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In the last lecture, we studied the KNAPSACK problem. The KNAPSACK problem is an NP-
hard problem but does admit a pseudo-polynomial time algorithm and can be solved efficiently
if the input size is small. We used this pseudo-polynomial time algorithm to obtain an FPTAS
for KNAPSACK. In this lecture, we study another class of problems, known as strongly NP-hard
problems.

Definition 1 (Strongly NP-hard Problems) An NPO problem π is said to be strongly NP-hard if it is
NP-hard even if the inputs are polynomially bounded in combinatorial size of the problem 1.

Many NP-hard problems are in fact strongly NP-hard. If a problem Π is strongly NP-hard,
then Π does not admit a pseudo-polynomial time algorithm. For more discussion on this, refer to
[1, Section 8.3] We study two such problems in this lecture, MULTIPROCESSOR SCHEDULING and
BIN PACKING.

1 Load Balancing / MultiProcessor Scheduling

A central problem in scheduling theory is to design a schedule such that the finishing time of the
last jobs (also called makespan) is minimized. This problem is often referred to as the LOAD BAL-
ANCING, the MINIMUM MAKESPAN SCHEDULING or MULTIPROCESSOR SCHEDULING problem.

1.1 Problem Description

In the MULTIPROCESSOR SCHEDULING problem, we are given m identical machines M1, . . . ,Mm

and n jobs J1, J2, . . . , Jn. Job Ji has a processing time pi ≥ 0 and the goal is to assign jobs to the
machines so as to minimize the maximum load2.

1.2 Greedy Algorithm

Consider the following greedy algorithm for the MULTIPROCESSOR SCHEDULING problem which
we will call GREEDY MULTIPROCESSOR SCHEDULING.

GREEDY MULTIPROCESSOR SCHEDULING:
Order (list) the jobs arbitrarily
For i = 1 to n do

Assign Job Ji to the machine with least current load
Update load of the machine that receives job Ji

1An alternative definition: A problem π is strongly NP-hard if every problem in NP can be polynomially reduced to
π in such a way that numbers in the reduced instance are always written in unary

2The load of a machine is defined as the sum of the processing times of jobs that are assigned to that machine.



This algorithm is also called a list scheduling algorithm since we can view it as assigning a
list of numbers (job sizes) to one of the m bins in a greedy fashion. We prove that the GREEDY

MULTIPROCESSOR SCHEDULING algorithm gives a 2-approximation.

Theorem 1 GREEDY MULTIPROCESSOR SCHEDULING algorithm gives a (2 − 1
m)-approximation for

any list.

To prove the theorem, we will make use of two lower bounds on the length of the optimal
schedule:

Observation: OPT ≥
∑

i pi
m

since, by the pigeonhole principle, some machine must have at least
∑

i pi/m amount of pro-
cessing time assigned to it 3.

Observation: OPT ≥ maxi pi

Proof of Theorem 1: For some fixed list, let L denote the makespan of the GREEDY MULTIPRO-
CESSOR SCHEDULING algorithm. Let Li denote the load of machine Mi and let Mi∗ be the most
heavily loaded machine in the schedule by GREEDY MULTIPROCESSOR SCHEDULING algorithm.

Let Jk be the last job assigned to Mi∗ . Since GREEDY MULTIPROCESSOR SCHEDULING algo-
rithm assigns a job to the machine that is least loaded, all machines must be loaded at least L− pk
at the time of assigning Jk. Hence, we have:(

n∑
i=1

pi

)
− pk ≥ m (L− pk) (1)

which implies:

L− pk ≤
(
∑n

i=1 pi)− pk
m

hence

L ≤
(
∑n

i=1 pi)

m
+ pk

(
1− 1

m

)
≤ OPT +OPT

(
1− 1

m

)
= OPT

(
2− 1

m

)
where the third step follows from the two lower bounds on OPT . 2

The above analysis is tight, i.e., there exist instances where the greedy algorithm produces a
schedule which has a makespan (2 − 1/m) times the optimal. Consider the following instance:
m(m − 1) jobs with unit processing time and a single job with processing time m. Suppose the

3One could also argue as follows: if this were not the case, each of the machines will be running for time less than∑
i pi/m. Given that the number of machines ism, the total load processed by the machines over optimal schedule will

be strictly less than
∑

i pi, which gives a contradiction.



greedy algorithm schedules all the short jobs before the long job, then the makespan of the sched-
ule obtained is (2m− 1) while the optimal makespan is m. Hence the algorithm gives a schedule
which has makespan 2− 1/m times the optimal.

