The Misra-Greis deterministic counting guarantees that all items with frequency $> F_1/k$ can be found using O(k) counters and an update time of $O(\log k)$. Setting $k = 1/\epsilon$ one can view the algorithm as providing an additive ϵF_1 approximation for each f_i . However, the algorithm does not provide a sketch. One advantage of linear sketching algorithms is the ability to handle deletions. We now discuss two sketching algorithms that have a found a number of applications. These sketches can be used to for estimating point queries: after seeing a stream σ over items in [n] we would like to estimate f_i the frequency of $i \in [n]$. More generally, in the turnstile model, we would like to estimate x_i for a given $i \in [n]$. We can only guarantee the estimate with an additive error.

1 CountMin Sketch

We firt describe the simpler CountMin sketch. The sketch maintains several counters. The counters are best visualized as a rectangular array of width w and depth d. With each row i we have a hash function $h_i : [n] \to [w]$ that maps elements to one of w buckets.

```
\frac{\text{CountMin-Sketch}(w,d):}{h_1,h_2,\ldots,h_d \text{ are pair-wise independent hash functions from } [n] \to [w].} While (stream is not empty) do a_t = (i_t,\Delta_t) \text{ is current item} for \ell=1 to d do C[\ell,h_\ell(i_j)] \leftarrow C[\ell,h_\ell(i_j)] + \Delta_t endWhile For i \in [n] set \tilde{x}_i = \min_{\ell=1}^d C[\ell,h_\ell(i)].
```

The counter $C[\ell, j]$ simply counts the sum of all x_i such that $h_{\ell}(i) = j$. That is,

$$C[\ell, j] = \sum_{i: h_{\ell}(i) = j} x_i.$$

Exercise: CountMin is a linear sketch. What are the entries of the projection matrix?

We will analyze the sketch in the strick turnstile model where $x_i \geq 0$ for all $i \in [n]$; note that Δ_t we be negative.

Lemma 1 Let $d = \Omega(\log \frac{1}{\delta})$ and $w > \frac{2}{\epsilon}$. Then for any fixed $i \in [n]$, $x_i \leq \tilde{x}_i$ and

$$\Pr[\tilde{x}_i \ge x_i + \epsilon || \mathbf{x} ||_1] \le \delta.$$

Proof: Fix $i \in [n]$. Let $Z_{\ell} = C[\ell, h_{\ell}(i)]$ be the value of the counter in row ℓ to which i is hashed to. We have

$$\mathbf{E}[Z_{\ell}] = x_i + \sum_{i' \neq i} \Pr[h_{\ell}(i') = h_{\ell}(i)] x_{i'} = x_i + \sum_{i' \neq i} \frac{1}{w} x_{i'} \le x_i + \frac{\epsilon}{2} \|\mathbf{x}\|_1.$$

Note that we used pair-wise independence of h_{ℓ} to conclude that $\Pr[h_{\ell}(i') = h_{\ell}(i)] = 1/w$.

By Markov's inequality (here we are using non-negativity of \mathbf{x}),

$$\Pr[Z_{\ell} > x_i + \epsilon \|\mathbf{x}\|_1] \le 1/2.$$

Thus

$$\Pr[\min_{\ell} Z_{\ell} > x_i + \epsilon ||\mathbf{x}||_1] \le 1/2^d \le \delta.$$

Remark: By choosing $\delta = \Omega(\log n)$ we can ensure with probability at least (1 - 1/poly(n)) that $\tilde{x}_i - x_i \leq \epsilon ||\mathbf{x}||_1$ for all $i \in [n]$.

