CS 598CSC: Algorithms for Big Data Lecture date: August 28, 2014
Instructor: Chandra Chekuri Scribe: Chandra Chekuri

1 Estimating Frequency Moments in Streams

A significant fraction of streaming literature is on the problem of estimating frequency moments.
Let 0 = ay,a9,...,a, be a stream of numbers where for each i, a; is an intger between 1 and n.
We will try to stick to the notation of using m for the length of the stream and n for range of the
integerﬂ Let f; be the number of occurences (or frequency) of integer i in the stream. We let
f=(f1, f2,..., fn) be the frequency vector for a given stream o. For k > 0, Fi (o) is defined to be
the k’th frequency moment of o:

(2

We will discuss several algorithms to estimate Fj, for various values of k. For instance Fjy is simply
the number of distinct elements in 0. Note that F =). f; = m, the length of the stream. A k
increases to oo Fj will concentrate on the most frequent element and we can thing of Fi as finding
the most frequent element.

Definition 1 Let A)(o) be the real-valued output of a randomized streaming algorithm on stream
o. We say that A provides an («,)-approzimation for a real-valued function g if
A(o)

Pr[|g(0)—1|>a] <p

for all o.

Our ideal goal is to obtain a (e, d)-approximation for any given €,d € (0, 1).

2 Background on Hashing

Hashing techniques play a fundamental role in streaming, in particular for estimating frequency
moments. We will briefly review hashing from a theoretical point of view and in particular k-
universal hashing.

A hash function maps a finite universe I/ to some range R. Typically the range is the set of
integers [0..L — 1] for some finite L (here L is the number of buckets in the hash table). Sometimes
it is convenient to consider, for the sake of developing intuition, hash functions that maps U to
the continuous interval [0,1]. We will, in general, be working with a family of hash functions H
and h will be drawn from H uniformly at random; the analyis of the algorithm will be based on
properties of H. We would like H to have two important and contradictory properties:

e a random function from H should behave like a completely random function from U to the
range.

e 7 should have nice computational properties:

!Many streaming papers flip the notation and use n to denote the length of the stream and m to denote the range
of the integers in the stream

— a uniformly random function from A should be easy to sample

— any function h € H should have small representation size so that it can be stored
compactly

— it should be efficient to evaluate h

Definition 2 A collection of random variables X1, Xo, ..., X,, are k-wise independent if the vari-
ables X;,, Xi,, ..., X;, are independent for any set of distinct indices 11,12, ..., .

Take three random variables { X7, X5, X3} where X;, X5 are independent {0,1} random vari-
ables and X3 = X1 @ Xs. It is easy to check that the three variables are pairwise independent
although they are not all independent.

Following the work of Carter and Wegman [3], the class of k-universal hash families, and in
particular for £ = 2, provide an excellent tradeoff. H is strongly 2-universal if the following
properties hold for a random function h picked from H: (i) for every = € U, h(x) (which is a
random variable) is uniformly distributed over the range and (ii) for every distinct pair z,y € U,
h(z) and h(y) are independent. 2-universal hash families are also called pairwise independent hash
families. A weakly 2-universal family satisfies the property that that Pr[h(z) = h(y)] = 1/L for any
distinct z,y. We state an important observation about pairwise independent random variables.

Lemma 1 LetY = E?:l X; where X1, Xo, ..., X} are pairwise independent. Then
R
Var[Y] = ZVar[XZ-].
i=1

Moreover if X; are binary/indicator random variables then

Var[Y] < ZE[XE] = ZE[Xi] = E[Y].

There is a simple and nice construction of pairwise independent hash functions. Let p be a
prime number such that p > |U{|. Recall that Z, = {0,1,...,p—1} forms a field under the standard
addition and multiplication modulo p. For each a,b € [p] we can define a hash function h,j where
hap(x) = ax +b mod p. Let H = {hqyp | a,b € [p]}. We can see that we only need to store two
numbers a, b of ©(logp) bits to implicitly store h,p and evaluation of h,p(x) takes one addition
and one multiplication of logp bit numbers. Moreover, samply a random hash function from H
requires sampling a,b which is also easy. We claim that # is a pairwise independent family. You
can verify this by the observation that for distinct x, y and any 4, j the two equations ax+b = 7 and
ay + b = j have a unique a, b them simultaneously. Note that if @ = 0 the hash function is pretty
useless; all elements get mapped to b. Nevertheless, for H to be pairwise independent one needs to
include those hash functions but the probability that a = 0 is 1/p while there are p? functions in
H. If one only wants a weakly universal hash family we can pick a from [1..(p — 1)]. The range of
the hash function is [p]. To restrict the range to L we let b/ ,(z) = (ax +b mod p) mod L.

More generally we will say that H is k-universal if evefy element is uniformly distributed in
the range and for any k elements 1, ...,z the random variabels h(z1), ..., h(z)) are independent.
Assuming U is the set of integers [0..|U{|], for any fixed k there exist constructions for k-universal
hash families such that every hash function h in the family can be stored using O(klog |U|) bits
(essentially k numbers) and h can be evaluated using O(k) arithmetic operations on log || bit num-
bers. We will ignore specific details of the implementations and refer the reader to the considerable
literature on hashing for further details.

