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1 Sketch for Fp Estimation when 0 < p ≤ 2

We have seen a linear sketching estimate for F2 estimation that uses O(log n) space. Indyk [1]
obtained a technically sophisticated and interesting sketch for Fk estimation where 0 < p ≤ 2 (note
that p can be a real number) which uses polylog(n) space. Since the details are rather technical we
will only give the high-level approach and refer the reader to the paper and related notes for more
details. Note that for p > 2 there is a lower bound of Ω(n1−2/p) on the space required.

To describe the sketch for 0 < p ≤ 2 we will revisit the F2 estimate via the JL Lemma approach
that uses properties of the normal distribution.

F2-Estimate:

Let Y1, Y2, . . . , Yn be sampled independenty from the N (0, 1) distribution
z ← 0
While (stream is not empty) do

(ij ,∆j) is current token
z ← z + ∆j · Yij

endWhile
Output z2

Let Z =
∑

i∈[n] xiYi be the random variable that represents the value of z at the end of the
stream. The variable Z is a sum of independent normal variables and by the properties of the normal

distribution Z ∼
√∑

i x
2
i · N (0, 1). Normal distribution is called 2-stable for this reason. More

generally a distribution D is said to be p-stable if the following property holds: Let Z1, Z2, . . . , Zn be
independent random variables distributed according to D. Then

∑
i xiZi has the same distribution

as ‖x‖pZ where Z ∼ D. Note that a p-stable distribution will be symmetric around 0.
It is known that p-stable distributions exist for all p ∈ (0, 2] and not for any p > 2. The p-stable

distributions do not have, in general, an analytical formula except in some cases. We have already
seen that the standard normal distribution is 2-stable. The 1-stable distribution is the Cauchy
distribution which is the distribution of the ratio of two independent standard normal random
variables. The density function of the Cauchy distribution is known to be 1

π(1+x2)
; note that the

Cauchy distribution does not have a finite mean or variance. We use Dp to denote a p-stable
distribution.

Although a general p-stable distribution does not have an analytical formula it is known that
one can sample from Dp. Chambers-Mallows-Stuck method is the following:

• Sample θ uniformly from [−π/2, π/2].

• Sample r uniformly from [0, 1].

• Ouput

sin(pθ)

(cos θ)1/p

(
cos((1− p)θ)

ln(1/r)

)(1−p)/p
.
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We need one more definition.

Definition 1 The median of a distribution D is θ if for Y ∼ D, Pr[Y ≤ µ] = 1/2. If φ(x) is the
probability density function of D then we have

∫ µ
−∞ φ(x)dx = 1/2.

Note that a median may not be uniquely defined for a distribution. The distribution Dp has
a unique median and so we will use the terminology median(Dp) to denote this quantity. For a
distribution D we will refer to |D| the distribution of the absolute value of a random variable drawn
from D. If φ(x) is the density function of D then the density function of |D| is given by ψ, where
ψ(x) = 2φ(x) if x ≥ 0 and ψ(x) = 0 if x < 0.

Fp-Estimate:

k ← Θ( 1
ε2 log 1

δ )
Let M be a k × n matrix where each Mij ∼ Dp
y←Mx

Output Y ← median(|y1|,|y2|,...,|yk|)
median(|Dp|)

By the p-stability property we see that each yi ∼ ‖x‖pY where Y ∼ Dp. First, consider
the case that k = 1. Then the output |y1|/median(|Dp|) is distributed according to c|Dp| where
c = ‖x‖p/median(|Dp|). It is not hard to verify that the median of this distribution is ‖x‖p. Thus,
the algorithm take k samples from this distribution and ouputs as the estimator the sample median.
The lemma below shows that the sample median has good concentration properties.

Lemma 1 Let ε > 0 and let D be a distribution with density function φ and a unique median
µ > 0. Suppose φ is absolutely continuous on [(1 − ε)µ, (1 + ε)µ] and let α = min{φ(x) | x ∈
[(1− ε)µ, (1 + ε)µ]. Let Y = median(Y1, Y2, . . . , Yk) where Y1, . . . , Yk are independent samples from
the distribution D. Then

Pr[|Y − µ| ≥ εµ] ≤ 2e−
2
3
ε2µ2α2k.

