
CS 598CSC: Algorithms for Big Data Lecture date: August 26, 2014
Instructor: Chandra Chekuri Scribe: Chandra Chekuri

1 Introduction/Administrivia

• Course website: https://courses.engr.illinois.edu/cs598csc/fa2014/.

• There is no specific book that we will follow. See website for pointers to several resources.

• Grading based on 4-5 homeworks, scribing a lecture and course project. Details to be figured
out.

Course Objectives

Big Data is all the rage today. The goal of this course is learn about some of the basic algorithmic
and analysis techniques that have been useful in this area. Some of the techniques are old and
many have been developed over the last fifteen years or so. A few topics that we hope to cover are:

• Streaming, Sketching and Sampling

• Dimensionality Reduction

• Streaming for Graphs

• Numerical Linear Algebra

• Compressed Sensing

• Map-Reduce model and some basic algorithms

• Property Testing

• Lower Bounds via Communication Complexity

There is too much material in the above topics. The plan is to touch upon the basics so that it
will provide an impetus to explore further.

2 Streaming/One-Pass Model of Computation

In the streaming model we assume that the input data comes as a stream. More formally, the
data is assumed to consist of m items/tokens/objects a1, a2, . . . , am. A simple case is when each
token is a number in the range [1..n]. Another example is when each token represents an edge in
a graph given as (u, v) where u and and v are integers representing the node indices. The tokes
arrive one by one in order. The algorithm has to process token xi before it sees the next token. If
we are allowed to store all the tokens then we are in the standard model of computing where we
have access to the whole input. However, we will assume that the space available to the algorithm
is much less than m tokens; typically sub-linear in m or in the ideal scenario polylog(m). Our goal
is to (approximately) compute/estimate various quantities of interest using such limited space.
Surprisingly one can compute various useful functions of interest. Some parameters of interest for
a streaming algorithm are:

1

https://courses.engr.illinois.edu/cs598csc/fa2014/

• space used by the algorithm as a function of the stream length m and the nature of the tokens

• the worst-case time to process each token

• the total time to process all the tokens (equivalently the amortized time to process a token)

• the accuracy of the output

• the probability of success in terms of obtaining a desired approximation (assuming that the
algorithm is randomized)

There are several application areas that motivate the streaming model. In networking, a large
number of packets transit a switch and we may want to analyze some statistics about the packets.
The number of packets transiting the switch is vastly more than what can be stored for offline
processing. In large databases the data is stored in disks and random access is not feasible; the
size of the main memory is much smaller than the storage available on the disk. A one-pass or
multi-pass streaming algorithm allows one to avoid sophisticated data structures on the disk. There
are also applications where the data is distributed in several places and we need to process them
separately and combine the results with low communication overhead.

In database applications and such it also makes sense to discuss the multi-pass model or the
semi-streaming model where one gets to make several passes over the data. Typically we will
assume that the number of passes is a small constant.

3 Background on Probability and Inequalities

The course will rely heavily on proababilistic methods. We will mostly rely on discrete probability
spaces. We will keep the discussion high-level where possible and use certain results in a black-box
fashion.

Let Ω be a finite set. A probability measure p assings a non-negative number p(ω) for each
ω ∈ Ω such that

∑
ω∈Ω p(ω) = 1. The tuple (Ω, p) defines a discrete probability space; an event in

this space is any subset A ⊆ Ω and the probability of an event is simply p(A) =
∑

ω∈A p(ω). When
Ω is a continuous space such as the interval [0, 1] things get trickier and we need to talk about a
measure spaces σ-algebras over Ω; we can only assign probability to certain subsets of Ω. We will
not go into details since we will not need any formal machinery for what we do in this course.

An important definition is that of a random variable. We will focus only on real-valued random
variables in this course. A random variable X in a probability space is a function X : Ω → R.
In the discrete setting the expectation of X, denoted by E[X], is defined as

∑
ω∈Ω p(w)X(ω). For

continuous spaces E[X] =
∫
X(ω)dp(ω) with appropriate definition of the integral. The variance

of X, denoted by Var[X] or as σ2
X , is defined as E[(X − E[X])2]. The standard deviation is σX ,

the square root of the variance.