3 Estimating Number of Distinct Elements

A lower bound on exact counting deterministic algorithms: We argue that any determin-
istic streaming algorithm that counts the number of distinct elements exactly needs €2(n) bits. To
see this, suppose there is an algorithm A that uses strictly less than n bits. Consider the h = 2"
different streams og where S C [n]; og consists of the elements of S in some arbitrary order. Since
A uses n — 1 bits or less, there must be two distinct sets Sp,.S2 such that the state of A at the end
of og,,0s, is identical. Since Si, Sy are distinct there is an element 7 in S7 \ Sz or Sy \ S1; wlog it
is the former. Then it is easy to see the A cannot give the right count for at least one of the two
streams, < 0g,,% >, < 08,1 >.

The basic hashing idea: We now discuss a simple high-level idea for estimating the number of
distinct elements in the stream. Suppose h is an idealized random hash function that maps [1..n]
to the interval [0, 1]. Suppose there are d distinct elements in the stream o = a1,a9,...,a;y,. If h
behaves like a random function then the set {h(a1),...,h(ay)} will behave like a collection of d
independent uniformly distributed random variables in [0,1]. Let # = min{h(a1),...,h(ay)}; the
expectation of 6 is Wll and hence 1/6 is good estimator. In the stream setting we can compute 6 by
hashing each incoming value and keeping track of the minimum. We only need to have one number
in memory. Although simple, the algorithm assumes idealized hash functions and we only have an
unbiased estimator. To convert the idea to an implementable algorithm with proper guarantees
requires work. There are several papers on this problem and we will now discuss some of the
approaches.

3.1 The AMS algorithm

Here we describe an algorithm with better parameters but it only gives a constant factor approxi-
mation. This is due to Alon, Matias and Szegedy in their famous paper [I] on estimating frequency
moments. We need some notation. For an integer ¢ > 0 let zeros(¢) denote the number of zeros
that the binary representation of ¢ ends in; equivalenty

zeros(t) = max{i :| 2¢ divides t}.

AMS-DISTINCTELEMENTS:

H is a 2-universal hash family from [n] to [n]
choose h at random from H
z<+0
While (stream is not empty) do
a; is current item
z + max{z,zeros(h(a;))}
endWhile
Output 272

First, we note that the space and time per element are O(logn). We now analyze the quality
of the approximation provided by the output. Recall that h(a;) is uniformly distributed in [n]. We
will assume for simplicity that n is a power of 2.

Let d to denote the number of distinct elements in the stream and let them be by, s, ..., by. For
a given r let X, ; be the indicator random variable that is 1 if zeros(h(b;)) > r. Let Y, =3 X, ;.
That is, Y, is the number of distinct elements whose hash values have atleast r zeros.

Since h(b;) is uniformaly distribute in [n],

E[X, ;] = Pr[zeros(h(bj)) > r] = (n{ﬁLQT) > 2%

Therefore d
MWZZFWM=§‘
J

Thus we have E[Y}og4] =1 (assuming d is a power of 2).
Now we compute the variance of Y;.. Note that the variables X, ; and X, j; are pairwise inde-
pendent since H is 2-universal. Hence

Var[V,] =) Var[X,;] <) E[X};]=> E[X,;]= ot
J J J
Using Markov’s inequality
Pr[Y, > 0] = Pr[Y; > 1] < E[Y;] <
Using Chebyshev’s inequality

PrlY, = 0] = Pr|Y; — E[Y;][> 7] <)22 S

Let 2’ be the value of z at the end of the stream and let @ = 27+ be the estimate for d output

by the algorithm. We claim that d’ cannot 1be too large compared to d with constant probability.
Let a be the smallest integer such that 2972 > 3d.

d 2
Pr[d' > 3d) = Pr[Y, > 0] < — \3f

- a

< .
g0 =
Now we claim that d’ is not Icoo small compared to d with constant probability. For this let b the
largest integer such that 2072 < d/3. Then,

Pr[d < d/3] = Pr[Ypyy = 0] <

Thus, the algorithm provides (1/3,v/2/3 ~ 0.4714)-approximation to the number of distinct ele-
ments. Using the median trick we can make the probability of success be at least (1 —0) to obtain a
(1/3,6)-approximation by running O(log %)—parallel and independent copies of the algorithm. The
time and space will be O(log } logn).

3.2 A (1 — e¢)-approximation in O(% logn) space

Bar-Yossef et al. [2] described three algorithms for distinct elements, that last of which gives a
bound O(e? + logn)) space and amortized time per element O(logn + log 1); the notation 0)
suppresses dependence on loglogn and log1/e. Here we describe their first algorithm that gives
gives an (e, dp)-approximation in space O(e%log n) and O(log1/elogn) time per update; via the
median trick, with an additional log 1/§ factor, we can obtain a (e, §)-approximation.

