
Homework 3

Topics in Graph Algorithms
CS598CCI, Spring 2020

Due: 3/27/2020 10am

Instructions and Policy: Each person should write up their own solutions independently. You
need to indicate the names of the people you discussed a problem with. Solutions to most of these
problems can be found from one source or the other. Try to solve on your own first, and cite your
sources if you do use them.

Please write clearly and concisely. Refer to known facts. You should try to convince me that you
know the solution, as quickly as possible.

Do as many problems as you can. I expect you to do at least 3 and you should do Problem 4.

Problem 1. Given a graph G = (V,E) let I = {S ⊆ V | there is a matching M in G that covers S}.
Prove that (V, I) is a matroid.

Extra credit: Is this matroid a linear matroid?

Problem 2. Let G = (V, E) be a hypergraph, that is each e ∈ E is a hyperedge, in other words
e ⊆ V . If all edges have the property that |e| = 2 we have graphs but in general hypergraphs can
have edges of different cardinalities. With each hypergraph G one can associate a bipartite graph
HG = (V ∪ E , F ) where V is on one side of the bipartite graph and E is on the other side and we
connect v and e by an edge f if v ∈ e.

• There is an obvious attempt at generalizing the graphic matroid to hypergraphs with ground
set E via the notion of acyclicity. To define this formally consider X ⊆ E and let V (X) =
∪e∈Xe be the set of vertices incident to hyperedges in X . Consider the natural bipartite graph
associated with the hypergraph (V (X), X) and define X to be acyclic if this bipartite graph
is acyclic. Now consider I = {X ⊆ E | X is acyclic}. Prove via a counter example that
(E , I) in general need not be a matroid.

• We say that X ⊆ E a forest-representable if one can choose for each e ∈ X two nodes in
e such that the chosen pairs when viewed as edges form a forest on V . Prove that (E , I) is
a matroid where I = {X ⊆ E | X is forest-representable}. This is called the hypergraphic
matroid.

• Extra credit: Is the hypergraphc matroid a linear matroid?

Problem 3. Let f : E → Z+ be an integer-valued monotone submodular function with f(∅) = 0.
Such a function is called a polymatroid. Recall that the rank function of a matroidM = (E, I) is
a polymatroid with the additional property that f(e) ≤ 1 for each e ∈ E. Can every polymatroid
be understood via matroids? This problem shows that this is indeed the case. If f is a polymatroid
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then f(e) can be an integer larger than 1. Given f over E construct a new set X where X = ]eXe

where Xe is a set of f(e) elements (Xe and Xe′ for e 6= e′ are disjoint sets). We define a set
function r over ground set X as follows. For U ⊆ X let

r(U) = min
T⊆E

(f(T ) + |U \
⋃
e∈T

Xe|).

• Prove that r is the rank function of a matroid over X .

• Prove that for any T ⊆ E, f(T ) = r(∪e∈TXe).

Problem 4. LetmM = (E, I) be a matroid on |E| = n elements and let c : E → Z+ be costs on
the elements. Let rM denote the rank function ofM which we abbreviate by r. A ∈ {0, 1}m×n
and b ∈ Zm be a matrix and vector. We wish to solve the problem of finding a minimum cost basis
inM that respects the packing constraints specified in the form Ax ≤ b. More formally consider
the following integer program.

min
∑
e∈E

cexe

Ax ≤ b∑
e∈S

xe ≤ r(S) ∀S ⊆ E∑
e∈E

xe = r(E)

xe ∈ {0, 1} ∀e ∈ E

Let ∆ denote an upper bound on number of nonzeroes in any column of A.

• Why is the bounded degree minimum spanning tree problem a special case of the preceding
problem? What is ∆ in this case?

• Suppose x∗ is an extreme point solution of the LP relaxation and x∗ is fully fractional. Show
that x∗ is the unique solution of n linearly independent tight constraints from the LP some
of which come from the packing constraints Ax ≤ b and the rest from the tight constraints
of the matroid polytope and these latter constraints can be chosen to form a chain.

• Use the characterization in the preceding part and a token counting argument to show that
if x∗ is fully fractional then there must be some row Ai in Ax ≤ b such that Ai has at most
bi + ∆− 1 non-zero entries.

• Use the preceding part to develop an iterated rounding algorithm that outputs a base B such
that c(B) ≤ OPT and A1B ≤ b + ∆− 1. In other words each packing is violated by at most
an additive ∆ − 1 amount. If ∆ − 1 is hard to achieve prove a weaker bound of the form
∆ + c for some fixed integer c. Since you are working with fully fractional solutions you
may need to use matroid contraction in addition to deletion to handle the case when x∗e = 1
for some e.
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