CS 583: Approximation Algorithms Lecture date: February 3, 2016
Instructor: Chandra Chekuri Scribe: CC

Notes updated in Spring 2011 and Spring 2018.

In the previous lecture we discussed the KNAPSACK problem. In this lecture we discuss other
packing and independent set problems. We first discuss an abstract model of packing problems.
Let N be a finite ground set. A collection of Z C 2V of subsets of N is said to be down closed if
the following property is true: A € Z implies that for all B C A, B € Z. A down closed collection
is also often called and independence system. The sets in Z are called independent sets. Given an
independence family (IV,Z) and a non-negative weight function w : N — Rt the maximum weight
independent set problem is to find maxger w(.S). That is, find an independent set in Z of maximum
weight. Often we may be interested in the setting where all weights are 1 in which case we wish to
find the maximum cardinality independent set. We discuss some canonical examples.

Example: Independent sets in graphs: Given a graph G = (V, E)

Z = {S C V| there are no edges between nodes in S}. Here the ground set is V. There are many
interesting special cases of the graph problem. For instance problems arising from geometric objects
such as intervals, rectangles, disks and others.

Example: Matchings in graphs: Given a graph G = (V, E)letZ = {M C E | M is a matching in G}.
Here the ground set is F.

Example: Matroids: A matroid M = (N,Z) is defined as a system where Z is down closed and
in addition satisfies the following key property: if A, B € Z and |B| > |A| then there is an element
e € B\ A such that AU{e} € Z. There are many examples of matroids. We will not go into details
here.

Example: Intersections of independence systems: given some k independence systems on the
same ground set (N,Zy), (N, Zz),...,(N,Z;) the system defined by (N,Zy NZ;...NZ;) is also an
independence system. Well-known examples include intersections of matroids.

1 Maximum Independent Set Problem in Graphs

A basic graph optimization problem with many applications is the mazimum (weighted) independent
set problem (MIS) in graphs.

Definition 1 Given an undirected graph G = (V, E) a subset of nodes S C V is an independent
set (stable set) iff there is no edge in E between any two nodes in S. A subset of nodes S is a clique
if every pair of nodes in S have an edge between them in G.

The MIS problem is the following: given a graph G = (V, E) find an independent set in G
of maximum cardinality. In the weighted case, each node v € V has an associated non-negative
weight w(v) and the goal is to find a maximum weight independent set. This problem is NP-Hard

and it is natural to ask for approximation algorithms. Unfortunately, as the famous theorem below
shows, the problem is extremely hard to approximate.

Theorem 1 (Hastad [3]) Unless P = NP there is no #—approm’mation for MIS for any fized
€ > 0 where n is the number of nodes in the given graph.

Remark: The maximum clique problem is to find the maximum cardinality clique in a given graph.
It is approximation-equivalent to the MIS problem; simply complement the graph.

The theorem basically says the following: there are a class of graphs in which the maximum
independent set size is either less than nd or greater than n'= and it is NP-Complete to decide
whether a given graph falls into the former category or the latter.

The lower bound result suggests that one should focus on special cases, and several interesting
positive results are known. First, we consider a simple greedy algorithm for the unweighted problem.

GREEDY(G):

S0

While G is not empty do
Let v be a node of minimum degree in G
S+ Su{v}
Remove v and its neighbors from G

end while

Output S

Theorem 2 Greedy oulputs an independent set S such that |S| > n/(A + 1) where A is the
mazimum degree of any node in the graph. Moreover |S| > a(G)/A where a(G) is the cardinality
of the largest independent set. Thus Greedy is a 1/A approximation.

Proof: We upper bound the number of nodes in V' \ S as follows. A node w is in V' \ S because
it is removed as a neighbor of some node v € S when Greedy added v to S. Charge u to v. A
node v € S can be charged at most A times since it has at most A neighbors. Hence we have that
|[V\ S| < AlS|. Since every node is either in S or V' \ S we have |S|+ |V \ S| = n and therefore
(A +1)|S| > n which implies that |[S| > n/(A +1).

