
CS 598CSC: Algorithms for Big Data Lecture date: Sept 25, 2014
Instructor: Chandra Chekuri Scribe: Chandra Chekuri

Suppose we have a stream a1, a2, . . . , an of objects from an ordered universe. For simplicity we
will assume that they are real numbers and more over that they are distinct (for simplicity). We
would like to find the k’th ranked element for some 1 ≤ k ≤ n. In particular we may be interested
in the median element. We will discuss exact and approximate versions of these problems. Another
terminology for finding rank k elements is quantiles. Given a number φ where 0 < φ ≤ 1 we would
like to return an element of rank φn. This normalization allows us to talk about ε-approximate
quantiles for ε ∈ [0, 1). An ε-approximate quantile is an element whose rank is at least (φ− ε)n and
at most (φ+ ε)n. In other words we are allowing an additive error of εn. There is a large amount
of literature on quantiles and quantile queries. In fact one of the earliest “streaming” papers is the
one by Munro and Paterson [5] who described a p-pass algorithm for selection using Õ(n1/p) space
for any p ≥ 2. They also considered the “random-order” streaming setting which has become quite
popular in recent years.

The material for these lectures is taken mainly from the excellent chapter/survey by Greenwald
and Khanna [1]. We mainly refer to that chapter and describe here the outline of what we covered
in lectures. We will omit proofs or give sketchy arguments and refer the reader to [1].

1 Approximate Quantiles and Summaries

Suppose we want to be able to answer ε-approximate quantile queries over an ordered set S of n
elements. It is easy to see that we can simply pick elements of rank i|S|/k for 1 ≤ i ≤ k ' 1/ε and
store them as a summary and use the summary to answer any quantile query with an εn additive
error. However, to obtain these elements we first need to do selection which we can do in the offline
setting if all we want is a concise summary. The question we will address is to find a summary
in the streaming setting. In the sequel we will count space usage in terms of “words”. Thus, the
space usage for the preceding offline summary is Θ(1/ε).

We will see two algorithms. The first will create an ε-approximate summary [4] with space
O(1ε log2(εn)) and is inspired by the ideas from the work of Munro and Paterson. Greenwald and
Khanna [2] gave a different summary that uses O(1ε log(εn)) space.

Following [1] we will think of a quantile summary Q as storing a set of elements {q1, q2, . . . , q`}
from S along with an interval [rminQ(qi), rmaxQ(qi)] for each qi; rminQ(qi) is a lower bound on
the rank of qi in S and rmaxQ(qi) is an upper bound on the rank of qi in S. It is convenient to
assume that q1 < q2 < . . . < q` and moreover that q1 is the minimum element in S and that q`
is the maximum element in S. For ease of notation we will simply use Q to refer to the quantile
summary and also the (ordered) set {q1, q2, . . . , q`}.

Our first question is to ask whether a quantile summary Q can be used to give ε-approximate
quantile queries. The following is intuitive and is worthwhile proving for oneself.

Lemma 1 Suppose Q is a quantile summary for S such that for 1 ≤ i < `, rmaxQ(qi+1) −
rminQ(qi) ≤ 2ε|S|. Then Q can be used for ε-approximate quantile queries over S.

In the following, when we say that Q is an ε-approximate quantile summary we will implicitly
be using the condition in the preceding lemma.

1

Given a quantile summary Q′ for a multiset S′ and a quantile summary Q′′ for a multiset S′′

we would like to combine Q′ and Q′′ into a quantile summary Q for S = S′ ∪ S′′; by union here we
view S as a multiset. Of course we would like to keep the approximation of the resulting summary
similar to those of Q′ and Q′′. Here a lemma which shows that indeed we can easily combine.

Lemma 2 Let Q′ be an ε′-approximate quantile summary for multiset S′ and Q′′ be an ε′′-approximate
quantile summary for multiset S′′. Then Q = Q′ ∪ Q′′ yields an ε-approximate quantile summary
for S = S′ ∪ S′′ where ε ≤ ε′n′+ε′′n′′

n′+n′′ ≤ max{ε′, ε′′} where n′ = |S′| and n′′ = |S′′|.

We will not prove the correctness but describe how the intervals are constructed for Q from
those for Q′ and Q′′. Suppose Q′ = {x1, x2, . . . , xa} and Q′′ = {y1, y2, . . . , yb}. Let Q = Q′ ∪Q′′ =
{z1, z2, . . . , za+b}. Consider some zi ∈ Q and suppose zi = xr for some 1 ≤ r ≤ a. Let ys be the
largest element of Q′′ smaller than xr and yt be the smallest element of Q′′ larger than xr. We will
ignore the cases where one or both of ys, yt are not defined. We set

rminQ(zi) = rminQ′(xr) + rminQ′′(ys)

and
rmaxQ(zi) = rmaxQ′(xr) + rmaxQ′′(yt)− 1.

