CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014
Instructor: Chandra Chekuri Scribe: Chandra Chekuri

The Misra-Greis deterministic counting guarantees that all items with frequency > Fj/k can
be found using O(k) counters and an update time of O(logk). Setting k = 1/e one can view the
algorithm as providing an additive eF} approximation for each f;. However, the algorithm does not
provide a sketch. One advantage of linear sketching algorithms is the ability to handle deletions. We
now discuss two sketching algorithms that have a found a number of applications. These sketches
can be used to for estimating point queries: after seeing a stream o over items in [n| we would like
to estimate f; the frequency of i € [n]. More generally, in the turnstile model, we would like to
estimate z; for a given i € [n]. We can only guarantee the estimate with an additive error.

1 CountMin Sketch

We firt describe the simpler CountMin sketch. The sketch maintains several counters. The counters
are best visualized as a rectangular array of width w and depth d. With each row ¢ we have a hash
function h; : [n] — [w] that maps elements to one of w buckets.

COUNTMIN-SKETCH(w, d):

hi, ha, ..., hq are pair-wise independent hash functions from [n] — [w].
While (stream is not empty) do
a; = (i¢, Ay) is current item
for /=1 to d do
Cll, he(ij)] <= ClE, he(ij)] + Ay
endWhile
For i € [n] set &; = minf_, C[¢, hy(i)].

The counter C[¢, j] simply counts the sum of all z; such that k(i) = j. That is,

Cle.jl= > =

i:he(i)=j

Exercise: CountMin is a linear sketch. What are the entries of the projection matrix?

We will analyze the sketch in the strick turnstile model where z; > 0 for all ¢ € [n]; note that
A; we be negative.

Lemma 1 Let d = Q(log §) and w > 2. Then for any fized i € [n], z; < &; and
Pl“[:iz >z + €||X||1] <.

Proof: Fix i € [n]. Let Zy = C[{, hy(i)] be the value of the counter in row ¢ to which ¢ is hashed
to. We have

.) 1 €
E(Z) =2+ Y _ Prihe(i') = he(i)lwy =z + Y —y < i+ o |x.
i'#i i'#£i

Note that we used pair-wise independence of hy to conclude that Pr[h(i") = he(i)] = 1/w.

By Markov’s inequality (here we are using non-negativity of x),
Pr[Z; > z; + €||x|1] < 1/2.

Thus
Pr[m}n Zy > xi+e|jx|l1] < 1/2% < 6.

a

Remark: By choosing § = Q(logn) we can ensure with probability at least (1 — 1/poly(n)) that
Z; — x; < €||x||1 for all i € [n].

Exercise: For general turnstile streams where x can have negative entries we can take the median
of the counters. For this estimate you should be able to prove the following.

Pr(|Z; — x| > 3e||x|1] < 0V/4.

2 Count Sketch

Now we discuss the closely related Count sketch which also maintains an array of counters param-
eterized by the width w and depth d.

COUNT-SKETCH(w, d):

hi,ha, ..., hq are pair-wise independent hash functions from [n] — [w].
91,92, - - - » g4 are pair-wise independent hash functions from [n] — {—1,1}.
While (stream is not empty) do

a; = (i, A¢) is current item

for {=1tod do

Cle, heliy)] = CI, helis)] + g(in) A

endWhile
For i € [n] set &; = median{g1 (¢)C[1, h1(7)], g2 (1) C[2, ha(7), . . ., 9a(2)C[d, ha(7)]}.

Exercise: CountMin is a linear sketch. What are the entries of the projection matrix?

Lemma 2 Let d >log § and w > . Then for any fized i € [n], E[Z;] = ; and
Pr{7: — il = ellxla) <.

Proof: Fix ani € [n]. Let Zy = g4(i)C[¢, he(7)]. For ¢’ € [n] let Y be the indicator random variable
that is 1 if he(i) = he(i'); that is ¢ and ¢’ collide in hy. Note that E[Y;] = E[Y;?] = 1/w from the
pairwise independence of hy. We have

Zy = go(i)Ce, hy(3)] = ge() de(i')ﬂﬁi/Yi/

Therefore,
E[ZE] =x; + Z E[gg(l)gg(l/)}/zl]xl/ = x;,
i £

because E[gy(i)g¢(i')] = 0 for i # i’ from pairwise independence of g, and Y}s is independent of g, (i)
and gy(i"). Now we upper bound the variance of Zj.

