring that H is an expander.

In this context we recall the following fact. Suppose we take the union of 3 random perfect
matchings on V . Then with high probability the resulting graph is an expander. However, well-
linkedness cannot guarantee an arbitrary matching between A and B but only that some perfect
matching exists — it is not under our control. The second issue is how to certify that H is an
expander. For this purpose KRV show that H can route uniform multicommodity flow: a demand
of 1/n between each ordered pair of vertices (u, v). This guarantees that H is an expander. Other
methods use different ways to certify that H is an expander (for instance one can use spectral
methods via Cheeger’s inequality etc).

The Game: KRV set up the creation of H as an adaptive game between two players: a Cut
Player and a Matching Player. The game goes in rounds. In each round the Cut Player generates
a bipartition Ai, Bi of V (we will assume that these are equi-sized partitions through out this
section). The Matching Player is required to output a perfect matching Mi between Ai and Bi.
Let Hi = (V,M1 + . . .+Mi). The goal of the Cut Player is to make Hi an expander as quickly as
possible and the goal of the Matching Player is to delay it as much as possible.

Theorem 2. There is an randomized adaptive strategy for the Cut Player such that H is an
1
2 -expander with high probability after k = O(log2 n) rounds. Moreover, the certificate of H’s
expansion is a feasible routing of the uniform multicommodity flow over V .

We leave the proof of the following corollary as an exercise since we already informally described
the details earlier.



Corollary 3. There is a randomized algorithm, that given G, either proves that G is not an
expander or with high probability certifies that it is an Ω( 1

log2 n
)-expander using O(log2 n) single-

commoditly flow instances on G. Via binary search, there is a randomized algorithm for sparsest
cut via O(log3 n) single-commodity flows.

The proof also yields the following alternate proof of the flow-cut gap although it is slightly
weaker than the O(log n)-bound we saw previously.

Corollary 4. The multicommodity flow-cut gap for uniform instances is O(log2 n).

2.1 The Cut Player Strategy

We now describe the cut-player strategy. This is inspired by random-walk ideas but we will not
explicitly mention the motivation and instead think of routing uniform multicommodity flow. The
algorithm explicitly maintains a vector bu ∈ [0, 1]n for each vertex u ∈ V such that

∑
v bu(v) = 1.

The entry bu(v) is the amount of u’s flow that has reached v so far. Initially bu(v) = 1 for v = u
and 0 if v ̸= u since all of u’s one unit of flow is at u. The goal is to eventually have bu(v) ≃ 1/n
for every u, v which corresponds to routing the (directed) uniform multicommodity flow. We will
let biu denote the vector for u after i iterations of the game.

For each u we also maintain a vector xu = bu − 1/n (subtracts 1/n from each entry) which
measures the distance of bu to the target.

In the KRV game the cut player generates a partition (Ai, Bi) based only on the vectors xui− 1,
u ∈ V . The Matching Player generates some Mi. The Cut Player than mixes the flow. in a very
simple way. For each edge uv ∈ Mi it sets

biu = biv =
1

2
(bi−1

u + bi−1
v )

which also implies that

xiu = xiv =
1

2
(xi−1

u + xi−1
v )

In other words for each matched pair uv ∈ Mi we average their flow vectors and assign them
both the same vector.

Claim 5. We have
∑

v b
i
u = 1 for all i. Suppose Hi−1 routes the demand matrix implied by the

vectors bi−1
u , u ∈ V . Then Hi routes the demand matrix implied by the the vectors biu, u ∈ V .

Proof. The first part is easy to verify.
Note that Hi differs from Hi−1 via the matching Mi. For each uv ∈ Mi we use the edge to

exchange the flow at u and flow at v — 1/2 capacity to send u’s vector to v and 1/2 capacity to
send v’s vector to u. ■

The potential: To keep track of progress and to guide the generation of the cuts, the Cut Player
maintains a potential

ϕ =
∑
u∈V

∥xu∥2 =
∑
u

∑
v

(
bu(v)−

1

n

)2

.

We let ϕi denote the potential after i iterations.



Claim 6. ϕ0 = n− 1.

Proof. Recall that b0u has only 1 in the row for u and 0’s else where. Thus
∥∥x0u∥∥2 = (1 − 1/n)2 +

(n− 1)/n2 = 1− 1/n and hence ϕ0 = n(1− 1/n) = n− 1. ■

Following is easy to see.

Claim 7. Suppose ϕi ≤ 1/(4n2). Then biu(v) ≥ 1
2n for every u, v.

Thus, if ϕi ≤ 1/(4n2) then we have effectively routed a near-uniform multicommodity flow in
Hi and Hi is an expander. We leave the following as an exercise.

Claim 8. Suppose ϕi ≤ 1/(4n2) then Hi is a 1
2 -expander.