Theorem 1 (Markov’s Inequality) Let X be a non-negative random variable such that E[X] is
finite. Then for any t > 0, Pr[X ≥ t] ≤ E[X]/t.

Proof: The proof is in some sense obvious, especially in the discrete case. Here is a sketch. Define
a new random variable Y where Y (ω) = X(ω) if X(ω) < t and Y (ω) = t if X(ω) ≥ t. Y is

2

non-negative and Y ≤ X point-wise and hence E[Y] ≤ E[X]. We also see that:

E[X] ≥ E[Y] =
∑

ω:X(ω)<t

X(ω)p(ω) +
∑

ω:X(ω)≥t

tp(ω)

≥ t
∑

ω:X(ω)≥t

p(ω) (since X is non-negative)

≥ tPr[X ≥ t].

The continuous case follows by replacing sums by integrals. 2

Markov’s inequality is tight under the assumption. Assume you can construct an example. The
more information we have about a random variable the better we can bound its deviation from the
expectation.

Theorem 2 (Chebyshev’s Inequality) Let X be a random variable with E[X] and Var[X] fi-
nite. Then Pr[|X| ≥ t] ≤ E[X2]/t2 and Pr[|X −E[X]| ≥ tσX] ≤ 1/t2.

Proof: Consider the non-negative random variable Y = X2. Pr[|X| ≥ t] = Pr[Y ≥ t2] and we apply
Markov’s inequality to the latter. The second inequality is similar by considering Y = (X−E[X])2.

2

Chernoff-Hoeffding Bounds: We will use several times various forms of the Chernoff-Hoeffding
bounds that apply to a random variable that is a a finite sum of bounded and independent random
variables. There are several versions of these bounds. First we state a general bound that is
applicable to non-negative random variables and is dimension-free in that it depends only the
expectation rather than the number of variables.

Theorem 3 (Chernoff-Hoeffding) Let X1, X2, . . . , Xn be independent binary random variables
and let a1, a2, . . . , an be coefficients in [0, 1]. Let X =

∑
i aiXi. Then

• For any µ ≥ E[X] and any δ > 0, Pr[X > (1 + δ)µ] ≤
(

eδ

(1+δ)(1+δ)

)µ
.

• For any µ ≤ E[X] and any δ > 0, Pr[X < (1− δ)µ] ≤ e−µδ2/2.

The following corollary bounds the deviation from the mean in both directions.

Corollary 4 Under the conditions of Theorem 3, the following hold:

• If δ > 2e− 1, Pr[X ≥ (1 + δ)µ] ≤ 2−(1+δ)µ.

• For any U there is a constant c(U) such that for 0 < δ < U , Pr[X ≥ (1 + δ)µ] ≤ e−c(U)δ2µ.
In particular, combining with the lower tail bound,

Pr[|X − µ| ≥ δµ] ≤ 2e−c(U)t2µ.

We refer the reader to the standard books on randomized algorithms [6] and [4] for the derivation
of the above bounds.

If we are interested only in the upper tail we also have the following bounds which show the
dependence of µ on n to obtain an inverse polynomial probability.

3

Corollary 5 Under the conditions of Theorem 3, there is a universal constant α such that for any
µ ≥ max{1,E[X]}, and sufficiently large n and for c ≥ 1, Pr[X > αc lnn

ln lnn · µ] ≤ 1/nc. Similarly,
there is a constant α such that for any ε > 0, Pr[X ≥ (1 + ε)µ+ αc log n/ε] ≤ 1/nc.

Remark 6 If the Xi are in the range [0, b] for some b not equal to 1 one can scale them appropri-
ately and then use the standard bounds.