It is easy to justify the above as valid intervals. One can then prove that with these settings, for
1 ≤ i < a+ b the following holds:

rmaxQ(zi+1)− rminQ(zi) ≤ 2ε(n′ + n′′).

We will refer to the above operation as COMBINE(Q′, Q′′). The following is easy to see.

Lemma 3 Let Q1, . . . , Qh be ε-approximate quantile summaries for S1, S2, . . . , Sh respectively.
Then Q1, Q2, . . . , Qh can be combined in any arbitrary order to obtain an ε-approximate quantile
summary Q = Q1 ∪ . . . ∪Qh for S1 ∪ . . . ∪ Sh.

Next we discuss the PRUNE(Q, k) operation on a quantile summary Q that reduces the size
of Q to k + 1 while losing a bit in the approximation quality.

Lemma 4 Let Q′ be an ε-approximate quantile summary for S. Given an integer parameter k
there is a quantile summary Q ⊆ Q′ for S such that |Q| ≤ k + 1 and it is (ε+ 1

2k)-approximate.

We sketch the proof. We simply query Q′ for ranks 1, |S|/k, 2|S|/k, . . . , |S| and choose these ele-
ments to be in Q. We retain their rmin and rmax values from Q′.

rmaxQ(qi+1)− rminQ(qi) ≤ i|S|/k + ε|S| − ((i− 1)|S|/k − ε|S|) ≤ |S|/k + 2ε|S|.

1.1 An O(1
ε
log2(εn) space algorithm

The idea is inspired by the Munro-Paterson algorithm and was abstracted in the paper by Manku
et al. We will describe the idea in an offline fashion though it can be implemented in the streaming
setting. We will use several quantile summaries with k elements each for some parameter k, say
` of them. Each summary of size k will be called a buffer. We will need to reuse these buffers as
more elements in the stream arrive; buffers will combined and pruned, in other words “collapsed”
into a single buffer of the same size k. Pruning introduces error.

2

Assume n/k is a power of 2 for simplicity. Consider a complete binary tree with n/k leaves
where each leaf corresponds to k consecutive elements of the stream. Think of assigning a buffer of
size k to obtain a 0-error quantile summary for those k elements; technically we need k+1 elements
but we will ignore this minor additive issue for sake of clarity of exposition. Now each internal
node of the tree corresponds to a subset of the elements of the stream. Imagine assigning a buffer
of size k to each internal node to maintain an approximate quantile summary for the elements
of the stream in the sub-tree. To obtain a summary at node v we combine the summaries of its
two children v1 and v2 and prune it back to size k introducing and additional 1/(2k) error in the
approximation. The quantile summary at the root of size k will be our final summary that we
output for the stream.

Our first observation is that in fact we can implement the tree-based scheme with ` = O(h)
buffers where h is the height of the tree. Note that h ' log(n/k). The reason we only need O(h)
buffers is that if need a new buffer for the next k elements in the stream we can collapse two buffers
corresponding to the children of an internal node — hence, at any time we need to maintain only
one buffer per level of the tree (plus a temporary buffer to do the collapse operation).

Consider the quantile summary at the leaves. They have error 0 since we store all the elements
in the buffer. However at each level the error increases by 1/(2k). Hence the error of the summary
at the root is h/(2k). Thus, to obtain an ε-approximate quantile summary we need h/(2k) ≤ ε.
And h = log(n/k). One can see that for this to work out it suffices to choose k > 1

2ε log(2εn).
The total space usage is Θ(hk) and h = log(n/k) and thus the space usage is O(1ε log2(εn)).
One can choose d-ary trees instead of binary trees and some optimization can be done to improve

the constants but the asymptotic dependence on ε does not improve with this high-level scheme.

1.2 An O(1
ε
log(εn) space algorithm

We now briefly describe the Greenwald-Khanna algorithm that obtains an improved space bound.
The GK algorithm maintains a quantile summary as a collection of s tuples t0, t2, . . . , ts−1 where
each tuple ti is a triple (vi, gi,∆i): (i) a value vi that is an element of the ordered set S (ii) the
value gi which is equal to rminGK(vi) − rminGK(vi−1) (for i = 0, gi = 0) and (iii) the value ∆i

which equals rmaxGK(vi)− rminGK(vi). The elements v0, v1, . . . , vs−1 are in ascending order and
moreover v0 will the minimum element in S and vs−1 is the maximum element in S. Note that
n =

∑s−1
j=1 gj . The summary also stores n the number of elements seen so far. With this set up we

note that rminGK(vi) =
∑

j≤i gj and rmaxGK(vi) = ∆i +
∑

j≤i gj .