Exercise: For general turnstile streams where \mathbf{x} can have negative entries we can take the median of the counters. For this estimate you should be able to prove the following.

$$\Pr[|\tilde{x}_i - x_i| \ge 3\epsilon \|\mathbf{x}\|_1] \le \delta^{1/4}.$$

2 Count Sketch

Now we discuss the closely related Count sketch which also maintains an array of counters parameterized by the width w and depth d.

```
Count-Sketch(w, d): h_1, h_2, \dots, h_d \text{ are pair-wise independent hash functions from } [n] \to [w]. g_1, g_2, \dots, g_d \text{ are pair-wise independent hash functions from } [n] \to \{-1, 1\}. While (stream is not empty) do a_t = (i_t, \Delta_t) \text{ is current item} for \ell = 1 to d do C[\ell, h_\ell(i_j)] \leftarrow C[\ell, h_\ell(i_j)] + g(i_t)\Delta_t endWhile For i \in [n] set \tilde{x}_i = \text{median}\{g_1(i)C[1, h_1(i)], g_2(i)C[2, h_2(i), \dots, g_d(i)C[d, h_d(i)]\}.
```

Exercise: CountMin is a linear sketch. What are the entries of the projection matrix?

Lemma 2 Let $d \ge \log \frac{1}{\delta}$ and $w > \frac{3}{\epsilon^2}$. Then for any fixed $i \in [n]$, $\mathbf{E}[\tilde{x}_i] = x_i$ and

$$\Pr[|\tilde{x}_i - x_i| \ge \epsilon ||\mathbf{x}||_2] \le \delta.$$

Proof: Fix an $i \in [n]$. Let $Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)]$. For $i' \in [n]$ let $Y_{i'}$ be the indicator random variable that is 1 if $h_{\ell}(i) = h_{\ell}(i')$; that is i and i' collide in h_{ℓ} . Note that $\mathbf{E}[Y_{i'}] = \mathbf{E}[Y_{i'}^2] = 1/w$ from the pairwise independence of h_{ℓ} . We have

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = g_{\ell}(i)\sum_{i'}g_{\ell}(i')x_{i'}Y_{i'}$$

Therefore,

$$\mathbf{E}[Z_{\ell}] = x_i + \sum_{i' \neq i} \mathbf{E}[g_{\ell}(i)g_{\ell}(i')Y_{i'}]x_{i'} = x_i,$$

because $\mathbf{E}[g_{\ell}(i)g_{\ell}(i')] = 0$ for $i \neq i'$ from pairwise independence of g_{ℓ} and $Y_{i'}$ is independent of $g_{\ell}(i)$ and $g_{\ell}(i')$. Now we upper bound the variance of Z_{ℓ} .

$$\begin{aligned} \mathbf{Var}[Z_{\ell}] &= \mathbf{E} \left[(\sum_{i' \neq i} g_{\ell}(i) g_{\ell}(i') Y_{i'} x_{i'})^{2} \right] \\ &= \mathbf{E} \left[\sum_{i' \neq i} x_{i'}^{2} Y_{i'}^{2} + \sum_{i' \neq i''} x_{i'} x_{i''} g_{\ell}(i') g_{\ell}(i'') Y_{i'} Y_{i''} \right] \\ &= \sum_{i' \neq i} x_{i'}^{2} \mathbf{E}[Y_{i'}^{2}] \\ &\leq \|\mathbf{x}\|_{2}^{2} / w. \end{aligned}$$

Using Chebyshev,

$$\Pr[|Z_{\ell} - x_i| \ge \epsilon \|\mathbf{x}\|_2] \le \frac{\mathbf{Var}[Z_{\ell}]}{\epsilon^2 \|\mathbf{x}\|_2^2} \le \frac{1}{\epsilon^2 w} \le 1/3.$$

Now, via the Chernoff bound,

$$\Pr\left[|\text{median}\{Z_1,\ldots,Z_d\} - x_i| \ge \epsilon \|\mathbf{x}\|_2\right] \le e^{-cd} \le \delta.$$

Thus choosind $d = O(\log n)$ and taking the median guarantees the desired bound with high probability.

Remark: By choosing $\delta = \Omega(\log n)$ we can ensure with probability at least (1 - 1/poly(n)) that $|\tilde{x}_i - x_i| \le \epsilon ||\mathbf{x}||_2$ for all $i \in [n]$.