Some times we need to deal with random variables that are in the range [−1, 1]. Consider the
setting where X =

∑
iXi where for each i, Xi ∈ [−1, 1] and E[Xi] = 0, and the Xi are independent.

In this case E[X] = 0 and we can no longer expect a dimension-free bound. Suppose each Xi is 1
with probability 1/2 and −1 with probability 1/2. Then X =

∑
iXi corresponds to a 1-dimensional

random walk and even though the expected value is 0 the standard deviation of X is Θ(
√
n). One

can show that Pr[|X| ≥ t
√
n] ≤ 2e−t

2/2. For these settings we can use the following bounds.

Theorem 7 Let X1, X2, . . . , Xn be independent random variables such that for each i, Xi ∈ [ai, bi].
Let X =

∑
i aiXi and let µ = E[X]. Then

Pr[|X − µ| ≥ t] ≤ 2e
− 2t2∑n

i=1
(bi−ai)2 .

In particular if bi − ai ≤ 1 for all i then

Pr[|X − µ| ≥ t] ≤ 2e−
2t2

n .

Note that Var[X] =
∑

i Var[Xi]. One can show a bound based of the following form

Pr[|X − µ| ≥ t] ≤ 2e
− t2

2(σ2
X

+Mt/3)

where |Xi| ≤M for all i.

Remark 8 Compare the Chebyshev bound to the Chernoff-Hoeffding bounds for the same variance.

Statistical Estimators, Reducing Variance and Boosting: In streaming we will mainly
work with randomized algorithms that compute a function f of the data stream x1, . . . , xm. They
typically work by producing an unbiased estimator, via a random variable X, for the the function
value. That is, the algorithm will have the property that the E[X] is the desired value. Note that
the randomness is internal to the algorithm and not part of the input (we will also later discuss
randomness in the input when considering random order streams). Having an estimator is not often
useful. We will also typically try to evaluate Var[X] and then we can use Chebyshev’s inequality.
One way to reduce the variance of the estimate is to run the algorithm in parallel (with separate
random bits) and get estimators X1, X2, . . . , Xh and use X = 1

h

∑
iXi as the final estimator. Note

that Var(X) = 1
h

∑
i Var(Xi) since the Xi are independent. Thus the variance has been reduced

by a factor of h. A different approach is to use the median value of X1, X2, . . . , Xh as the final
estimator. We can then use Chernoff-Hoeffding bounds to get a much better dependence on h.
In fact both approaches can be combined and we illustrate it via a concrete example in the next
section.

4

4 Probabilistic Counting and Morris’s Algorithm

Suppose we have a long sequence of events that we wish to count. If we wish to count a sequent of
events of length upto some N we can easily do this by using a counter with dlog2Ne bits. In some
settings of interest we would like to further reduce this. It is not hard to argue that if one wants
an exact and deterministic count then we do need a counter with dlog2Ne bits. Surprisingly, if we
allow for approximation and randomization, one can count with about log logN bits. This was first
shown in a short and sweet paper of Morris [5]; it is a nice paper to read the historical motivation.

Morris’s algorithm keeps a counter that basically keeps an estimate of logN where N is the
number of events and this requires about log logN bits. There are several variants of this, here we
will discuss the simple one and point the reader to [5, 3, 1] for other schemes and a more detailed
and careful analysis.

ProbabilisticCounting:
X ← 0
While (a new event arrives)

Toss a biased coin that is heads with probability 1/2X

If (coin turns up heads)
X ← X + 1

endWhile
Output 2X − 1 as the estimate for the length of the stream.

For integer i ≥ 0, let Xn be the random variable that denotes the value of the counter after i
events. Let Yn = 2Xn . The lemma below shows that the output of the algorithm is an unbiased
estimator of the count that we desire.

Lemma 9 E[Yn] = n+ 1.