Lemma 5 Suppose Q is a GK quantile summary for a set |S| such that maxi(gi + ∆i) ≤ 2ε|S|
then it can be used to answer quantile queries with εn additive error.

The query can be answered as follows. Given rank r, find i such that r− rminGK(vi) ≤ εn and
rmaxGK(vi)− r ≤ εn and output vi; here n is the current size of S.

The quantile summary is updated via two operations. When a new element v arrives it is
inserted into the summary. The quantile summary is compressed by merging consecutive elements
to keep the summary within the desired space bounds.

We now describe the INSERT operation that takes a quantile summary Q and inserts a new
element v. First we search over the elements in Q to find an i such that vi < v < vi+1; the case
when v is the new smallest element or the new largest element are handled easily. A new tuple
t = (v, 1,∆) with ∆ = b2εnc− 1 is added to the summary where t becomes the new (i+ 1)st tuple.
Note that here n is the current size of the stream. It is not hard to see if the summary Q before

3

arrival of v satisfied the condition in Lemma 5 then Q satisfies the condition after inserting the
tuple (note that n increased by 1). We note that that the first 1/(2ε) elements are inserted into
the summary with ∆i = 0.

Compression is the main ingredient. To understand the operation it is helpful to define the
notion of a capacity of a tuple. Note that when v arrived t = (v, 1,∆) is inserted where ∆ ' 2εn′

where n’ is the time when v arrived. At time n > n′ the capacity of the tuple ti is defined as
2εn−∆i. As n grows, the capacity of the tuple increases since we are allowed to have more error.
We can merge tuples ti′ , ti′+1, . . . , ti into ti+1 at time n (which means we eliminate ti′ , . . . , ti) while
ensuring the desired precision if

∑i+1
j=i′ gj + ∆i+1 ≤ 2εn; gi+1 is updated to

∑i+1
j=i′ gj and ∆i+1 does

not change. Note that this means that ∆ of a tuple does not change once it is inserted.
Note that the insertion and merging operations preserve correctness of the summary. In order

to obtain the desired space bound the merging/compression has to be done rather carefully. We
will not go into details but mention that one of the key ideas is to keep track of the capacity of the
tuples in geometrically increasing intervals and to ensure that the summary retains only a small
number of tuples per interval.

2 Exact Selection

We will now describe a p-pass deterministic algorithm to select the rank k element in a stream using
Õ(n1/p)-space; here p ≥ 2. It is not hard to show that for p = 1 any deterministic algorithm needs
Ω(n) space; one has to be a bit careful in arguing about bits vs words and the precise model but a
near-linear lower bound is easy. Munro and Paterson described the Õ(n1/p)-space algorithm using
p passes. We will not describe their precise algorithm but instead use the approximate quantile
based analysis.

We will show that given space s and a stream of n items the problem can be effectively reduced
in one pass to selecting from O(n log2 n/s) items.

Suppose we can do the above. Choose s = n1/p(log n)2−2/p. After i passes the problem is

reduced to n
p−i
p (log n)

2i
p elements. Setting i = p − 1 we see that the number of elements left for

the p’th pass is O(s). Thus all of them can be stored and selection can be done offline.
We now describe how to use one pass to reduce the effective size of the elements under con-

sideration to O(n log2 n/s). The idea is that we will be able to select two elements a1, b1 from the
stream such that a1 < b1 and the k’th ranked element is guaranteed to be in the interval [a1, b1].
Moreover, we are also guaranteed that the number of elements between a and b in the stream is
O(n log2 n/s). a1 and b1 are the left and right filter after pass 1. Initially a0 = −∞ and b0 = ∞.
After i passes we will have filters ai, bi. Note that during the (i + 1)st pass we can compute the
exact rank of ai and bi.

How do we find a1, b1? We saw how to obtain an ε-approximate summary using O(1ε log2 n)
space. Thus, if we have space s, we can set ε′ = log2 n/s. Let Q = {q1, q2, . . . , q`} be ε′-approximate
quantile summary for the stream. We query Q for r1 = k−ε′n−1 and r2 = k+ε′n+1 and obtain a1
and b1 as the answers to the query (here we are ignoring the corner cases where r1 < 0 or r2 > n).
Then, by the ε′-approximate guarantee of Q we have that the rank k element lies in the interval
[a1, b1] and moreover there are at most O(ε′n) elements in this range.

It is useful to work out the algebra for p = 2 which shows that the median can be computed in
O(
√
n log2 n) space.

4

2.1 Random Order Streams

Munro and Paterson also consider the random order stream model in their paper. Here we assume
that the stream is a random permutation of an ordered set. It is also convenient to use a different
model where the the i’th element is a real number drawn independently from the interval [0, 1]. We
can ask whether the randomness can be taken advantage of. Indeed one can. They showed that
with O(

√
n) space one can find the median with high probability. More generally they showed that

in p passes one can find the median with space O(n1/(2p)). Even though this space bound is better
than for adversarial streams it still requires Ω(log n) passes is we have only poly-logarithmic space,
same as the adversarial setting. Guha and McGregor [3] showed that in fact O(log log n) passes
suffice (with high probability).