3 Applications

Count and CountMin sketches have found a number of applications. Note that they have a similar structure though the guarantees are different. Consider the problem of estimating frequency moments. Count sketch outputs an estimate \tilde{f}_i for f_i with an additive error of $\epsilon \|\mathbf{f}\|_2$ while CountMin guarantees an additive error of $\epsilon \|\mathbf{f}\|_1$ which is always larger. CountMin provides a one-sided error when $\mathbf{x} \geq 0$ which has some benefits. CountMin uses $O(\frac{1}{\epsilon} \log \frac{1}{\delta})$ counters while Count sketch uses $O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$ counters. Note that the Misra-Greis algorithm uses $O(1/\epsilon)$ -counters.

3.1 Heavy Hitters

We will call an index i an α -HH (for heavy hitter) if $x_i \ge \alpha ||x||_1$ where $\alpha \in (0,1]$. We would like to find S_{α} , the set of all α -heavy hitters. We will relax this assumption to output S such that

$$S_{\alpha} \subset S \subset S_{\alpha-\epsilon}$$
.

Here we will assume that $\alpha < \alpha$ for otherwise the approximation does not make sense.

Suppose we used CountMin sketch with $w = 2/\epsilon$ and $\delta = c/n$ for sufficiently large c. Then, as we saw, with probability at least (1 - 1/poly(n)), for all $i \in [n]$,

$$x_i \leq \tilde{x}_i \leq x_i + \epsilon ||\mathbf{x}||_1.$$

Once the sketch is computed we can simply go over all i and add i to S if $\tilde{x}_i \geq \alpha ||\mathbf{x}||_1$. It is easy to see that S is the desired set.

Unfortunately the computation of S is expensive. The sketch has $O(\frac{1}{\epsilon} \log n)$ counters and processing each i takes time proportional to the number of counters and hence the total time is $O(\frac{1}{\epsilon} n \log n)$ to output a set S of size $O(\frac{1}{\alpha})$. It turns that by keeping additional information in the sketch in a hierarchical fashion one can cut down the time to be proportional to $O(\frac{1}{\alpha} \text{polylog}(n))$).

3.2 Range Queries

In several application the range [n] corresponds to an actual total ordering of the items. For instance [n] could represent the discretization of time and \mathbf{x} corresponds to the signal. In databases [n] could represent ordered numerical attributes such as age of a person, height, or salary. In such settings range queries are very useful. A range query is an interval of the form [i,j] where $i,j \in [n]$ and $i \leq j$. The goal is to output $\sum_{i \leq \ell \leq j} x_i$. Note that there are $O(n^2)$ potential queries.

There is a simple trick to solve this using the sketches we have seen. An interval [i,j] is a dyadic interval/range if j-i+1 is 2^k and 2^k divides i-1. Assume n is a power of 2. Then the dyadic intervals of length 1 are $[1,1],[2,2],\ldots,[n,n]$. Those of length 2 are $[1,2],[3,4],\ldots$ and of length 4 are $[1,4],[5,8],\ldots$

Claim 3 Every range [i, j] can be expressed as a disjoint union of at most $2 \log n$ dyadic ranges.

Thus it suffices to maintain accurate point queries for the dyadic ranges. Note that there are at most 2n dyadic ranges. They fall into $O(\log n)$ groups based on length; the ranges for a given length partition the entire interval. We can keep a separate CountMin sketch for the $n/2^i$ dyadic intervals of length i (i=0 corresponds to the sketch for point queries). Using these $O(\log n)$ CountMin sketches we can answer any range query with an additive error of $\epsilon ||\mathbf{x}||_1$. Note that a range [i,j] is expressed as the sum of $2\log n$ point queries each of which has an additive error. So ϵ' for the sketches has to be chosen to be $\epsilon/(2\log n)$ to ensure an additive error of $\epsilon ||\mathbf{x}||_1$ for the range queries.