Reducing the potential via a matching: Based on the preceding claims, the goal of the Cut
Player is to reduce the potential from the initial potential of n to 1/(4n2). For this KRV prove the
following.

Lemma 9. Given current flow vectors bi−1
u , xi−1

u , u ∈ V there is a randomized algorithm that
produces a partition (Ai, Bi) such that for any perfect matching Mi between Ai and Bi, the potential
after mixing according to Mi satisfies the following:

E[ϕi] ≤ (1− 1

c log n
)ϕi−1 +O(

1

n10
)

where c is some sufficiently large fixed constant.

Note that the algorithm uses only the information about the flow routed so far and nothing
about the previous matchings. The preceding lemma immediately imply that the Cut Player can
finish the game in O(log2 n) rounds because it needs to reduce the potential from n to 1/(4n2), and
it can reduce the potential by a multiplicative (1− 1/(c log n)) factor in each iteration.

Thus, it remains to prove the lemma. To motivate the cut-generation strategy we work back-
wards in the analysis to first see what effect does a specific matching M have in reducing the
potential. The lemma below

Lemma 10. Suppose Mi is a perfect matching on V in iteration i. Then the change/reduction in
potential is given by:

ϕi = ϕi−1 −
1

2

∑
uv∈Mi

∥∥xi−1
u − xi−1

v

∥∥2.
Note that the formula is exact and clean.

Proof. To simplify the notation we drop superscripts and use yu for the vector for u after mixing
according to matchingMi, and xu at start of iteration i. We letM = Mi. We have ϕi =

∑
u∈V ∥yu∥

2

and ϕi−1 =
∑

u∈V ∥xu∥
2.

Fix a vertex u ∈ V and say it is matched with v in M . Then yu = 1
2(xu + xv). Therefore,

∥yu∥2 =
∥∥∥∥12(xu + xv)

∥∥∥∥2
=

1

4
∥xu∥2 +

1

4
∥xv∥2 +

1

2
⟨xu, xv⟩

=
1

2
∥xu∥2 +

1

2
∥xv∥2 −

1

4
∥xu − xv∥2



Summing up over all u ∈ V and using the fact that M is perfect matching we obtain the desired
claim:

ϕi = ϕi−1 −
1

2

∑
uv∈Mi

∥∥xi−1
u − xi−1

v

∥∥2.
■

Remark 11. The preceding proof did not use any property of the vectors xu. We only used the
fact that the new vector yu was defined by averaging with its partner in the perfect matching M .
Thus, this is a purely geometric theorem.

From the preceding lemma one sees that the potential reduction for an edge uv is proportional
to ∥xu − xv∥2 which is the square of the Euclidean distance between xu and xv. Thus the Cut
Player should somehow force the Matching Player to pair vertices that are far apart. Note however
that the Cut Player can only give a partition (Ai, Bi) and the Matching Player has control of the
actual matching it generates. To draw inspiration we take a geometric view from the preceding
lemma. What happens if the vectors xu are in one dimension? In this case we think of each xu as
a scalar and it corresponds to a point on the real line. What is a good cut strategy? One natural
idea would be to sort the points on the line and pick the first half as A and second half as B. We
prove the following lemma which shows that the potential reduction is substantial in this case!

Lemma 12. Suppose zu, u ∈ V are scalars which correspond to points on the real line and suppose∑
u∈V zu = 0. Let A,B be a partition of V where A corresponds to the first half of V in sorted

order of zu values and B the second half. Then, for any perfect matching M between A and B, we
have ∑

uv∈M
(zu − zv)

2 ≥
∑
u∈V

z2u.

Proof. Suppose we sort the points on the line and let β ∈ R which corresponds to the median.
Hence zu ≤ β for all u ∈ A and zu ≥ β for all u ∈ B. Let M be any perfect matching between A
and B. Fix a matched pair uv ∈ M . Then (zu − zv)

2 = (zu − β − (zv − β))2. Since zu ≤ β and
zv ≥ β, we have (zu − β − (zv − β))2 = (|zu − β|+ |zv − β|)2. Summing up over all pairs in M ,

∑
uv∈M

∑
uv∈M

(zu − zv)
2 =

∑
uv∈M

(|zu − β|+ |zv − β|)2

=
∑
u∈V

z2u − 2β
∑
u∈V

zu + nβ2

≥
∑
u∈V

z2u.

We used in the fact that
∑

u∈V zu = 0 in the final inequality. ■

Algorithm for Cut Player via Random Projection: The final ingredient to use Lemmas 10
and the insight via the one-dimensional case in Lemma 12. We have vectors xu, u ∈ V where each
xu ∈ Rn and

∑
v xu(v) = 0. We reduce the problem to the one dimensional case by using the

well-known idea of random projections that map points in high dimensions to a line. The following
lemma can be shown by properties of Guassian random variables.



