
CS 598CSC: Algorithms for Big Data Lecture date: Sept 2, 2014
Instructor: Chandra Chekuri Scribe: Chandra Chekuri

1 F2 Estimation

We have seen a generic algorithm for estimating the Fk, the k’th frequency moment of a stream
using Õ(n1−1/k)-space for k ≥ 1. Now we will see an amazingly simple algorithm for F2 estimation
due to [2].

AMS-F2-Estimate:

H is a 4-universal hash family from [n] to {−1, 1}
choose h at random from H
z ← 0
While (stream is not empty) do
aj is current item
z ← z + h(aj)

endWhile
Output z2

An conceptually equivalent way to describe the algorithm is the following.

AMS-F2-Estimate:

Let Y1, Y2, . . . , Yn be {−1,+1} random variable that are 4-wise independent
z ← 0
While (stream is not empty) do
aj is current item
z ← z + Yaj

endWhile
Output z2

The difference between the two is that the former one is a streaming friendly. Instead of keeping
Y1, . . . , Yn explicity we sample h from a 4-wise independent hash family so that h can be stored
compactly in O(log n)-space and we can generate Yi = h(i) in O(log n) time on the fly. We will
analyze the algorithm in the second description.

Let Z =
∑

i∈[n] fiYi be the random variable that represents the value of z at the end of the

stream. Note that for all i ∈ [n], E[Yi] = 0 and E[Y 2
i ] = 1. Moreover, since Y1, . . . , Yn are 4-wise-

independent and hence also 2-wise independent, E[YiYi′ ] = 0 for i 6= i′. The expected value of the
output is

E[Z2] =
∑
i,i′∈[n]

fifi′E[YiYi′ ] =
∑
i∈[n]

f2i E[Y 2
i ] +

∑
i 6=i′

fifi′E[YiYi′ ] =
∑
i∈[n]

f2i = F2.

We can also compute the variance of the output which is E[Z4].

E[Z4] =
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

∑
`∈[n]

fifjfkf`E[YiYjYkY`].
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Via the 4-wise independence of the Y ’s we have that E[YiYjYkY`] = 0 if there is an index among
i, j, k, ` that occurs exactly once in the multiset, otherwise it is 1. If it is 1 there are two cases: all
indices are the same or there are two distinct indices that occur twice each. Therefore,

E[Z4] =
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

∑
`∈[n]

fifjfkf`E[YiYjYkY`] =
∑
i∈[n]

f4i + 6

n∑
i=1

n∑
j=i+1

f2i f
2
j .

Thus, we have

Var[Z2] = E[Z4]− (E[Z2])2

= F4 − F 2
2 + 6

n∑
i=1

n∑
j=i+1

f2i f
2
j

= F4 − (F4 + 2
n∑
i=1

n∑
j=i+1

f2i f
2
j ) + 6

n∑
i=1

n∑
j=i+1

f2i f
2
j

= 4

n∑
i=1

n∑
j=i+1

f2i f
2
j

≤ 2F 2
2 .

Let X = Z2 be the output estimate. We have E[X] = F2 and Var[X] ≤ 2F 2
2 ≤ 2E[X]2. We

now apply the standard idea of averaging O(1/ε2) estimates to reduce variance, apply Chebyshev
on the average estimator to see that it is a ε-approximation with > 1/2 probability. Then we apply
the median trick with log(1δ )-independent averaged estimators to obtain an (ε, δ)-approximation.
The overall space requirement is O( 1

ε2
log 1

δ log n) and this is also the time to process each element.

2 (Linear) Sketching and Streaming with Updates

The F2 estimation algorithm is amazingly simple and has the following interesting properties.
Suppose σ1 and σ2 are two streams and the algorithm computes z1 and z2 on σ1 and σ2 It is easy
to see that the algorithm on σ = σ1 · σ2 (the concatenation of the two streams) computes z1 + z2.
Thus the algorithm retains z as a sketch of the stream σ. Note that the output of the algorithm is
not z but some function of z (in the case of F2 estimation it is z2). Moreover, in this special case
the sketch is a linear sketch which we will define more formally later.

Formally a sketch of a stream σ is a data structure z(σ) that has the property that if σ = σ ·σ2,
z(σ) can be computed by combining the sketches z(σ1) and z(σ2). Ideally the combining algorithm
should take small space as well. Note that the algorithm can post-process the sketch to output the
estimator.

The power of sketching algorithms is illustrated by thinking of more general streaming models
than what we have seen so far. We have considered streams of the form a1, a2, . . . , am where each
ai is a token, in particular an integer from [n]. Now we will consider the following model. We start
with a n-dimensional vector/signal x = (0, 0, . . . , 0) and the stream tokens consists of updates to
coordinates of x. Thus each token at = (it,∆t) where it ∈ [n] and ∆t is a number (could be a real
number and be negative). The token at udpates the i’th coordinate of x:

xit ← xit + ∆t.
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We will let xt be the value of x after the updates corresponding to a1, a2, . . . , at.
If the ∆t’s are allowed to be negative the model is called turnstile streams; note that ∆t being

negative allows items to be deleted. If xt is required to be always non-negative, we have the strict
turnstile stream model. A further special case is when ∆t is required to be positive and is called
the cash register model.