By choosing $d = O(\log n)$ the error probability for all point queries in all sketches will be at most 1/poly(n). This will guarantee that all range queries will be answered to within an additive $\epsilon \|\mathbf{x}\|_1$. The total space will be $O(\frac{1}{\epsilon}\log^3 n)$

3.3 Sparse Recovery

Let $\mathbf{x} \in \mathbb{R}^n$ be a vector. Can we approximate \mathbf{x} by a sparse vector \mathbf{z} ? By sparse we mean that \mathbf{z} has at most k non-zero entries for some given k (this is the same as saying $\|\mathbf{z}\|_0 \leq k$). A reasonable way to model this is to ask for computing the error

$$\operatorname{err}_p^k(\mathbf{x}) = \min_{\mathbf{z}: \|\mathbf{z}\|_0 \le k} \|\mathbf{x} - \mathbf{z}\|_p$$

for some p. A typical choice is p=2. It is easy to see that the optimum \mathbf{z} is obtained by restricting \mathbf{x} to its k largest coordinates (in absolute value). The question we ask here is whether we can estimate $\operatorname{err}_2^k(\mathbf{x})$ efficiently in a streaming fashion. For this we use the Count sketch. Recall that by choosing $w=3/\epsilon^2$ and $d=\Theta(\log n)$ the sketch ensures that with high probability,

$$\forall i \in [n], \quad |\tilde{x}_i - x_i| \le \epsilon ||\mathbf{x}||_2.$$

One can in fact show a generalization.

Lemma 4 Count-Sketch with $w = 3k/\epsilon$ and $d = O(\log n)$ ensures that

$$\forall i \in [n], \quad |\tilde{x}_i - x_i| \le \frac{\epsilon}{\sqrt{k}} err_2^k(\mathbf{x}).$$

Proof: Let $S = \{i_1, i_2, \dots, i_k\}$ be the indices of the largest coordinates in \mathbf{x} and let \mathbf{x}' be obtained from \mathbf{x} by setting entries of \mathbf{x} to zero for indices in S. Note that $\operatorname{err}_2^k(\mathbf{x}) = \|\mathbf{x}'\|_2$. Fix a coordinate i. Consider row ℓ and let $Z_\ell = g_\ell(i)C[\ell, h_\ell(i)]$ as before. Let A_ℓ be the event that there exists an index $t \in S$ such that $h_\ell(i) = h_\ell(t)$; that is any "big" coordinate collides with i under h_ℓ . Note that $\operatorname{Pr}[A_\ell] \leq \sum_{t \in S} \operatorname{Pr}[h_\ell(i)] = \operatorname{Pr}[h_\ell(t)] \leq |S|/w \leq \epsilon/3$ by pair-wise independence of h. Now we estimate

$$\Pr[|Z_{\ell} - x_{i}| \ge \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(\mathbf{x})] = \Pr[|Z_{\ell} - x_{i}| \ge \frac{\epsilon}{\sqrt{k}} \|\mathbf{x}'\|_{2}] \\
= \Pr[A_{\ell}] \cdot \Pr[|Z_{\ell} - x_{i}| \ge \frac{\epsilon}{\sqrt{k}} \|\mathbf{x}'\|_{2}] + \Pr[|Z_{\ell} - x_{i}| \ge \frac{\epsilon}{\sqrt{k}} \|\mathbf{x}'\|_{2} | \neg A_{\ell}] \\
\le \Pr[A_{\ell}] + 1/3 < 1/2.$$

Now let $\tilde{\mathbf{x}}$ be the approximation to \mathbf{x} that is obtained from the sketch. We can take the k largest coordinates of $\tilde{\mathbf{x}}$ to form the vector \mathbf{z} and output \mathbf{z} . We claim that this gives a good approximation to $\operatorname{err}_2^k(\mathbf{x})$. To see this we prove the following lemma.

Lemma 5 Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ such that

$$\|\mathbf{x} - \mathbf{y}\|_{\infty} \le \frac{\epsilon}{\sqrt{k}} err_2^k(\mathbf{x}).$$

Then,

$$\|\mathbf{x} - \mathbf{z}\|_2 \le (1 + 5\epsilon) \operatorname{err}_2^k(\mathbf{x}),$$

where \mathbf{z} is the vector obtained as follows: $\mathbf{z}_i = \mathbf{y}_i$ for $i \in T$ where T is the set of k largest (in absolute value) indices of \mathbf{y} and $\mathbf{z}_i = 0$ for $i \notin T$.