It may seem from the tight example above that an approximation ratio α < (2 − 1/m) could
be achieved if the jobs are sorted before processing, which indeed is the case. The following algo-
rithm, due to [3], sorts the jobs in decreasing order of processing time prior to running GREEDY

MULTIPROCESSOR SCHEDULING algorithm.

MODIFIED GREEDY MULTIPROCESSOR SCHEDULING:
Sort the jobs in decreasing order of processing times
For i = 1 to n do

Assign Job Ji to the machine with least current load
Update load of the machine that receives job Ji

Theorem 2 MODIFIED GREEDY MULTIPROCESSOR SCHEDULING algorithm gives a (4/3 − 1/3m)-
approximation for the MULTIPROCESSOR SCHEDULING problem.

Claim 3 Suppose pi ≥ pj for all i > j and n > m. Then, OPT ≥ pm + pm+1.

Proof Sketch. Since n > m and the processing times are sorted in decreasing order, some two
of the (m + 1) largest jobs must be scheduled on the same machine. Notice that the load of this
machine is at least pm + pm+1. 2

Exercise: Prove that MODIFIED GREEDY MULTIPROCESSOR SCHEDULING gives a (3/2 − 1/2m)-
approximation.

Before going to the description of a PTAS for MULTIPROCESSOR SCHEDULING problem, we
discuss the case when the processing times of the jobs are bounded from above.

Claim 4 If pi ≤ ε · OPT , ∀i, then MODIFIED GREEDY MULTIPROCESSOR SCHEDULING gives a
(1 + ε)-approximation.

1.3 A PTAS for Multi-Processor Scheduling

We will now give a PTAS for the problem of scheduling jobs on identical machines. We would
like to use the same set of ideas that were used for the KNAPSACK problem (see Lecture 4): that is,
given an explicit time T we would like to round the job lengths and use dynamic programming to
see if they will fit within time T . Then the unrounded job lengths should fit within time T (1 + ε).

1.3.1 Big Jobs, Small Jobs and Rounding Big Jobs

For the discussion that follows, we assume that all the processing times have been scaled so that
OPT = 1 and hence, pmax ≤ 1.

Given all the jobs, we partition the jobs into two sets: Big jobs and Small jobs. We call a job Ji
“big” if pi ≥ ε. Let B and S denote the set of big jobs and small jobs respectively, i.e., B = {Ji :
pi ≥ ε} and S = {Ji : pi < ε}. The significance of such a partition is that once we pack the jobs in
set B, the jobs in set S can be greedily packed using list scheduling.



Claim 5 If there is an assignment of jobs in B to the machines with load L, then greedily scheduling jobs
of S on top gives a schedule of value no greater than max {L, (1 + ε)OPT}.
Proof: Consider scheduling the jobs in S after all the jobs in B have been scheduled (with load L).
If all of these jobs in S finish processing by time L, the total load is clearly no greater than L.

If the jobs in S can not be scheduled within time L, consider the last job to finish (after schedul-
ing the small jobs). Suppose this job starts at time T ′. All the machines must have been fully
loaded up to T ′, which gives OPT ≥ T ′. Since, for all jobs in S, we have pi ≤ ε · OPT , this job
finishes at T ′ + ε · OPT . Hence, the schedule can be no more than T ′ + ε · OPT ≤ (1 + ε)OPT ,
settling the claim. 2

1.3.2 Scheduling Big Jobs

We concentrate on scheduling the jobs in B. We round the sizes of all jobs in B using geometrically
increasing interval sizes using the following procedure:

ROUNDING JOBS:
For each big job i do

If pi ∈ (ε(1 + ε)j , ε(1 + ε)j+1]
Set pi = ε(1 + ε)j+1

Let B′ be the set of new jobs.

Claim 6 If jobs in B can be scheduled with load 1, then the rounded jobs in B′ can be scheduled with load
(1 + ε).