We now argue that |S| > a(G)/A. Let S* be a largest independent set in G. As in the above
proof we can charge each node v in S*\ S to a node u € S\ S* which is a neighbor of v. The
number of nodes charged to a node u € S\ S* is at most A. Thus |S*\ S| < A|S\ S*|.

a

Exercise: Show that Greedy outputs an independent set of size at least % where d is the
average degree of G.

Remark: The well-known Turan’s theorem shows via a clever argument that there is always an

independent set of size (dnTD where d is the average degree of G.

Remark: For the case of unweighted graphs one can obtain an approximation ratio of Q(dlé‘;glg < 7)

where d is the average degree. Surprisingly, under a complexity theory conjecture called the Unique-

2
Games conjecture it is known to be NP-Hard to approximate MIS to within a factor of O(%)
in graphs with maximum degree A when A is sufficiently large.

Exercise: Consider the weigthed MIS problem on graphs of maximum degree A. Alter Greedy
to sort the nodes in non-increasing order of the weight and show that it gives a %—approximation.

Can one obtain an 2(1/d)-approximation for the weighted case where d is the average degree?

LP Relaxation: One can formulate a simple linear-programming relaxation for the (weighted)
MIS problem where we have a variable z(v) for each node v € V' indicating whether v is chosen in
the independent set or not. We have constraints which state that for each edge (u,v) only one of
u or v can be chosen.

maximize Z w(v)x(v)

subject to z(u) + z(v) <1 (u,v) € E

z(v) € [0,1] veV

Although the above is a valid integer programming relaxation of MIS when the variabels are
constrained to be in {0, 1}, it is not a particularly useful formulation for the following simple reason.

Claim 3 For any graph the optimum value of the above LP relazation is at least w(V)/2. In
particular, for the unweighted case it is at least n/2.

Simply set each z(v) to 1/2!
One can obtain a strengthened formulation below by observing that if S is clique in G then any
independent set can pick at most one node from S.

subject to Z:c(v) <1 S is a clique in G

z(v) € [0,1] veV

The above linear program has an exponential number of constraints, and it cannot be solved
in polynomial time in general, but for some special cases of interest the above linear program can
indeed be solved (or approximately solved) in polynomial time and leads to either exact algorithms
or good approximation bounds.

Approximability of VERTEX COVER and MIS: The following is a basic fact and is easy to
prove.

Proposition 4 In any graph G = (V,E), S is a vertex cover in G if and only if V \ S is an
independent set in G. Thus a(G) + B(G) = |V| where a(G) is the size of a maximum independent
set in G and B(G) is the size of a minimum vertex cover in G.

The above shows that if one of VERTEX COVER or MIS is NP-Hard then the other is as well.
We have seen that VERTEX COVER admits a 2-approximation while MIS admits no constant factor
approximation. It is useful to see why a 2-approximation for VERTEX COVER does not give any

useful information for MIS even though a(G) + B(G) = |V|. Suppose S* is an optimal vertex
cover and has size > |V|/2. Then a 2-approximation algorithm is only guaranteed to give a vertex
cover of size |V|! Hence one does not obtain a non-trivial independent set by complementing the
approximate vertex cover.

Some special cases of MIS: We mention some special cases of MIS that have been considered
in the literature, this is by no means an exhaustive list.

e Interval graphs; these are intersection graphs of intervals on a line. An exact algorithm can
be obtained via dynamic programming and one can solve more general versions via linear
programming methods.

e Note that a maximum (weight) matching in a graph G can be viewed as a maximum (weight)
independent set in the line-graph of G and can be solved exactly in polynomial time. This
has been extended to what are known as claw-free graphs.

e Planar graphs and generalizations to bounded-genus graphs, and graphs that exclude a fixed
minor. For such graphs one can obtain a PTAS due to ideas originally from Brenda Baker.

e Geometric intersection graphs. For example, given n disks on the plane find a maximum
number of disks that do not overlap. One could consider other (convex) shapes such as axis
parallel rectangles, line segments, pseudo-disks etc. A number of results are known. For
example a PTAS is known for disks in the plane. An Q(loén)—approximation for axis-parallel

rectangles in the plane when the rectangles are weighted and an Q(@

for the unweighted case.