Here we describe the Munro-Paterson algorithm; see also http://polylogblog.wordpress.

com/2009/08/30/bite-sized-streams-exact-median-of-a-random-order-stream/.
The algorithm maintains a set S of s consecutively ranked elements in the stream seen so far. It

maintains two counters ` for the number of elements less then minS (the min element in S) which
have been seen so far and h for the number of elements larger than maxS which have been so far.
It tries to maintain h− ` as close to 0 as possible to “capture” the median.

MunroPaterson(s):

n← 0
S ← ∅
`, h← 0
While (stream is not empty) do
n← n+ 1
a is the new element
if (a < minS) then `← `+ 1
else if (a > maxS) then h← h+ 1
else add a to S
if (|S| = s+ 1)

if (h < `) discard maxS from S and h← h+ 1
else discard minS from S and `← `+ 1

endWhile
if 1 ≤ (n+ 1)/2− ` ≤ s then

return (n+ 1)/2− `-th smallest element in S as median
else return FAIL.

To analyze the algorithm we consider the random variable d = h− ` which starts at 0. In the
first s iterations we simply fill up S to capacity and h− ` remains 0. After that, in each step d is
either incremented or decremented by 1. Consider the start of iteration i when i > s. The total
number of elements seen prior to i is i − 1 = ` + h + s. In iteration i, since the permutation is
random, the probability that ai will be larger than maxS is precisely (h+ 1)/(h+ s+ 1 + `). The
probability that ai will be smaller than minS is precisely (` + 1)/(h + s + 1 + `) and thus with
probability (s− 1)/(h+ s+ 1 + `), ai will be added to S.

Note that the algorithm fails only if |d| at the end of the stream is greater than s. A sufficient
condition for success is that |d| ≤ s throughout the algorithm. Let pd,i be the probability that |d|
increases by 1 conditioned on the fact that 0 < |d| < s. Then we see that pd,i ≤ 1/2. Thus the
process can be seen to be similar to a random walk on the line and some analysis shows that if we
choose s = Ω(

√
n) then with high probability |d| < s throughout. Thus, Ω(

√
n) space suffices to

find the median with high probability when the stream is in random order.

5

http://polylogblog.wordpress.com/2009/08/30/bite-sized-streams-exact-median-of-a-random-order-stream/
http://polylogblog.wordpress.com/2009/08/30/bite-sized-streams-exact-median-of-a-random-order-stream/

Connection to CountMin sketch and deletions: Note that when we were discussion fre-
quency moments we assume that the elements were drawn from a [n] where n was known in
advance while here we did not assume anything about the elements other than the fact that they
came from an ordered universe (apologies for the confusion in notation since we used m previously
for length of stream). If we know the range of the elements in advance and it is small compared to
the length of the stream then CountMin and related techniques are better suited and provide the
ability to handle deletions. The GK summary can also handle some deletions. We refer the reader
to [1] for more details.

Lower Bounds: For median selection Munro and Paterson showed a lower bound of Ω(n1/p) on
the space for p passes in a restricted model of computation. Guha and McGregor showed a lower
bound of Ω(n1/p/p6) bits without any restriction. For random order streams O(log log n) passes
suffice with polylog(n) space for exact selection with high probability [3]. Moreover Ω(log log n)
passes are indeed necessary; see [3] for references and discussion.

Bibliographic Notes: See the references for more information.

References

[1] Michael Greenwald and Sanjeev Khanna. Quantiles and equidepth histograms over streams.
Available at http://www.cis.upenn.edu/~mbgreen/papers/chapter.pdf. To appear as a
chapter in a forthcoming book on Data Stream Management.

[2] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile sum-
maries. In ACM SIGMOD Record, volume 30, pages 58–66. ACM, 2001.

[3] Sudipto Guha and Andrew McGregor. Stream order and order statistics: Quantile estimation
in random-order streams. SIAM Journal on Computing, 38(5):2044–2059, 2009.

[4] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate medians and
other quantiles in one pass and with limited memory. In ACM SIGMOD Record, volume 27,
pages 426–435. ACM, 1998.

[5] J Ian Munro and Mike S Paterson. Selection and sorting with limited storage. Theoretical
computer science, 12(3):315–323, 1980.

6

http://www.cis.upenn.edu/~mbgreen/papers/chapter.pdf

	Approximate Quantiles and Summaries
	An O(1 log2 (n) space algorithm
	An O(1 log(n) space algorithm

	Exact Selection
	Random Order Streams