Proof: Proof by induction on n. The case of n = 0, 1 is easy to verify since in both cases we have
that Yn is deterministically equal to n+ 1. We have for n ≥ 2:

E[Yn] = E[2Xn] =
∞∑
j=0

2j Pr[Xn = j]

=

∞∑
j=0

2j
(

Pr[Xn−1 = j] · (1− 1

2j
) + Pr[Xn−1 = j − 1] · 1

2j−1

)

=

∞∑
j=0

2j Pr[Xn−1 = j] +

∞∑
j=0

(2 Pr[Xn−1 = j − 1]− Pr[Xn−1 = j])

= E[Yn−1] + 1

= n+ 1

where we used induction to obtain the final equality. 2

Since E[Yn] = n + 1 we have E[Xn] = log2(n + 1) which implies that the expected number of
bits in the counter after n events is log log n+O(1) bits. We should also calculate the variance of
Yn.

Lemma 10 E[Y 2
n] = 3

2n
2 + 3

2n+ 1 and Var[Yn] = n(n− 1)/2.

5

Proof: Proof is by induction on n. Easy to verify base cases n = 0, 1 since Yn = n+ 1 determinis-
tically. For n ≥ 2:

E[Y 2
n] = E[22Xn] =

∑
j≥0

22j · Pr[Xn = j]

=
∑
j≥0

22j ·
(

Pr[Xn−1 = j](1− 1

2j
) + Pr[Xn−1 = j − 1]

1

2j−1

)
=

∑
j≥0

22j · Pr[Xn−1 = j] +
∑
j≥0

(
−2j Pr[Xn−1 = j − 1] + 42j−1 Pr[Xn−1 = j − 1]

)
= E[Y 2

n−1] + 3E[Yn−1]

=
3

2
(n− 1)2 +

3

2
(n− 1) + 1 + 3n

=
3

2
n2 +

3

2
n+ 1.

We used induction and the value of E[Yn] that we previously computed. Var[Yn] = E[Y 2
n]−(E[Yn])2

and it can be verified that it is equal to n(n− 1)/2. 2

4.1 Approximation and Success Probability

The analysis of the expectation shows that the output of the algorithm is an unbiased estimator.
The analysis of the variance shows that the estimator is fairly reasonable. However, we would like
to have a finer understanding. For instance, given some parameter ε > 0, what is Pr[|Yn−(n+1)| >
εn]? We could also ask a related question. Is there an algorithm that given ε, δ guarantees that the
output Y will satisfy the property that Pr[|Y − n| > εn] ≤ δ while still ensuring that the counter
size is O(log log n); of course we would expect that the constant in the O() notation will depend
on ε, δ.

The algorithm can be modified to obtain a (1 + ε)-approximation with constant probability
using a related scheme where the probability of incrementing the counter is 1

aX
for some parameter

a; see [5, ?]. The expected number of bits in the counter to achieve a (1 + ε)-approximation can be
shown to be log log n+O(log 1/ε) bits.

Here we describe two general purpose ways to obtain better approximations by using inde-
pendent estimators. Suppose we run the basic algorithm h times in parallel with independent
randomness to get estimators Yn,1, Yn,2, . . . , Yn,h. We then output Z = 1

h

∑h
i=1 Yn,i − 1 as our

estimate for n. Note that Z is also an unbiased estimator. We have that Var[Z] = 1
hVar[Yn].

Claim 11 Suppose h = 2/ε2 then Pr[|Z − n| ≥ εn] < 1
4 .

Proof: We apply Chebyshev’s inequality to obtain that

Pr[|Z − n| ≥ εn] ≤ Var[Z]

ε2n2
≤ 1

h

Var[Yn]

ε2n2
≤ 1

h

n(n− 1)

2ε2n2
<

1

4
.

2

Now suppose we want a high probability guarantee regarding the approximation. That is, we
would like the estimator to be a (1 + ε)-approximation with probability at least (1 − δ) for some
given parameter δ.

We choose ` = c log 1
δ for some sufficiently large constant c. We independently and in parallel

obtain estimators Z1, Z2, . . . , Z` and output the median of the estimators; lets call Z ′ the random
variable corresponding to the median. We will prove the following.