Claim 7 The number of distinct big job sizes after rounding is O(log1+ε ε)

Proof: Notice that due to scaling, we have pi ≤ 1 for all jobs Ji. Hence, we have:

ε(1 + ε)k ≤ 1

⇒ k ≤ log(1+ε)

1

ε
2

Lemma 8 If the number of distinct job sizes is k, then there is an exact algorithm that returns the schedule
(if there is one) and runs in time O(n2k).
Proof: Use Dynamic Programming. (Exercise, see Appendix A for the solution) 2

Corollary 9 Big Jobs can be scheduled (if possible) with load (1 + ε) in time nO(log1+ε
1
ε
).

Once we have scheduled the jobs in B, using Claim 5, we can pack small items using greedy
link scheduling. The overall algorithm is then given as:

PTAS MULTIPROCESSOR SCHEDULING:
1. Guess OPT
2. Define B and S
3. Round B to B′
4. If jobs in B′ can be scheduled in (1 + ε)OPT

Greedily pack S on top
Else

Modify the guess and Repeat.

In the following subsection, we comment on the guessing process.



1.3.3 Guessing

We define a (1 + ε)-relaxed decision procedure:

Definition 2 Given ε > 0 and a time T , a (1 + ε)-relaxed decision procedure returns:

• Output a schedule (if there is one) with load (1 + ε) · T in time nO(
log(1/ε)

ε
)

• Output correctly that there is no schedule of load T .

Define

L = max

max
j
pj ,

1

m

∑
j

pj


L is a lower bound on OPT using the two lower bounds on OPT discussed earlier. Furthermore, an
upper bound on OPT is given by the GREEDY MULTIPROCESSOR SCHEDULING algorithm, which
is 2L. Our algorithm will perform binary search on [L, 2L] with the decision procedure above until
interval length shrinks to size ε · L.

1.4 Section Notes

MULTIPROCESSOR SCHEDULING is NP-hard as we can reduce 2-PARTITION to MULTIPROCES-
SOR SCHEDULING on two machines. Note that this reduction only proves that MULTIPROCESSOR

SCHEDULING is weakly NP-hard. This infact is the case when there are a constant number of
machines. Horowitz and Sahni [4] give an FPTAS for this variant of the problem. However,
the MULTIPROCESSOR SCHEDULING problem is strongly NP-hard for m arbitrary (by a reduction
from 3-PARTITION [5]). Thus, there can not exist an FPTAS for the MULTIPROCESSOR SCHEDUL-
ING problem in general, unless P = NP. However, Hochbaum and Shmoys [6] gave a PTAS (a
(1 + ε)-approximation algorithm which runs in polynomial time for any fixed ε) for the problem.

2 Bin Packing

2.1 Problem Description

In the BIN PACKING problem, we are given a set of n items {1, 2, . . . , n}. Item i has size si ∈ (0, 1].
The goal is to find a minimum number of bins of capacity 1 into which all the items can be packed.

One could also formulate the problem as partitioning {1, 2, . . . , n} into k sets B1,B2, . . . ,Bk
such that

∑
i∈Bj

si ≤ 1 and k is minimum.

2.2 Greedy Approaches

Consider the following greedy algorithm for bin packing:



GREEDY BIN PACKING:
Order items in some way
For i = 1 to n

If item i can be packed in some open bin
Pack it

Else
Open a new bin and pack i in the new bin

In GREEDY BIN PACKING algorithm, a new bin is opened only if the item can not be packed in
any of the already opened bins. However, there might be several opened bins in which the item i
could be packed. Several rules could be formulated in such a scenario:

• First Fit: Pack item in the earliest opened bin

• Last Fit: Pack item in the last opened bin

• Best Fit: Pack item in the bin that would have least amount of space left after packing the
item

• Worst Fit: Pack item in the bin that would have most amount of space left after packing the
item

Irrespective of what strategy is chosen to pack an item in the opened bins, one could get the
following result:

Theorem 10 Any greedy rule yields a 2-approximation.

Observation: OPT ≥
∑

i si

We call a bin α-full if items occupy space at most α.

Claim 11 Greedy has at most 1 bin that is 1
2 -full.

Proof: For the sake of contradiction, assume that there are two bins Bi and Bj that are 1
2 -full.