Linear sketches are particularly simple and yet very powerful. A linear sketch corresponds to a
k × n projection matrix M and the sketch for vector x is simply Mx. Composing linear sketches
corresponds to simply addding the sketches since Mx+Mx′ = M(x+x′). In the streaming setting
when we see a token at = (it,∆t), updating the sketch corresponds to adding ∆tMeit to the sketch
where eit is the vector with 1 in row it and 0 every where else. To implement the algorithm in
small space it would suffice to be able to generate the i’th column of M efficienty on the fly rather
than storing the entire matrix M .

F2 estimation as linear sketching: It is not hard to see that the F2 estimation algorithm we
have seen is essentially a linear sketch algorithm. Consider the matrix M with k = O( 1

ε2
log 1

δ ) rows
where each entry is in {−1, 1}. The sketch is simply z = Mx. The algorithm post-processes the
sketch to output its estimator.

Note that because the sketch is linear it does not matter whether x is negative. In fact it is easy
to see this from the analysis as well. In particular this implies that we can estimate ||fσ − fσ′ ||2
where fσ and fσ′ are the frequency vectors of σ and σ′ respectively. Similarly, if x, x′ are two n-
dimensional signals representing a time-series then the `2 norm of their difference can be estimated
by making one pass of the signals even when the signals are given via a sequence of updates which
can even be interspersed (of course we need to know the identity of the signals from which the
updates are coming from).

3 Johnson-Lindenstrauss Lemma and Dimension Reduction in `2

The AMS linear sketch for F2 estimation appears magical. One way to understand this is via
the dimensionality reduction for `2 spaces given by the well-known Johnson-Lindenstrauss lemma
which has many applications. The JL Lemma can be stated as follows.

Theorem 1 (JL Lemma) Let Let v1,v2, . . . ,vn be any n points/vectors in Rd. For any ε ∈
(0, 1/2), there is linear map f : Rd → Rk where k ≤ 8 lnn/ε2 such that for all 1 ≤ i < j ≤ n,

(1− ε)||vi − vj ||2 ≤ ||f(vi)− f(vj)||2 ≤ ||vi − vj ||2.

Moreover f can be obtained in randomized polynomial-time.

The implication of the JL Lemma is that any n points in d-dimensional Euclidean space can be
projected to O(lnn/ε2)-dimensions while preserving all their pairwise Euclidean distances.

The simple randomized algorithm that proves the JL Lemma is the following. Let M be a
k × d matrix where each entry Mij is picked independently from the standard N (0, 1) normal
distribution. Then the map f is givens as f(v) = 1√

k
Mv. We now sketch why this works.

Lemma 2 Let Z1, Z2, . . . , Zk be independent N (0, 1) random variables and let Y =
∑

i Z
2
i . Then,

for ε ∈ (0, 1/2), there is a constant c such that,

Pr[(1− ε)2k ≤ Y ≤ (1 + ε)2k] ≤ 2ecε
2k.
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In other words the sum of squares of k standard normal variables is sharply concentrated around
its mean which is k. In fact the distribution of Y has a name, the χ2 distribution with parameter
k. We will not prove the preceding lemma. A proof via the standard Chernoff-type argument can
be found in various places.

Assuming the lemma we can prove the following.

Lemma 3 Let εin(0, 1/2) and v be a unit-vector in Rd, then (1 − ε) ≤ ||Mv||2 ≤ (1 + ε)|| with
probability at least (1− 2ecε

2k).

Proof: First we observe a well-known fact about normal distributions. LetX and Y be independent
N (0, 1) random variables. Then aX + bY is N (0,

√
a2 + b2) random variable.

Let u =
√
kMv. Note that u is a random vector. Note that ui =

∑n
j=1 vj

√
kMij . Since

each
√
kMij is N (0, 1) random variable and all entries are independent we have that ui ' N (0, 1)

because the variance of ui is
∑

j v
2
i = 1 (note that v is a unit vector). Thus u1, u2, . . . , uk are

independent N (0, 1) random variables. Therefore ||u||22 =
∑

i =k u2i . Applying Lemma 2, we have

Pr[(1− ε)2k ≤ ||u||22 ≤ (1 + ε)2k] ≥ 1− 2ecε
2k.

2

Unit-vectors are convenient for the proof but by scaling one obtains the following easy corollary.

Corollary 4 Let εin(0, 1/2) and v be any vector in Rd, then (1−ε)||v||2 ≤ ||Mv||2 ≤ (1+ε)||||v||2
with probability at least (1− 2ecε

2k).

Now the JL Lemma follows easisly via a union bound. Let k = c′ lnn/ε2 where c′ is chosen
based on c. Consider any pair vi,vj .

Pr[(1−ε)||vi−vj ||2 ≤ ||M(vi−vj ||2 ≤ (1+ε)||vi−vj ||2] ≥ (1−2ecε
2k) ≥ 1−2ecε

2·c′ lnn/ε2 ≥ 1− 2

ncc′
.

If cc′ ≥ 3 then the probability of the distance between vi and vj being preserved to within a
relative ε-approximation is at least 1 − 1/n3. Since there are only n(n − 1)/2 pairs of distances,
the probability that all of them will be preserved to this error tolerance is, via the union bound, at
least (1− 1/n).

Bibliographic Notes: See Chapter 6 of Amit Chakrabarti’s lecture notes. A lot of work has
been done in the algorithmic community to make the dimensionality reduction faster to evaluate.
An interesting result is due to Achlioptas [1] who showed that the matrix M whose entries we chose
from N (0, 1) can in fact be chosen from {−1, 0, 1}; the discrete entries create a sparser matrix and
the resulting matrix multiplication is computationally easier.
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