)-approximation

1.1 Elimination Orders and MIS

We have seen that a simple Greedy algorithm gives a A-approximation for MIS in graphs with
max degree A. One can also get a A approximation for a larger class of A-degenerate graphs. To
motivate degenerate graphs consider the class of planar graphs. The maximum degree of a planar
graph need not be small. Nevertheless, via Fuler’s theorem, we know that every planar graph has
a vertex of degree at most 5 since the maximum number of edges in a planar graph is at most
3n — 6. Moreover, every subgraph of a planar graph is planar, and hence the Greedy algorithm
will repeatedly find a vertex of degree at most 5 in each iteration. From this one can show that
Greedy gives a 1/5-approximation for MIS in planar graphs. Now consider the intersection graph
of a collection of intervals on the real line. That is, we are given n intervals Iy, Io, ..., I, where
each I; = [a;, b;] for real numbers a; < b;. The goal is to find a maximum number of the intervals in
the given set of intervals which do not overlap. This is the same as finding MIS in the intersection
graph of the intervals - the graph is obtained by creating a vertex v; for each I;, and by adding
edges v;v; if I; and I; overlap. It is well-known that greedily picking intervals in earliest finish time
order (ordering them according to b; values) is optimal; the reader should try to prove this. Can
one understand the analysis of all these examples in a unified fashion? Yes. For this purpose we
consider the class of inductive k-independent graphs considered by by Akcoglu et al. [I] and later
again by Ye and Borodin [7].

For a vertex v in a graph we use N (v) denote the neighbors of v (not including v itself). For a
graph G = (V, E) and S C V we use G[S] to denote the subgraph of G induced by S.

Definition 2 An undirected graph G = (V, E) is inductive k-independent if there is an ordering of
the vertices vi,va,. .., v, such that for 1 <i <n, a(G[N(v;) N {vit1,...,vn}]) < k.

Graphs which are inductively 1-independent have a perfect elimination ordering and are called
chordal graphs because they have an alternate characterization. A graph is chordal iff each cycle
C in G has a chord (an edge connecting two nodes of C' which is not an edge of C), or in other
words there is no induced cycle of length more than 3.

Exercise: Prove that the intersection graph of intervals is chordal.

Exercise: Prove that if A(G) < k then G is inductively k-independent. Prove that if G is k-
degenerate then G is inductively k-independent.

The preceding shows that planar graphs are inductively 5-independent. In fact one can show
some thing stronger. They are inductively 3-independent. Given a graph G one can ask whether
there is an algorithm that checks whether G is inductively k-independent. There is such an algo-
rithm that runs in time O(k?n**2) [7]. A classical result shows how to recognize chordal graphs
(k = 1) in linear time. However, most of the useful applications arise by showing that a certain
class of graphs are inductively k-independent for some small value of k. See [7] for several examples.

Exercise: Prove that the Greedy algorithm that considers the vertices in the inductive k-independent
order gives a %—approximation for MIS.

Interestingly one can obtain a %—approximation for the maximum weight independent set prob-
lem in inductively k-independent graphs. The algorithm is simple and runs in linear time but is not
obvious. To see this consider the weighted problem for intervals. The standard algorithm to solve
this is via dynamic programming. However, one can obtain an optimum solution for all chordal
graphs (given the ordering). We refer the reader to [7] for the algorithm and proof (originally from
[1]). Showing a §2(1/k)-approximation is easier.

2 The efficacy of the Greedy algorithm for a class of Independence
Families

The Greedy algorithm can be defined easily for an arbitrary independence system. It iteratively
adds the best element to the current independent set while maintaining feasibility. Note that the
implementation of the algorithm requires having an oracle to find the best element to add to a
current independent set S.