6

Claim 12 Pr[|Z ′ − n| ≥ εn] ≤ (1− δ).

Proof: Define an indicator random variable Ai, 1 ≤ i ≤ ` where Ai is 1 if |Zi − n| ≥ εn. From
Claim 11, Pr[Ai = 1] < 1/4. Let A =

∑`
i=1Ai and hence E[A] < `/4. We also observe that

|Z ′ − n| ≥ εn only if A ≥ `/2, that is, if more than half of the Zi’s deviate by more than εn. We
can apply Chernoff-Hoeffding bound to upper bound Pr[A ≥ `/2] = Pr[A ≥ (1 + δ)µ] where δ = 1
and µ = `/4 ≥ E[A]. From Theorem 3 this is at most (e/4)`/4. Since ` = c log 1

δ , the probability is
at most δ for an appropriate choice of c. 2

The total space usage for running the estimates in parallel is O(1
ε2
· log 1

δ · log log n).

5 Reservoir Sampling

Random sampling is a powerful general purpose technique in a variety of areas. The goal is to pick
a small subset S of a set of items N such that S is representative of N and often a random sample
works well. The simplest sampling procedure is to pick a uniform sample of size k from a set of size
m where k ≤ m (typically k � m). We can consider sampling with or without replacement. These
are standard and easy procedures if the whole data set is available in a random-access manner —
here we are assuming that we have access to a random number generator.

Below we describe a simple yet nice technique called reservoir sampling to obtain a uniform
sample of size 1 from a stream.

UniformSample:
s← null
m← 0
While (stream is not done)
m← m+ 1
xm is current item
Toss a biased coin that is heads with probability 1/m
If (coin turns up heads)

s← xm
endWhile
Output s as the sample

Lemma 13 Let m be the length of the stream. The output of the algorithm s is uniform. That is,
for any 1 ≤ j ≤ m, Pr[s = xj] = 1/m.

Proof: We observe that s = xj if xj is chosen when it is considered by the algorithm (which
happens with probability 1/j), and none of xj+1, . . . , xm are chosen to replace xj . All the relevant
events are independent and we can compute:

Pr[s = xj] = 1/j ×
∏
i>j

(1− 1/i) = 1/m.

2

To obtain k samples with replacement, the procedure for k = 1 can be done in parallel with inde-
pendent randomness. Now we consider obtaining k samples from the stream without replacement.
The output will be stored in an array of S of size k.

7

Sample-without-Replacement(k):

S[1..k]← null
m← 0
While (stream is not done)
m← m+ 1
xm is current item
If (m ≤ k)

S[m]← xm
Else

r ← uniform random number in range [1..m]
If (r ≤ k)

S[r]← xm
endWhile
Output S

An alternative description is that when item xt arrives (for t > k) we decide to choose it for
inclusion in S with probability k/t, and if it is chosen then we choose a uniform element from S to
be replaced by xt.

Exercise: Prove that the algorithm outputs a random sample without replacement of size k from
the stream.

Weighted sampling: Now we consider a generalization of the problem to weighted sampling.
Suppose the stream consists of m items x1, . . . , xm and each item j has a weigth wj > 0. The goal is
to choose a k sample in proportion to the weights. Suppose k = 1 then the goal is to choose an item
s such that Pr[s = xj] = wj/W where W =

∑
iwi. It is easy to generalize the uniform sampling

algorithm to achieve this and k samples with replacement is also easy. The more interesting case is
when we want k samples without replacement. The precise definition of what this means is not so
obvious. Here is an algorithm. Obtain first a uniform sample s from x1, . . . , xm in proportion to
the weights. Remove s from the set and obtain another uniform sample in the residual set. Repeat
k times to obtain a set of k items (assume that k < m). The k removed items form the output
S. We now want to obtain a random set S according to this same distribution but in a streaming
fashion.

First we describe a randomized offline algorithm below.