WLOG, assume that GREEDY BIN PACKING algorithm opened bin Bi before Bj . Then, the first
item that the algorithm packed into Bj must be of size at most 1

2 . However, this item could have
been packed intoBi sinceBi is 1

2 -full. This is a contradiction to the fact that GREEDY BIN PACKING

algorithm opens a new bin if and only if the item can not be packed in any of the opened bins. 2

Proof of Theorem 10: Let m be the number of bins opened by GREEDY BIN PACKING algorithm.
From Claim 11, we have: ∑

i

si >
m− 1

2

Using the observation that OPT ≥
∑

i si, we get:

OPT >
m− 1

2

which gives us:

m < 2 ·OPT + 1

⇒ m ≤ 2 ·OPT

2



2.3 PTAS for Bin Packing

A natural question follows the discussion above: Can BIN PACKING have a PTAS? In this subsec-
tion, we settle this question in negative. In particular, we give a reduction from an NP-complete
problem to the BIN PACKING problem and show that a PTAS for the BIN PACKING problem will
give us an exact solution for the NP-complete problem in polynomial time. We consider the PAR-
TITION problem:

In the PARTITION problem, we are given a set of items {1, 2, . . . , n}. Item i has a size si. The
goal is to partition the {1, 2, . . . , n} into two sets A and B such that

∑
i∈A si =

∑
j∈B sj .

Claim 12 If BIN PACKING has a (32 − ε)-approximation for any ε > 0, the PARTITION problem can be
solved exactly in polynomial time.

Proof: Given an instance I of the PARTITION problem, we construct an instance of the BIN PACK-
ING problem as follows: Scale the size of the items such that

∑
i si = 2. Consider the scaled sizes

of the items as an instance I ′ of the BIN PACKING problem. If all items of I ′ can be packed in 2
bins, then we have an “yes” answer to I . Otherwise, the items of I ′ need 3 bins and the answer to
I is “no”.

OPT for I ′ is 2 or 3. Hence, if there is a (32 − ε)-approximation algorithm for the BIN PACKING

problem, we can determine the value of OPT which in turn implies that we can solve I . Thus,
there can not exist a (32 − ε)-approximation algorithm for the BIN PACKING problem, unless P =
NP. 2

Recall the scaling property from Lecture 2, where we discussed why some of the optimiza-
tion problems do not admit additive approximations. We notice that the BIN PACKING problem
does not have the scaling property. Hence it may be possible to find an additive approximation
algorithms. We state some of the results in this context:

Theorem 13 (Johnson ’74 [7]) There exists a polynomial time algorithm such AJ such that:

AJ(I) ≤ 11

9
OPT (I) + 4

for all instances I of the BIN PACKING problem.

Theorem 14 (Fernandez de la Vega, Lueker ’81 [8]) There exists a polynomial time algorithm suchAFL

such that:
AFL(I) ≤ (1 + ε)OPT (I) + 1

for all instances I of the BIN PACKING problem and any ε > 0.

Theorem 15 (Karmarkar, Karp ’82 [9]) There exists a polynomial time algorithm such AKK such that:

AKK(I) ≤ OPT (I) +O(log2(OPT (I)))

for all instances I of the BIN PACKING problem.

Exercise: Show that First Fit greedy rule yields a 3
2OPT + 1-approximation.

Open Problem: Does there exist a polynomial time algorithm A such that A(I) ≤ OPT (I) + 1?
Is there an algorithm A such that A(I) ≤ OPT (I) + c, for some constant c?



2.4 Asymptotic PTAS for Bin Packing

A recurring theme in last two lectures has been the rounding of jobs/tasks/items. To construct
an asymptotic PTAS for BIN PACKING problem, we use the same set of ideas with simple mod-
ifications. In particular, we divide the set of items into big and small items and concentrate on
packing the big items first. We show that such a technique results in an asymptotic PTAS for the
BIN PACKING problem.

Consider the set of items, s1, s2, . . . , sn. We divide the items into two sets, B = {i : si ≥ ε} and
S = {j : sj < ε}. Similar to the MULTIPROCESSOR SCHEDULING problem, where we rounded up
the processing times of the jobs, we round up the sizes of the items in the BIN PACKING problem.
Again, we concentrate only on the items in B. Let n′ = |B| be the number of big items.

Observation: OPT ≥ ε · n′

Claim 16 Suppose n′ < 4/ε2. An optimal solution for the BIN PACKING problem can be computed in
2O(1/ε4) time.