GREEDY ((N,7)):
S0
While (TRUE)
Let A« {ee N\S|S+eel}
If A =0 break
e < argmax,c qw(e)
S+ SuU{e}
endWhile
Output S

Exercise: Prove that the Greedy algorithm gives a 1/2-approximation for the maximum weight
matching problem in a general graph. Also prove that this bound is tight even in bipartite graphs.
Note that max weight matching can be solved exactly in polynomial time.

Remark: It is well-known that the Greedy algorithm gives an optimum solution when (N,Z) is a
matroid. Kruskal’s algorithm for min/max weight spanning tree is a special case of this fact.

It is easy to see that Greedy does poorly for MIS problem in general graphs. A natural question
is what properties of Z enable some reasonable performance guarantee for Greedy. A very general
result in this context has been established due to Jenkyn’s generalizing several previous results. In
order to state the result we set up some notation. Given an independence system (N,Z) we say
that a set A € 7 is a base if it is a mazimal independent set. It is well-known that in a matroid M
all bases have the same cardinality. However this is not true in general independence system.

Definition 3 An independence system (N,Z) is a k-system if for any two bases A,B € Z, |A| <
k|B|. That is, the ratio of the cardinality of a mazimum base and the cardinality of a minimum
base is at most k.

The following theorem is not too difficult but not so obvious either.

Theorem 5 Greedy gives a 1/k-approximation for the mazximum weight independent set problem
m a k-system.

The above theorem generalizes and unifies several examples that we have seen so far including
MIS in bounded degree graphs, matchings, matroids etc. How does one see that a given indepen-
dence system is indeed a k-system for some parameter k7 For instance matchings in graphs form a
2-system. The following simple lemma gives an easy way to argue that a given system is a k-system.

Lemma 6 Suppose (N,T) is an independence system with the following property: for any A € T
and e € N '\ A there is a set of at most Y C A such that |Y| <k and (A\Y)U{e} € Z. Then T is

a k-system.

We leave the proof of the above as an exercise.
We refer the reader to [5l [6] for analysis of Greedy in k-systems and other special cases.

3 Randomized Rounding with Alteration for Packing Problems

The purpose of this section to highlight a technique for rounding LP relaxations for packing prob-
lems. We will consider a simple example, namely the maximum weight independent set problem

in interval graphs. Recall that we are given n intervals I, Io, ..., I, with non-negative weights
wi, ..., w, and the goal is to find a maximum weight subset of them which do not overlap. Let
I; = lai,b;] and let p1,pa,...,pm be the collection of end points of the intervals. We can write a

simple LP relaxation for this problem. For each interval i we have a variable z; € [0,1] to indicate
whether I; is chosen or not. For each point p;, among all intervals that contain it, at most one can
be chosen. These are clique constraints in the underlying interval graph.

n
maximize Z WL
i=1
subject to Z:cigl 1<57<m
:p;€L;
z; € 10,1] 1<i<n

Note that it is important to retain the constraint that x; < 1. Interestingly it is known that the
LP relaxation defines an integer polytope and hence one can solve the integer program by solving
the LP relaxation! This is because the incidence matrix defining the LP is totally unimodular
(TUM). We refer the reader to books on combinatorial optimization for further background on this
topic. Here we assume that we do not know the integer properties of the LP. We will round it via a
technique that is powerful and generalizes to NP-Hard variants of the interval scheduling problem
among many others.

Suppose we solve the LP and obtain an optimum fraction solution z*. We have), w;x} > OPT.
How do we round to obtain an integer solution whose value is close to that of OPT? Suppose we
randomly choose I; with probablility cz] for some ¢ < 1. Let R be the random set of chosen
intervals. Then the expected weight of R, by linearity of expectation, is ¢)_, w;x} > ¢- OPT.
However, it is highly likely that the random solution R is not going to be feasible. Some constraint
will be violated. The question is how we can fiz or alter R to find a subset R' C R such that R’
is a feasible solution and the expected value of R’ is not too much smaller than that of R. This
depends on the independence structure.