Proof: Let $t = \frac{1}{\sqrt{k}} \operatorname{err}_2^k(\mathbf{x})$ to help ease the notation. Let S be the index set of the largest coordinates of \mathbf{x} . We have,

$$(\operatorname{err}_2^k(\mathbf{x}))^2 = kt^2 = \sum_{i \in [n] \setminus S} x_i^2 = \sum_{i \in T \setminus S} x_i^2 + \sum_{i \in [n] \setminus (S \cup T)} x_i^2.$$

We write:

$$\|\mathbf{x} - \mathbf{z}\|_{2}^{2} = \sum_{i \in T} |x_{i} - z_{i}|^{2} + \sum_{i \in S \setminus T} |x_{i} - z_{i}|^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}$$
$$= \sum_{i \in T} |x_{i} - y_{i}|^{2} + \sum_{i \in S \setminus T} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2}.$$

We treat each term separately. The first one is easy to bound.

$$\sum_{i \in T} |x_i - y_i|^2 \le \sum_{i \in T} \epsilon^2 t^2 \le \epsilon^2 k t^2.$$

The third term is common to $\|\mathbf{x} - \mathbf{z}\|_2$ and $\operatorname{err}_2^k(\mathbf{x})$. The second term is the one to care about.

Note that S is set of k largest coordinates in \mathbf{x} and T is set of k largest coordinates in \mathbf{y} . Thus $|S \setminus T| = |T \setminus S|$, say their cardinality is $\ell \geq 1$. Since \mathbf{x} and \mathbf{y} are close in ℓ_{∞} norm (that is they are close in each coordinate) it must mean that the coordinates in $S \setminus T$ and $T \setminus S$ are roughly the same value in \mathbf{x} . More precisely let $a = \max_{i \in S \setminus T} |x_i|$ and $b = \min_{i \in T \setminus S} |x_i|$. We leave it as an exercise to the reader to argue that that $a \leq b + 2\epsilon t$ since $\|\mathbf{x} - \mathbf{y}\|_{\infty} \leq \epsilon t$.

Thus,

$$\sum_{i \in S \setminus T} x_i^2 \le \ell a^2 \le \ell (b + 2\epsilon t)^2 \le \ell b^2 + 4\epsilon ktb + 4k\epsilon^2 t^2.$$

But we have

$$\sum_{i \in T \backslash S} x_i^2 \ge \ell b^2.$$

Putting things together,

$$\|\mathbf{x} - \mathbf{z}\|_{2}^{2} \leq \ell b^{2} + 4\epsilon ktb + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2} + 5k\epsilon^{2}t^{2}$$

$$\leq \sum_{i \in T \setminus S} x_{i}^{2} + \sum_{i \in [n] \setminus (S \cup T)} x_{i}^{2} + 4\epsilon(\operatorname{err}_{2}^{k}(\mathbf{x}))^{2} + 5\epsilon^{2}(\operatorname{err}_{2}^{k}(\mathbf{x}))^{2}$$

$$\leq (\operatorname{err}_{2}^{k}(\mathbf{x}))^{2} + 9\epsilon(\operatorname{err}_{2}^{k}(\mathbf{x}))^{2}.$$

The lemma follows by the fact that for sufficiently small ϵ , $\sqrt{1+9\epsilon} \le 1+5\epsilon$.

Bibliographic Notes: Count sketch is by Charikar, Chen and Farach-Colton [1]. CountMin sketch is due to Cormode and Muthukrishnan [4]; see the papers for several applications. Cormode's survey on sketching in [2] has a nice perspective. See [3] for a comparative analysis (theoretical and experimenta) of algorithms for frinding frequent items. A deterministic variant of CountMin called CR-Precis is interesting; see http://polylogblog.wordpress.com/2009/09/22/bite-sized-streams-cr-precis/ for a blog post with pointers and some comments. The applications are taken from the first chapter in the draft book by McGregor and Muthukrishnan.

References

- [1] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. *Theoretical Computer Science*, 312(1):3–15, 2004.
- [2] Graham Cormode, Minos N. Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses for massive data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases, 4(1-3):1–294, 2012.
- [3] Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent items in data streams. VLDB J., 19(1):3–20, 2010.
- [4] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. *J. Algorithms*, 55(1):58–75, 2005.