Weighted-Sample-without-Replacement(k):

For i = 1 to m do
ri ← uniform random number in interval (0, 1)

w′
i = r

1/wi

i

endFor
Sort items in decreasing order according to w′

i values
Output the first k items from the sorted order

We leave it as a simple exercise to show that the above algorithm can be implemented in the
stream model by keeping the heaviest k modified weights seen so far. Now for the analysis.

To get some intuition we make the following claim.

8

Claim 14 Let r1, r2 be independent unformly distributed random variables over [0, 1] and let X1 =

r
1/w1

1 and X2 = r
1/w2

2 where w1, w2 ≥ 0. Then

Pr[X1 ≤ X2] =
w2

w1 + w2
.

The above claim can be shown by doing basic analysis via the probability density functions. More
precisely, suppose w > 0. Consider the random variable Y = r1/w where r is chosen uniformly in
(0, 1). The cumulative probabilty function of Y ,

FY (t) = Pr[Y ≤ t] = Pr[r1/w ≤ t] = Pr[r ≤ tw] = tw.

Therefore the density function fY (t) is wtw−1. Thus

Pr[X1 ≤ X2] =

∫ 1

0
FY1(t)fY2(t)dt =

∫ 1

0
tw1w2t

w2−1dt =
w2

w1 + w2
.

We now make a much more general statement.

Lemma 15 Let r1, r2, . . . , rn be independent random variables each of which is uniformly dis-

tributed random variables over [0, 1]. Let Xi = r
1/wi
i for 1 ≤ i ≤ n. Then for any α ∈ [0, 1]

Pr[X1 ≤ X2 . . . ≤ Xn ≤ α] = αw1+w2+...+wn ·
n∏
i=1

wi
w1 + . . .+ wi

.

Proof: By induction on n. For n = 1, Pr[X1 ≤ α] = FY1(α) = αw1 . Assuming the lemma holds
for all h < n we prove it for n.

Pr[X1 ≤ . . . ≤ Xn ≤ α] =

∫ α

0
Pr[X1 ≤ . . . ≤ Xn−1 ≤ t]fYn(t)dt

=

∫ α

0
tw1+w2+...+wn−1 ·

(
n−1∏
i=1

wi
w1 + . . .+ wi

)
wnt

wn−1dt

= wn

(
n−1∏
i=1

wi
w1 + . . .+ wi

)∫ α

0
tw1+w2+...+wn−1dt

= αw1+w2+...+wn ·
n∏
i=1

wi
w1 + . . .+ wi

.

We used the induction hypothesis in the second equality. 2

Now we are ready to finish the proof. Consider any fixed j. We claim that the probability
that Xj is the largest number among X1, X2, . . . , Xm is equal to

wj
w1+...+wn

. Do you see why?
Conditioned on Xj being the largest, the rest of the variables are still independent and we can
apply this observation again. You should hopefully be convinced that picking the largest k among
the values X1, X2, . . . , Xm gives the desired sample.

Bibliographic Notes: Morris’s algorithm is from [5]. See [3] for a detailed analysis and [1] for
a more recent treatment which seems cleaner and easier. Weighted reservoir sampling is from [2].
See [7] for more on efficient reservoir sampling methods.

9

References

[1] Miklós Csürös. Approximate counting with a floating-point counter. CoRR, abs/0904.3062,
2009.

[2] Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with a reservoir. Infor-
mation Processing Letters, 97(5):181–185, 2006.

[3] Philippe Flajolet. Approximate counting: a detailed analysis. BIT Numerical Mathematics,
25(1):113–134, 1985.

[4] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

[5] Robert Morris. Counting large numbers of events in small registers. Communications of the
ACM, 21(10):840–842, 1978.

[6] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[7] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37–57, 1985.

10

	Introduction/Administrivia
	Streaming/One-Pass Model of Computation
	Background on Probability and Inequalities
	Probabilistic Counting and Morris's Algorithm
	Approximation and Success Probability

	Reservoir Sampling