Here we illustrate this via the interval problem. Without loss of generality we assume that
Ii,..., I, are sorted by their right end point. In other words the order is a perfect elimination
order for the underlying interval graph.

ROUNDING-WITH-ALTERATION:
Let = be an optimum fractional solution
Round each i to 1 independently with probability x;/2. Let 2’ be rounded solution.
R« {i|z,=1}
S0
For i =n down to 1 do
If (i € R) and (S U {i} is feasible)
S« Su{i}
EndIf
Endfor
Output feasible solution S

The algorithm consists of two phases. The first phase is a simple selection phase via independent
randomized rounding. The second phase is deterministic and is a greedy pruning step in the reverse
elimination order. To analyze the expected value of S we consider two binary random variables for
each i, Y; and Z;. Y; is 1 if i € R and 0 otherwise. Z; is 1 if i € S and 0 otherwise.

By linearity of expectation,

Via the independent randomized rounding in the algorithm.

Claim 8 Pr[Y; = 1] = z;/2.

How do we analyze Pr[Z; = 1]? The random variables Z1, ..., Z, are not independent and could
be highly correlated even though Y7, ...,Y,, are independent. For this purpose we try to understand
Pr[Z; = 0| Y; = 1] which is the conditional probability that an interval I; that is chosen in the first
step is rejected in the pruning phase. We often would not be able to get an exact estimate of this
quantity but we can upper bound it as follows. Here the ordering plays a crucial role. Why would
I; be rejected in the pruning phase? Note that when I; is considered in the pruning phase, the only
intervals that have been considered have their right end points after the right end point of I;. Let
A; ={j|j>iand I; and I; intersect at b;} be the potential set of intervals that can cause i to be
rejected. Recall that the LP implies the following constraint:

x; + Z Zj <1
jEA
at the point b;. Let & be the event that I; is rejected in the pruning phase. Let £ be the
event that at least one of the intervals in A is selected in the first phase. Note that £ can happen
only if & happens. Thus Pr[&;] < Pr[&;]. In general we try to upper bound Pr[&]. In this simple
case we have an exact formula for it.

Pri&) =1- [[Pr[y; =01 =1-J](1 - =,/2).
JjEA jEA

We claim that Pr[€] < 7.4 2;/2 < 1/2. One can derive this by showing that [[;c 4(1—x;/2)
subject to > ;-4 2;/2 < 1/2is at least 1/2. Another way of doing this is via Markov’s inequality.
Let T =3 _,c 4 Yj be the number of intervals from A selected in the first phase. E[T] <3, 4 7;/2 <
1/2. By Markov’s inequality Pr[T" > 2E[T]] < 1/2. & is the event that Pr[T" > 1].

Using the claim,

Pr[Z=1|Y;=1=1-Pt[Z =0]Y; =1] > 1/2.

This allows us to lower bound the expected weight of the solution output by the algorithm, and
yields a randomized 1/4 approximation.

Claim 9 E[w(S)] > >, wiz;/4.
Proof: We have

E[w(S)] = Zwi Pr[Z; =1] = Zwi PrlY; =1]Pr[Z;=1|Y; =1] > sz(% . %) > Zwixi/él.

O
This type of rounding has applications to a variety of settings - see [2] for applications and the
general framework called contention resolution schemes.

4 Packing Integer Programs (PIPs)

We can express the KNAPSACK problem as the following integer program. We scaled the knapsack
capacity to 1 without loss of generality.

n
maximize Z ik
i=1
subject to Z sivi <1
i

x; € {0,1} 1<i<n

More generally if have multiple linear constraints on the “items” we obtain the following integer
program.

Definition 4 A packing integer program (PIP) is an integer program of the form max{wz | Az <
1,z € {0,1}"} where w is a 1 X n non-negative vector and A is a m X n matriz with entries in
[0,1]. We call it a {0,1}-PIP if all entries are in {0,1}.