Var[Z,] = E (de(i)ge(i,)yz"mi’)z
| i

= E Z‘T?’Yz? + Z xi"ri”gf(i/)gf(i”)}/i’}/i”

_i/?éi il £il

= D wBlY}

il i
< xl3/w.
Using Chebyshev,
Var[Z,] 1
Now, via the Chernoff bound,
Pr(|lmedian{Zy, ..., Z;} — x| > €||x[]2] < e < 4.

Thus choosind d = O(logn) and taking the median guarantees the desired bound with high prob-

Remark: By choosing § = Q(logn) we can ensure with probability at least (1 — 1/poly(n)) that
|Z; — x| < €||x]|2 for all i € [n].

3 Applications

Count and CountMin sketches have found a number of applications. Note that they have a similar
structure though the guarantees are different. Consider the problem of estimating frequency mo-
ments. Count sketch outputs an estimate f; for f; with an additive error of €||f||s while CountMin
guarantees an additive error of ¢||f]|; which is always larger. CountMin provides a one-sided error
when x > 0 which has some benefits. CountMin uses O(% log %) counters while Count sketch uses
O(}2 log) counters. Note that the Misra-Greis algorithm uses O(1/e)-counters.

3.1 Heavy Hitters

We will call an index i an a-HH (for heavy hitter) if x; > «a||z|; where a € (0,1]. We would like
to find S,, the set of all a-heavy hitters. We will relax this assumption to output S such that

Sa ©5 C Sa—e.

Here we will assume that o < « for otherwise the approximation does not make sense.
Suppose we used CountMin sketch with w = 2/e and § = ¢/n for sufficiently large c¢. Then, as
we saw, with probability at least (1 — 1/poly(n)), for all i € [n],

i < T < + €|x]]1.

Once the sketch is computed we can simply go over all i and add i to S if Z; > «|x|];. It is easy
to see that S is the desired set.

Unfortunately the computation of S is expensive. The sketch has O(%log n) counters and
processing each i takes time proportional to the number of counters and hence the total time is
O(%nlog n) to output a set S of size O(é) It turns that by keeping additional information in the
sketch in a hierarchical fashion one can cut down the time to be proportional to O(Zpolylog(n))).

3.2 Range Queries

In several application the range [n] corresponds to an actual total ordering of the items. For instance
[n] could represent the discretization of time and x corresponds to the signal. In databases [n] could
represent ordered numerical attributes such as age of a person, height, or salary. In such settings
range queries are very useful. A range query is an interval of the form [é, j] where 4,5 € [n] and
i < j. The goal is to output >, - ; %;. Note that there are O(n?) potential queries.

There is a simple trick to solve this using the sketches we have seen. An interval [4, j] is a dyadic
interval /range if j — i 4 1 is 2¥ and 2* divides i — 1. Assume n is a power of 2. Then the dyadic
intervals of length 1 are [1,1],[2,2],...,[n,n]. Those of length 2 are [1,2],[3,4],... and of length 4
are [1,4],[5,8],....

Claim 3 FEvery range [i,j] can be expressed as a disjoint union of at most 2logn dyadic ranges.

Thus it suffices to maintain accurate point queries for the dyadic ranges. Note that there are
at most 2n dyadic ranges. They fall into O(logn) groups based on length; the ranges for a given
length partition the entire interval. We can keep a separate CountMin sketch for the n/2! dyadic
intervals of length ¢ (i = 0 corresponds to the sketch for point queries). Using these O(logn)
CountMin sketches we can answer any range query with an additive error of €||x||;. Note that a
range [i, j] is expressed as the sum of 2logn point queries each of which has an additive error. So
¢’ for the sketches has to be chosen to be €/(2logn) to ensure an additive error of €||x||; for the
range queries.

By choosing d = O(logn) the error probability for all point queries in all sketches will be at
most 1/poly(n). This will guarantee that all range queries will be answered to within an additive
e||x[l1. The total space will be O(tlog® n)

3.3 Sparse Recovery

Let x € R™ be a vector. Can we approximate x by a sparse vector z? By sparse we mean that z
has at most k non-zero entries for some given k (this is the same as saying ||z||o < k). A reasonable
way to model this is to ask for computing the error

k .

err (x) = min ||x—2z

§60 = min_|lx 2l
for some p. A typical choice is p = 2. It is easy to see that the optimum z is obtained by restricting
x to its k largest coordinates (in absolute value). The question we ask here is whether we can
estimate err§(x) efficiently in a streaming fashion. For this we use the Count sketch. Recall that
by choosing w = 3/€? and d = ©(logn) the sketch ensures that with high probability,

Vieln], |2 — i < elx]la.

One can in fact show a generalization.