Proof Sketch. If the number of big items is small, one can find the optimal solution using brute
force search. 2

Claim 17 Suppose n′ > 4/ε2. Then OPT ≥ 4/ε.

The following gives a procedure to round up the items in B:

ROUNDING ITEM SIZES:
Sort the items such that s1 ≥ s2 ≥ · · · ≥ sn′

Group items in k = 2/ε2 groups B1, . . . ,Bk such that each group has bn′/kc items
Round the size of all the items in group Bi to the size of the smallest item in Bi−1

Lemma 18 Let ε > 0 be fixed, and let K be a fixed non-negative integer. Consider the restriction of the bin
packing problem to instances in which each item is of size at least ε and the number of distinct item sizes is
K. There is a polynomial time algorithm that optimally solves this restricted problem.

Proof Sketch. Use Dynamic Programming. (Exercise, Hint: How can you modify the algorithm
of Appendix A?) 2

Claim 19 The items in B can be packed in OPT + |B1| bins in time nO(1/ε2).

Proof: Using ROUNDING ITEM SIZES, we have restricted all items but those in B1 to have one of
the k−1 distinct sizes. Using lemma 18, these items can be packed efficiently in OPT. Furthermore,
the items in B1 can always be packed in |B1| bins. Hence, the total number of bins is OPT + |B1|.

The running time of the algorithm follows from the discussion in Appendix A. 2

Lemma 20 Let ε > 0 be fixed. Consider the restriction of the bin packing problem to instances in which
each items is of size at least ε. There is a polynomial time algorithm that solves this restricted problem
within a factor of (1 + ε).



Proof: Using Claim 19, we can pack B in OPT + |B1| bins. Recall that |B1| = bn′/kc ≤ ε2 · n′/2 ≤
ε ·OPT/8 where, we have used Claim 17 to reach the final expression. 2

Theorem 21 For any ε, 0 < ε < 1/2, there is an algorithm Aε that runs in time polynomial in n and
finds a packing using at most (1 + 2ε)OPT + 1 bins.

Proof: Assume that the number of bins used to pack items in B is m and the total number of bins
used after packing items in S is m′. Clearly

m′ ≤ max

{
m,

⌈
(
∑

i si)

(1− ε)

⌉}
since at most one bin must be (1 − ε) full using an argument in GREEDY BIN PACKING. Further-
more, ⌈

(
∑

i si)

(1− ε)

⌉
≤

(∑
i

si

)
(1 + 2ε) + 1

for ε < 1/2. This gives the required expression. 2

The algorithm is summarized below:

ASYMPTOTIC PTAS BIN PACKING:
Split the items in B (big items) and S (small items)
Round the sizes of the items in B to obtain constant number of item sizes
Find optimal packing for items with rounded sizes
Use this packing for original items in B
Pack items in S using GREEDY BIN PACKING.

2.5 Section Notes

An excellent survey on approximation algorithms for BIN PACKING problem is [10].
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A Scheduling Jobs when Number of Distinct Job Sizes is Constant

We give a dynamic programming algorithm:
Let ki be the number of jobs of size i and let (m1,m2, . . . ,mk) be an arbitrary set of jobs. Given

a target T , let M(m1,m2, . . . ,mk) denote the number of machines needed to schedule the jobs in
(m1,m2, . . . ,mk) in time at most T . Assume that bi is the number of big jobs of size i. Consider
the following algorithm:

SCHEDULING BIG JOBS:
Set M(0, 0, . . . , 0) = 0
For k1 = 1 to b1 do

For k2 = 1 to b2 do
...

For kk = 1 to bk do
If M(k1, k2, . . . , kk) > 1

Let M1 = {(j1, j2, . . . , jk), : ji ≤ ki, M(j1, j2, . . . , jk) = 1}
M(k1, k2, . . . , kk) = 1 + min(j1,j2,...,jk)∈M1

M(k1 − j1, k2 − j2, . . . , kk − jk)
If M(b1, b2, . . . , bk) ≤ m

Return Yes
Else

Return No

The algorithm runs in timeO(n2k) since the innermost statement of the nested loop is executed
as most O(nk) times, each execution taking O(nk) time. Moreover, by keeping track of the deci-
sions made in the innermost statement (which can be done in linear time), one could output the
schedule.
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