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1 AMS Sampling

We have seen reservoir sampling and the related weighted sampling technique to obtain independent
samples from a stream without the algorithm knowing the length of the stream. We now discuss
a technique to sample from a stream σ = a1, a2, . . . , am where the tokens aj are integers from [n]
and we wish to estimate a function

g(σ) :=
∑
i∈[n]

g(fi)

where fi is the frequency of i and g is a real-valued function such that g(0) = 0. A natural example
is to estimate frequency moments Fk =

∑
i∈[n] f

k
i ; here we have g(x) = xk, a convex function for

k ≥ 1. Another example is the empirical entropy of σ defined as
∑

i∈[n] pi log pi where pi = fi
m is

the empirical probability of i; here g(x) = x log x.1

AMS sampling from the famous paper [?] gives an unbiased estimator for g(σ). The estimator
is based on a random variable Y defined as follows. Let J be a uniformly random sample from [m].
Let R = |{j | aj = aJ , J ≤ j ≤ m}|. That is, R is the count of the number of tokens after J that
are for the same coordinate. Then, let Y the estimate defined as:

Y = m(g(R)− g(R− 1)).

The lemma below shows that Y is an unbiased estimator of g(σ).

Lemma 1
E[Y ] = g(σ) =

∑
i∈[n]

g(fi).

Proof: The probability that aJ = i is exactly fi/m since J is a uniform sample. Moreover if aJ = i
then R is distributed as a uniform random variable over [fi].

E[Y ] =
∑
i∈[n]

Pr[aJ = i]E[Y |aJ = i]

=
∑
i∈[n]

fi
m
E[Y |aJ = i]

=
∑
i∈[n]

fi
m

fi∑
`=1

m
1

fi
(g(`)− g(`− 1))

=
∑
i∈[n]

g(fi).

2

One can estimate Y using small space in the streaming setting via the reservoir sampling idea
for generating a uniform sample. The algorithm is given below; the count R gets reset whenever a
new sample is picked.

1In the context of entropy, by convention, x log x = 0 for x = 0.
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AMSEstimate:
s← null
m← 0
R← 0
While (stream is not done)
m← m+ 1
am is current item
Toss a biased coin that is heads with probability 1/m
If (coin turns up heads)

s← am
R← 1

Else If (am == s)
R← R+ 1

endWhile
Output m(g(R)− g(R− 1))

To obtain a (ε, δ)-approximation via the estimator Y we need to estimate Var[Y ] and apply
standard tools. We do this for frequency moments now.

1.1 Application to estimating frequency moments

We now apply the AMS sampling to estimate Fk the k’th frequency moment for k ≥ 1. We have
already seen that Y is an exact statistication estimator for Fk when we set g(x) = xk. We now
estimate the variance of Y in this setting.

Lemma 2 When g(x) = xk and k ≥ 1,

Var[Y ] ≤ kF1F2k−1 ≤ kn1−
1
kF 2

k .

Proof:

Var[Y ] ≤ E[Y 2]

≤
∑
i∈[n]

Pr[aJ = i]

fi∑
`=1

m2

fi

(
`k − (`− 1)k

)2

≤
∑
i∈[n]

fi
m

fi∑
`=1

m2

fi
(`k − (`− 1)k)(`k − (`− 1)k)

≤ m
∑
i∈[n]

fi∑
`=1

k`k−1(`k − (`− 1)k) (using (xk − (x− 1)k) ≤ kxk−1)

≤ km
∑
i∈[n]

fk−1i fki

≤ kmF2k−1 = kF1F2k−1.

We now use convexity of the function xk for k ≥ 1 to prove the second part. Note that maxi fi = F∞.

F1F2k−1 = (
∑
i

fi)(
∑
i

f2k−1i ) ≤ (
∑
i

fi)F
k−1
∞ (

∑
i

fki ) ≤ (
∑
i

fi)(
∑
i

fki )
k−1
k (
∑
i

fki ).
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Using the preceding inequality, and the inequality (
∑n

i=1 xi)/n ≤ ((
∑n

i=1 x
k
i )/n)

1
k for all k ≥ 1 (due

to the convexity of the function g(x) = xk), we obtain that

F1F2k−1 ≤ (
∑
i

fi)(
∑
i

fki )
k−1
k (
∑
i

fki ) ≤ n1−1/k(
∑
i

fki )
1
k (
∑
i

fki )
k−1
k (
∑
i

fki ) ≤ n1−1/k(
∑
i

fki )2.

2

Thus we have E[Y ] = Fk and Var[Y ] ≤ kn1−1/kF 2
k . We now apply the trick of reducing the

variance and then the median trick to obtain a high-probability bound. If we take h independent
estimators for Y and take their average the variance goes down by a factor of h. We let h =
c
ε2
kn1−1/k for some fixed constant c. Let Y ′ be the resulting averaged estimator. We have E[Y ′] =

Fk and Var[Y ′] ≤ Var[Y ]/h ≤ ε2

c F
2
k . Now, using Chebyshev, we have

Pr[|Y ′ −E[Y ′]| ≥ εE[Y ′]] ≤ Var[Y ′]/(ε2E[Y ′]2) ≤ 1

c
.

We can choose c = 3 to obtain a (ε, 1/3)-approximation. By using the median trick with Θ(log 1
δ )

independent estimators we can obtain a (ε, δ)-approximation. The overall number of estimators we
run independently is O(log 1

δ ·
1
ε2
· n1−1/k). Each estimator requires O(log n+ logm) space since we

keep track of one index from [m], one count from [m], and one item from [n]. Thus the space usage
to obtain a (ε, δ)-approximation is O(log 1

δ ·
1
ε2
· n1−1/k · (logm+ log n)). The time to process each

stream element is also the same.
The space complexity of Õ(n1−1/k) is not optimal for estimating Fk. One can achieve Õ(n1−2/k)

which is optimal for k > 2 and one can in fact achieve poly-logarithmic space for 1 ≤ k ≤ 2. We
will see these results later in the course.

Bibliographic Notes: See Chapter 1 of the draft book by McGregor and Muthukrishnan; see
the application of AMS sampling for estimating the entropy. See Chapter 5 of Amit Chakrabarti
for the special case of frequency moments explained in detail. In particular he states a clean lemma
that bundles the variance reduction technique and the median trick.
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