In some cases it is useful/natural to define the problem as max{wz | Az < b,z € {0,1}"} where
entries in A and b are required to rational /integer valued. We can convert it into the above form
by dividing each row of A by b;.

When m the number of rows of A (equivalently the constraints) is small the problem is tractable.
It is some times called the m-dimensional knapsack and one can obtain a PTAS for any fixed
constant m. However, when m is large we observe that MIS can be cast as a special case of
{0, 1}-PIP. It corresponds exactly to the simple integer /linear program that we saw in the previous
section. Therefore the problem is at least as hard to approximate as MIS. Here we show via a
clever LP-rounding idea that one can generalize the notion of bounded-degree to column-sparsity
in PIPs and obtain a related approximation. We will then introduce the notion of width of the
constraints and show how it allows for improved bounds.

Definition 5 A PIP is k-column-sparse if the number of non-zero entries in each column of A is

at most k. A PIP has width W if max; ; A;;/b; < 1/W.

4.1 Randomized Rounding with Alteration for PIPs

We saw that randomized rounding gave an O(logn) approximation algorithm for the SET COVER
problem which is a canonical covering problem. Here we will consider the use of randomized round-
ing for packing problems. Let x be an optimum fractional solution to the natural LP relaxation of
a PIP where we replace the constraint x € {0,1}" by = € [0,1]". Suppose we apply independent
randomized rounding where we set z to 1 with probability z;. Let 2’ be the resulting integer
solution. The expected weight of this solution is exactly ZZ w;x; which is the LP solution value.
However, 2’ may not satisfy the constraints given by Ax < b. A natural strategy to try to satisfy
the constraints is to set 2} to 1 with probability cx; where ¢ < 1 is some scaling constant. This may
help in satisfying the constraints because the scaling creates some room in the constraints; we now
have that the expected solution value is ¢), w;x;, a loss of a factor of c¢. Scaling by itself does not

allow us to claim that all constraints are satisfied with good probability. A very useful technique in
this context is the technique of alteration; we judiciously fix/alter the rounded solution 2’ to force
it to satisfy the constraints by setting some of the variables that are 1 in 2’ to 0. The trick is to
do this in such a way as to have a handle on the final probability that a variable is set to 1. We
will illustrate this for the KNAPSACK problem and then generalize the idea to k-sparse PIPs. The
algorithms we present are from [4]. See [2] for further applications and related problems.

Rounding for Knapsack: Consider the KNAPSACK problem. It is convenient to think of this in
the context of PIPs. So we have ax < 1 where a; now represents the size of item ¢ and the knapsack
capacity is 1; w; is the weight of item. Suppose x is a fractional solution. Call an item i “big” if
a; > 1/2 and otherwise it is “small”. Let S be the indices of small items and B the indices of the
big items. Consider the following rounding algorithm.

ROUNDING-WITH-ALTERATION FOR KNAPSACK:
Let x be an optimum fractional solution
Round each 4 to 1 independently with probability x;/4. Let 2’ be rounded solution.
:E// — x/
If (z; = 1 for exactly one big item %)
For each j # i set 2/ = 0
Else If (3. siw; > 1 or two or more big items are chosen in)
For each j set 2/ = 0
End If
Output feasible solution z”’

In words, the algorithm alters the rounded solution z’ as follows. If exactly one big item is
chosen in z’ then the algorithm retains that item and rejects all the other small items. Otherwise,
the algorithm rejects all items if two or more big items are chosen in 2’ or if the total size of all
small items chosen in 7’ exceeds the capacity.

The following claim is easy to verify.

Claim 10 The integer solution z" is feasible.

Now let us analyze the probability of an item ¢ being present in the final solution. Let & be
the event that >, ¢ a;x; > 1, that is the sum of the sizes of the small items chose in 2’ exceeds the
capacity. Let & be the event that at least one big item is chosen in x’.

Claim 11 Pr[&] < 1/4.