Lemma 13. Let g ∼ N (0, 1)n-dimensional Guassian vector and let x ∈ Rn. Let z = ⟨g, x⟩. Then

• E[z] = 0

• E[z2] = ∥x∥2

• For any C ≥ 1 there is some constant c > 1 such that P[z2 ≥ c log n · ∥x∥2] ≤ 1
nC .

The Cut Player algorithm in iteration i is now the following.

• Pick a random Guassian vector g. For each u ∈ V let zu = ⟨g, xi−1
u ⟩.

• Sort V according to zu values and let Ai be the first half and Bi be the second half.

• Give the partition (Ai, Bi) to the Matching Player.

• Let Mi be the matching returned.

• For each uv ∈ Mi set x
i
u = xiv = 1

2(x
i−1
u + xi−1

v ).

Note that the partition (Ai, Bi) is random.

Lemma 14. Let Mi be any perfect matching between Ai and Bi. Then

E[
∑

uv∈Mi

(zu − zv)
2] ≥ ϕi−1.

Proof. Using Lemma 12, we see that∑
uv∈Mi

(zu − zv)
2 ≥

∑
u∈V

z2u − 2β
∑
u∈V

zu

where β is the median of the numbers zu, u ∈ V . Taking expectations on both sides (since the
z values are random based on the choice of the random vector g) and using Lemma 13 (first two
properties) we have

E[
∑

uv∈Mi

(zu − zv)
2] ≥ E[

∑
u∈V

z2u]− 2βE[
∑
u∈V

zu] ≥
∑
u∈V

∥xu∥2 = ϕi−1.

■

Note that (zu − zv)
2 = ⟨g, xi−1

u − xi−1
v ⟩2 by Lemma 13 we have with high probability, ⟨g, xi−1

u −
xi−1
v ⟩2 ≤ c log n ·

∥∥xi−1
u − xi−1

v

∥∥2. For now, assume that this happens deterministically. Then, via
the preceding lemma and Lemma 10

E[ϕi−1 − ϕi] =
1

2
E[

∑
uv∈Mi

∥∥xi−1
u − xi−1

v

∥∥2] ≥ 1

c log n
E[

∑
uv∈Mi

(zu − zv)
2] ≥ 1

c log n
ϕi−1.

This implies that

E[ϕi] ≤ (1− 1

c log n
)ϕi−1.

The argument is not complete because we converted the high probability bound into a deter-
ministic guarantee in the above inequalities while using expectations when needed. To overcome
this we need to do a little bit of extra work which is why we get the weaker bound with a slight
additive bound.



2.2 Background on Guassian Random Variables and Random Projections

A Guassian/Normal random variable with mean µ and variance σ2, denoted by N (µ, σ2) is a one

dimensional probability distribution with density function f(x) = 1√
2ϕσ2

e
−(x−µ)2

2σ2 . It is a symmetric

distribution around µ. We are particularly interested in the standard Normal distribution N (0, 1)
with mean 0 and variance 1. A d-dimensional (standard) Guassian random variable, denoted by
N (0, 1)d is a d-dimensional random vector where each coordinate is an independent random variable
distributed as N (0, 1). Suppose Z is a d-dimensional Guassian random variable. Then its density

function is ( 1√
2π
)de−(

∑d
i=1 x

2
i )/2. Note that it is centrally symmetric.

A simple and powerful property about Guassian random variables is that the sum of (two or
more) independent Guassian random variables is distributed as a Guassian random variable.

Lemma 15. Suppose Z1 ∼ N (µ1, σ
2
1) and Z2 ∼ N (µ2, σ

2
2) are independent random Guassian

random variables. Then Z = Z1 + Z2 is distributed according to N (µ1 + µ2, σ
2
1 + σ2

2).

Corollary 16. Let X and Y be independent random variables. Suppose X ∼ N (0, 1) and Y ∼
N (0, 1). Let Z = aX + bY where a, b are arbitrary real numbers. Then Z ∼ N (0, a2 + b2).

Concentration of Guassian random variable and its square: The Guassian random vari-
able is symmetric around its mean and decays exponentially. One can ask for tail bounds and the
following is well known. Suppose Z ∼ N (0, σ2).

P[Z > β] ≤ e
−β

2σ2

Suppose Z is a Guassian random variable N (0, σ2). We consider Z2 the square of the Guassian
random variable. This is now a positive random variable. It has the χ2 distribution. Note that its
mean is σ2. It also exhibits strong concentration arounds its mean. The following upper tail bound
is known when Z ∼ N (0, 1)

P[Z2 ≥ 1 + 4t] ≥ e−t

Using the preceding properties one can prove Lemma 13.
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