The algorithm is based on the Flajolet-Martin idea of hashing to [0, 1] and taking the minimum
but with a small and important technical tweak. Let t = 5 for some constant ¢ to be fixed later.

4

BJKST-DISTINCTELEMENTS:

H is a 2-universal hash family from [n] to [N = n?]
choose h at random from #H
L 3
While (stream is not empty) do

a; is current item

Update the smallest ¢ hash values seen so far with h(a;)
endWhile
Let v be the ¢’th smallest value seen in the hast values.
Output tN/v.

We observe that the algorithm can be implemented by keeping track of ¢t hash values each of
which take O(logn) space and hence the space usage is O(tlogn) = O(%2 logn). The t values can
be stored in a binary search tree so that when a new item is processed we can update the data
structure in O(logt) searches which takes total time O(log % logn).

The intution of the algorithm is as follows. As before let d be the number of distinct elements
and let them be by,...,bs. The hash values h(by), ..., h(bg) are uniformly distributed in [0, 1]. For
any fixed t we expect about t/d hash values to fall in the interval [0,¢/d] and the ¢’th smallest hash
value v should be around ¢/d and this justifies the estimator for d being t/v. Now we formally
analyse the properties of this estimator.

We chose the hash family to map [n] to [n®] and therefore with probability at least (1—1/n) the
random hash function h is injective over [n]. We will assume this is indeed the case. Moreover we
will assume that n > \/€/24 which implies in particular that et/(4d) > 1/N. Let d’ the estimate
returned by the algorithm.

Lemma 2 Pr[d < (1 —¢€)d] <1/6].

Proof: The values h(b1),...,h(by) are uniformly distributed in 1..N. If ' < (1 — €)d it implies

that v > ﬁ; that is less than ¢ values fell in the interval [1, %} Let X; be the indicator

random variable for the event that h(b;) < (14 €)tN/d and let Y = Zf: X;.

Since h(b;) is distributed uniformly in [1..N], taking rounding errors into account, we have
(1+¢€/2)t/d < E[X;] < (14 3¢/2)t/d and hence E[Y]| > t(1 + ¢/2). We have Var[Y] < E[Y] <
t(1+3¢/2) (due to pairwise independence, Lemmal[1)). We have d’ < (1 —€)d only if Y < ¢ and by
Chebyshev,

4Varl[Y]

Prly <] <Pif]Y —E[Y]| > et/2] < — 3

< 12(e%t%) < 1/6.

Lemma 3 Pr[d > (1+ ¢€)d] < 1/6].
Proof: Suppose d' > (1 + €)d, that is v < ﬁ This implies that more than ¢ hash values are

less than ﬁ < (1—€/2)tN/d. We will show that this happens with small probability.

Let X; be the indicator random variable for the event h(b;) < (1—€¢/2)tN/d andlet Y = Zgzl Xi.
We have E[X;] < (1 —¢/2)t/d+ 1/N < (1 —¢/4)t/d (the 1/N is for rounding errors). Hence
E[Y] < (1 —€/4)t. As we argued d’ > (1 + €)d happens only if Y > ¢. By Cheybyshev,

16Var[Y]

Pr[y > 1] <Prl[y — E[Y]| > et/4] < — 57— < 16/(e*t?) < 1/6.

Bibliographic Notes: Our description of the AMS algorithm is taken from notes of Amit
Chakrabarti. Flajolet and Martin proposed the basic hash function based algorithm in [5]. [2] Kane,
Nelson and Woodruff [7] described an (e, &)-approximation for a fixed dy in space O(% + logn)
(the time per update is also the same). This is a theoretically optimum algorithm since there are
lower bounds of Q(¢?) and Q(logn) on the space required for an e-approximation. We refer the
reader to [4], 6] for analysis and empirical evaluation of an algorithm called HyperLogLog which
seems to very well in practice.

References

1]

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the fre-
quency moments. Journal of Computer and System Sciences, 58(1):137-147, 1999. Preliminary
version in Proc. of ACM STOC 1996.

Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. Counting distinct
elements in a data stream. In Randomization and Approrimation Techniques in Computer
Science, pages 1-10. Springer, 2002.

J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143-154, 1979. Preliminary version in Proc. ACM STOC,
1977.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, Frédéric Meunier, et al. Hyperloglog: the anal-
ysis of a near-optimal cardinality estimation algorithm. Analysis of Algorithms 2007 (AofA07),
pages 127-146, 2007.

Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applica-
tions. Journal of computer and system sciences, 31(2):182-209, 1985.

Stefan Heule, Marc Nunkesser, and Alex Hall. Hyperloglog in practice: Algorithmic engineer-
ing of a state of the art cardinality estimation algorithm. In Proceedings of the EDBT 2013
Conference, Genoa, Italy, 2013.

Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm for the dis-
tinct elements problem. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 41-52. ACM, 2010.

	Estimating Frequency Moments in Streams
	Background on Hashing
	Estimating Number of Distinct Elements
	The AMS algorithm
	A (1-)-approximation in O(12 logn) space