We sketch the proof to upper bound Pr[Y ≤ (1− ε)µ]. The other direction is similar. Note that
by the definition of the median, Pr[Yj ≤ µ] = 1/2. Hence

Pr[Yj ≤ (1− ε)µ] = 1/2−
∫ µ

(1−ε)µ
φ(x)dx.

Let γ =
∫ µ
(1−ε)µ φ(x)dx. It is easy to see that γ ≥ αεµ.

Let Ij be the indicator event for Yi ≤ (1 − ε)µ; we have E[Ij ] = Pr[Yi ≤ (1 − ε)µ] ≤ 1/2 − γ.
Let I =

∑
j Ij ; we have E[I] = k(1/2 − γ). Since Y is the median of Y1, Y2, . . . , Yk, Y ≤ (1 − ε)µ

only if more than k/2 of Ij are true which is the same as Pr[I > (1 + δ)E[I]] where 1 + δ = 1
1−2γ .

Now, via Chernoff bounds, this probability is at most e−γ
2k/3 for sufficiently small γ.

We can now apply the lemma to the estimator output by the algorithm. We let φ be the
distribution of c|Dp|. Recall that the median of this distribution if ‖x‖p and the output of the
algorithm is the median of k indepenent samples from this distribution. Thus, from the lemma,

Pr[|Y − ‖x‖p| ≥ ε‖x‖p] ≤ 2e−ε
2kµ2α2/3.
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Let φ′ be the distribution of |D√| and µ′ be the median of φ′. Then it can be seen that µα = µ′α′

where α′ = min{φ′(x) | (1 − ε)µ′ ≤ (1 + ε)µ′}. Thus µ′α′ depends only on Dp and ε. Letting this
be cp,ε we have,

Pr[|Y − ‖x‖p| ≥ ε‖x‖p] ≤ 2e−ε
2kc2p,ε/3 ≤ (1− δ),

provided k = Ω(cp,ε · 1
ε2

log 1
δ ).

Technical Issues: There are several technical issues that need to be addressed to obtain a proper
algorithm from the preceding description. First, the algorithm as described requires one to store
the entire matrix M which is too large for streaming applications. Second, the constant k depends
on cp,ε which is not explicitly known since Dp is not well-understood for general p. To obtain
a streaming algorithm, the very high-level idea is to derandomize the algorithm via the use of
pseudorandom generators for small-space due to Nisan. See [1] for more details.

2 Counting Frequent Items

We have seen various algorithm for estimating various Fp norms for p ≥ 0. Note that F0 corresponds
to number of distinct elements. In the limit, as p → ∞, `p norm of a vector x is the maximum
of the absolute values of the entries of x. Thus, we can define the F∞ norm to corresponds to
finding the maximum frequency in x. More generally, we would like to find the frequent items in a
stream which are also called “heavy hitters”. In general, it is not feasible to estimate the heaviest
frequency with limited space if it is too small relative to m.

2.1 Misra-Greis algorithm for frequent items

Suppose we have a stream σ = a1, a2, . . . , am where aj ∈ [n], the simple setting and we want to
find all elements in [n] such that fi > m/k. Note that there can be at most k such elements. The
simplest case is when k = 2 when we want to know whether there is a “majority” element. There
is a simple deterministic algorithm that perhaps you have all seen for k = 2 in an algorithm class.
The algorithm uses an associative array data structure of size k.

MisraGreis(k):

D is an empty associative array
While (stream is not empty) do
aj is current item
If (aj is in keys(D))

D[aj ]← D[aj ] + 1
Else if (|keys(A)| < k − 1) then

D[aj ]← 1
Else

for each ` ∈ keys(D) do
D[`]← D[`]− 1

Remove elements from D whose counter values are 0
endWhile

For each i ∈ keys(D) set f̂i = D[i]

For each i 6∈ keys(D) set f̂i = 0
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We leave the following as an exercise to the reader.

Lemma 2 For each i ∈ [n]:

fi −
m

k
≤ f̂i ≤ fi.

The lemma implies that if fi > m/k then i ∈ keys(D) at the end of the algorithm. Thus one
can use a second-pass over the data to compute the exact fi only for the k itmes in keys(D). This
gives an O(kn) time two-pass algorithm for finding all items which have frequency at least m/k.

Bibliographic Notes: For more details on Fp estimation when 0 < p ≤ 2 see the original paper
of Indyk [1], notes of Amit Chakrabarti (Chapter 7) and Lecture 4 of Jelani Nelson’s course.
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