Proof: Let X, = Zie g a;x, be the random variable that measures the sum of the sizes of the small
items chosen. We have, by linearity of expectation, that

ElX =) aEz}] =) amwi/4 <1/4.
€S €S
By Markov’s inequality, Pr[Xs > 1] < E[X,]/1 < 1/4. O
Claim 12 Pr[&] < 1/2.

Proof: Since the size of each big item in B is at least 1/2, we have 1 > >, pa;x; > > ;5 xi/2.
Therefore), px;/4 < 1/2. Event & happens if some item i € B is chosen in the random selection.
Since 7 is chosen with probability x;/4, by the union bound, Pr[&] < > . pxi/4 < 1/2. O

Lemma 13 Let Z; be the indicator random variable that is 1 if =] = 1 and 0 otherwise. Then

Proof: We consider the binary random variable X; which is 1 if 2 = 1. We have E[X;] = Pr[X; =
1] = z;/4. We write

Pr[Z; =1 =Pi[X;=1] - Pr[Zi = 1| X; = 1] = %Pr[Zi —1]X;=1].

To lower bound Pr[Z; = 1| X; = 1] we upper bound the probability Pr[Z; = 0|X; = 1], that is, the
probability that we reject i conditioned on the fact that it is chosen in the random solution z’.

First consider a big item 7 that is chosen in x’. Then ¢ is rejected iff if another big item is chosen
in z; the probability of this can be upper bounded by Pr[]. If item i is small then it is rejected
if and only if & happens or if a big item is chosen which happens with Pr[&;]. In either case

Thus,

Pr[Zi =1 =Pr[X;=1]-Pr[Z; = 1| X; = 1] = %(1—Pr[Zi —0|X;=1]) > Té'

One can improve the above analysis to show that Pr[Z; = 1] > xz;/8.

Theorem 14 The randomized algorithm outputs a feasible solution of expected weight at least
Z?:l w,:z:l/16

Proof: The expected weight of the output is
E[Z wi.%';/] = Z wiE[Zi] > Z wixi/lﬁ

where we used the previous lemma to lower bound E[Z;]. 0

Rounding for k-sparse PIPs: We now extend the rounding algorithm and analysis above to
k-sparse PIPs. Let x be a feasible fractional solution to max{wz | Az < 1,z € [0,1]"}. For a
column index ¢ we let N (i) = {j | Aj; > 0} be the indices of the rows in which 7 has a non-zero
entry. Since A is k-column-sparse we have that |N(:)| < k for 1 < ¢ < n. When we have more
than one constraint we cannot classify an item/index ¢ as big or small since it may be big for
some constraints and small for others. We say that ¢ is small for constraint j € N (i) if A;; <1/2
otherwise ¢ is big for constraint j. Let S; = {i | j € N (i), and i small for j} be the set of all small
columns for j and Bj = {i | j € N(i), and ¢ small for j} be the set of all big columns for j. Note
that S; N B; is the set of all 7 with A;; > 0.

ROUNDING-WITH-ALTERATION FOR k-SPARSE PIPS:
Let x be an optimum fractional solution
Round each i to 1 independently with probability z;/(4k). Let ' be rounded solution.
,IN — x/
For j =1 to m do

If (2} = 1 for exactly one i € B))

For each h € S; U Bj and h # i set 2, =0
Else If (3, .5 Ajix; > 1 or two or more items from B; are chosen in z’)

iESj
For each h € S; U B; set x}, =0
End If
End For

Output feasible solution z”

The algorithm, after picking the random solution z’, alters it as follows: it applies the previous
algorithm’s strategy to each constraint j separately. Thus an element 7 can be rejected at different
constraints j € N(i). We need to bound the total probability of rejection. As before, the following
claim is easy to verify.

Claim 15 The integer solution x" is feasible.

Now let us analyze the probability of an item ¢ being present in the final solution. Let & (j)
be the event that Eiesj Aj;xl > 1, that is the sum of the sizes of the items that are small for j in
x’ exceed the capacity. Let £5(j) be the event that at least one big item for j is chosen in 2’. The
following claims follow from the same reasoning as the ones before with the only change being the
scaling factor.