Lemma 4 Count-Sketch with w = 3k/e and d = O(logn) ensures that

Vi€ [n], |Ti—ai| < %67"7]5@()-
Proof: Let S = {i1,2,...,i,} be the indices of the largest coordinates in x and let x’ be obtained
from x by setting entries of x to zero for indices in S. Note that err§(x) = ||x/[|2. Fix a coordinate
i. Consider row ¢ and let Zy = g¢(i)C[¢, he(7)] as before. Let Ay be the event that there exists an
index t € S such that hy(i) = hy(t); that is any “big” coordinate collides with i under h,. Note
that Pr[A,] < 3, g Pr[he(i) = Pr[he(t)] < [S]/w < €/3 by pair-wise independence of h. Now we
estimate

€ €
PrZ—:Ui>—errkx = Pr{|Z, — x| > —=||¥
120~ i) > ()] = Prl|Ze— il >)
= Pr[A] Pr(|Zy — zi| > —=[X'||2] + Pr(|Ze — @ > —=[x||2 | ~A(]
f f
< Pr[A]+1/3 < 1/2.
O

Now let X be the approximation to x that is obtained from the sketch. We can take the k largest

coordinates of X to form the vector z and output z. We claim that this gives a good approximation

to errf(x). To see this we prove the following lemma.

Lemma 5 Let x,y € R" such that

% = ¥lloo < 7mk(X).

Then,
Ix = zll2 < (1 + 5¢)errs(x),

where z is the vector obtained as follows: z; =y; for i € T where T is the set of k largest (in
absolute value) indices of y and z; =0 fori ¢ T.

Proof: Let t = ferrz(x) to help ease the notation. Let S be the index set of the largest coordinates

of x. We have,
(errh(x))? = kt? = Z z? Z z7 + Z z3.
i€[n]\S 1€T\S i€[n]\(SUT)
We write:
Ix —zll3 = Z‘xz‘—zi’2+ Z |2 — z|* + Z z?
€T 1€S\T 1€[n]\(SUT)
= Z|ﬂfz‘—yi|2+ Z SU?—!— Z ZL‘ZQ
€T 1€S\T 1€[n]\(SUT)

We treat each term separately. The first one is easy to bound.

Dl -l <> < Skt

i€T €T

The third term is common to ||x — z||2 and err§(x). The second term is the one to care about.

Note that S is set of k largest coordinates in x and 7' is set of k largest coordinates in y. Thus
|IS\T| = |T\ S|, say their cardinality is £ > 1. Since x and y are close in o, norm (that is they
are close in each coordinate) it must mean that the coordinates in S\ 7 and 7'\ S are roughly the
same value in x. More precisely let a = max;cq\r |2;| and b = min;ep\ g [7i|. We leave it as an
exercise to the reader to argue that that a < b+ 2et since ||x — ¥/ < €t.

Thus,

Z z? < la® < (b + 2et)? < 0% + dektb + 4ke*t?.
ieS\T

But we have

> oai >0

1€T\S

Putting things together,

Ix —z|3 < 0% +dektb+ > i+ 5ke’t?

i€n]\(SUT)
< Z x? + Z x? + de(errh (x))? + 5% (errh (x))?
1€T\S i€[n]\(SUT)
< (err5(x))? + 9e(errh (x))2.

The lemma follows by by the fact that for sufficiently small €, v/1 + 9¢ < 1 + Be.
Od

Bibliographic Notes: Count sketch is by Charikar, Chen and Farach-Colton [I]. CountMin
sketch is due to Cormode and Muthukrishnan [4]; see the papers for several applications. Cor-
mode’s survey on sketching in [2] has a nice perspective. See [3] for a comparative analysis
(theoretical and experimenta) of algorithms for frinding frequent items. A deterministic variant
of CountMin called CR-Precis is interesting; see http://polylogblog.wordpress.com/2009/09/
22/bite-sized-streams-cr-precis/ for a blog post with pointers and some comments. The
applications are taken from the first chapter in the draft book by McGregor and Muthukrishnan.

References

[1] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theoretical Computer Science, 312(1):3-15, 2004.

[2] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses for

massive data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases,
4(1-3):1-294, 2012.

[3] Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent items in data
streams. VLDB J., 19(1):3-20, 2010.

[4] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. J. Algorithms, 55(1):58-75, 2005.

http://polylogblog.wordpress.com/2009/09/22/bite-sized-streams-cr-precis/
http://polylogblog.wordpress.com/2009/09/22/bite-sized-streams-cr-precis/

	CountMin Sketch
	Count Sketch
	Applications
	Heavy Hitters
	Range Queries
	Sparse Recovery