Claim 16 Pr[&1(j)] < 1/(4k).
Claim 17 Pr[&(j)] < 1/(2k).

Lemma 18 Let Z; be the indicator random variable that is 1 if] = 1 and 0 otherwise. Then
E[ZZ] = PI‘[ZZ' = 1] > xz/(lﬁk)

Proof: We consider the binary random variable X; which is 1 if 2} = 1 after the randomized
rounding. We have E[X;] = Pr[X; = 1] = z;/(4k). We write
Pr[Z; =1 =Pi[X; = 1] . Pr[Zi =1 | X; = 1] = %Pr[ZZ- —1]X;=1].

We upper bound the probability Pr[Z; = 0|X; = 1], that is, the probability that we reject i
conditioned on the fact that it is chosen in the random solution z’. We observe that

Pr(Z = 0|X; = 1] < Y (Pr[&1(4)] + Pr[€2(4)] < k(1/(4k) +1/(2k)) < 3/4.
JEN()

We used the fact that N (i) < k and the claims above. Therefore,

Pr[Z; =1 =Pr[X;=1]-Pr[Z; =1 | X; =1] = %(1 -PriZ;,=0| X;=1]) > 1522.

Od
The theorem below follows by using the above lemma and linearity of expectation to compare
the expected weight of the output of the randomized algorithm with that of the fractional solution.

Theorem 19 The randomized algorithm outputs a feasible solution of expected weight at least
o wixi/(16k). There is 1/(16k)-approzimation for k-sparse PIPs.

Larger width helps: We saw during the discussion on the KNAPSACK problem that if all items
are small with respect to the capacity constraint then one can obtain better approximations. For
PIPs we defined the width of a given instance as W if max; j A;;/b; < 1/W; in other words no single
item is more than 1/W times the capacity of any constraint. One can show using a very similar
algorithm and anaylisis as above that the approximation bound improves to Q(1/kM"1) for instance
with width W. Thus if W = 2 we get a Q(1/vk) approximation instead of Q(1/k)-approximation.
More generally when W > clogk/e for some sufficiently large constant ¢ we can get a (1 — €)-
approximation. Thus, in the setting with multiple knapsack constraints, the notion of small with
respect to capacities is that in each constraint the size of the item is < 1o§k times the capacity of
that constraint.

References

[1] Karhan Akcoglu, James Aspnes, Bhaskar DasGupta, and Ming-Yang Kao. Opportunity cost
algorithms for combinatorial auctions. In Computational Methods in Decision-Making, Eco-
nomics and Finance, pages 455-479. Springer, 2002.

[2] C. Chekuri, J. Vondrak and R. Zenklusen. Submodular Function Maximization via the Mul-
tilinear Relaxation and Contention Resolution Schemes SIAM J. on Computing, 43(6): 1831—
1879, 2014.

[3] J. Hastad. Clique is Hard to Approximate within n!=¢. Acta Mathematica, 182:105-142, 1999.

[4] N. Bansal, N. Korula, V. Nagarajan, A. Srinivasan. On k-Column Sparse Packing Programs.
Proc. of IPCO, 2010. Available at http://arxiv.org/abs/0908.2256.

[5] Julian Mestre. Greedy in Approximation Algorithms. Proc. of ESA, 2006: 528-539.

[6] Moran Feldman, Joseph Naor, Roy Schwartz, Justin Ward. Improved Approximations for
k-Exchange Systems - (Extended Abstract). Proc. of ESA, 2011: 784-798.

[7] Yuli Ye and Allan Borodin. Elimination Graphs. ACM Transactions on Algorithms, 2012.

http://arxiv.org/abs/0908.2256

	Maximum Independent Set Problem in Graphs
	Elimination Orders and MIS

	The efficacy of the Greedy algorithm for a class of Independence Families
	Randomized Rounding with Alteration for Packing Problems
	Packing Integer Programs (PIPs)
	Randomized Rounding with Alteration for PIPs

