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MultiwayCut is the following problem. The input is an undirected graph G = (V,E) with
non-negative edge weights c : E → R+, and a set of terminals {s1, s2, . . . , sk} ⊆ V . The goal is
to remove a minimum-cost subset of edges E′ ⊆ E such that G − E′ has no path from si to sj
for i 6= j. The k = 2 case is the same as the s-t mincut problem in undirected graphs, and hence
can be solved optimally. MultiwayCut is NP-Hard, and APX-Hard to approximate, for k ≥ 3.
We saw in lecture a simple combinatorial algorithms called the Isolating-Cut heuristic which yields
a 2(1 − 1/k)-approximation. We also saw that a standard LP relaxation for cut problems, given
below, has an integrality gap of 2(1− 1/k).

min
∑
e

cexe∑
e∈P

xe ≥ 1 P is a path connecting si, sj , i 6= j

xe ≥ 0 e ∈ E

It is useful to take another perspective on the LP and write it with distance variables. For this
purpose we can assume without loss of generality that G is a complete graph (we can add dummy
edges of zero cost to achieve this). For each unordered pair uv of distinct nodes we have a variable
duv; the variable denotes the distance between u and v which is supposed to be 1 if u and v are
separated and 0 otherwise. The relaxation requires d to be a metric subject to the constraint that
dsisj = 1 for each pair of terminals sisj . Triangle inequality constraints ensure that d is a metric.

min
∑
uv

cuvduv

d(sisj) = 1 i 6= j

duv + dvw ≥ duw u, v, w

duv ≥ 0 uv

It is not hard to convince oneself that the two relaxations are equivalent in terms of the optimum
cost; we note that the two relaxations are very different in the polyhedral sense. Syntactically it
is sometimes more convenient to use variable du,v for the ordered pair (u, v) and impose symmetry
explicitly in the constraints du,v = dv,u and then let duv stand for the common variable.

The following example shows that the worst case integrality gap of the preceding relaxations
is 2(1 − 1/k). Consider a star with center v and k leaves which are the terminals. All edges have
cost 1. It is easy to see than an optimum integral solution has cost (k − 1), while the optimum
fractional solution has cost k/2; setting each xe = 1/2 achieves this cost.

Calinescu, Karloff and Rabani [2] were the first to obtain an approximation ratio better than 2
for MultiwayCut, and they achieved this via novel LP relaxation that has since been extensively
studied. The current best upper bound on the integrality gap of this relaxation (henceforth called
the CKR relaxation) is 1.2965 [5], and the best known lower bound on the relaxation is 6/(5 +



(1/(k − 1)) which approaches 6/5 for large k [1]. Both are fairly recent results. Moreover, it is
known, that under the unique games conjecture (UGC) [4], for every fixed k, the integrality gap
of the CKR relaxation is the worst-case hardness of the problem! We do not know the precise
worst-case integrality gap of the CKR relaxation for k ≥ 4. For k = 3 it is known to be 12/11.

In this notes we describe the CKR relaxation and a rounding scheme that achieves a 1.5 approx-
imation which was the bound initially shown in [2]. This analysis is given in the approximation text
books. The main purpose of this lecture notes is to highlight a different analysis which is based on
the work of Chekuri and Ene [3] on the Submodular Multiway Partition (SubMP) problem which
generalizes MultiwayCut. We believe that it gives a different perspective and also eliminates
some of the intricacies in the standard analysis, at least as far as obtaining an approximation ratio
of 1.5.

1 CKR Relaxation

The CKR relaxation is typically described as a geometric relaxation and this is well-justified.
However, there are two other “natural” ways to derive it and we will discuss them later. The basic
observation that leads to the relaxation is the following. It is useful to view MultiwayCut in
undirected graphs as a partition problem rather than as an edge-removal problem. We can assume
without loss of generality that G is connected. We observe that if E′ ⊆ E is a minimal feasible
solution to disconnect the terminals, then G−E′ has exactly k connected components with exactly
one terminal in each. Moreover, each edge in E′ connects two of these components. Thus, we can
reformulate MultiwayCut in the following equivalent way. Find a partition V1, V2, . . . , Vk of V
such that si ∈ Vi for 1 ≤ i ≤ k, where the objective is to min 1

2

∑k
i=1 c(δ(Vi)). Once we have this

partition based formulation, it is natural to use variables x(u, i) for each vertex u and index i ∈ [k];
the variable indicates whether u belongs to Vi. We then write the following constraints that model
the requirement that each u belongs exactly to one piece of the partition and that si ∈ Vi.

k∑
i=1

x(u, i) = 1 u ∈ V

x(si, i) = 1 i ∈ [k]

x(u, i) ≥ 0 u ∈ V, i ∈ [k]

How do we model the objective? Consider an edge uv and assume all the allocation variables
are binary and satisfy the constraints. uv is cut iff there exists an i such that x(u, i) 6= x(v, i). But
if there is such an i then there will be an i′ 6= i such that x(u, i′) 6= x(v, i′). Thus, one can see that
uv is cut iff

∑k
i=1 |x(u, i)− x(v, i)| = 2. Hence the objective becomes

min
∑
uv∈E

cuv
1

2

k∑
i=1

|x(u, i)− x(v, i)|

The objective function involves the absolute value function and hence is not linear. Since we
are minimizing, we can obtain an LP, with the help of additional variables zuv,i as follows:



min
∑
uv∈E

cuv
1

2

k∑
i=1

zuv,i

k∑
i=1

x(u, i) = 1 u ∈ V

x(si, i) = 1 i ∈ [k]

zuv,i ≥ x(u, i)− x(v, i) uv ∈ E, i ∈ [k]

zuv,i ≥ x(v, i)− x(u, i) uv ∈ E, i ∈ [k]

x(u, i) ≥ 0 u ∈ V, i ∈ [k]

zuv,i ≥ 0 uv ∈ E, i ∈ [k]

Geometric interpretation: Perhaps the most useful interpretation, as far as MultiwayCut is
considered, is the geometric interpretation. Consider the k unit basis vectors e1, e2, . . . , ek in Rk

(here ei is the vector with 1 in the i’th coordinate and 0 in all other coordinates). The convex
hull of these k vectors creates the k-simplex and it is easy to see that for each u ∈ V , the vector
xu = (x(u, 1), x(u, 2), . . . , x(u, k)) lies in this convex hull. Note that the simplex lies on a hyperplane
of Rk, and hence is not full-dimensional. The relaxation is embedding the terminals at the corners
of the k-simplex, and mapping each node u to a point within the simplex. The distance betweenu
and v is half the `1 distances between the vectors xu and xv. The advanced rounding algorithms
for MultiwayCut via the CKR relaxation make very strong use of the geometric view point, as
well as the special structure enjoyed by the objective function for graphs, which decomposes in a
nice fashion.

Interpretation as strengthening the distance relaxation: Another nice interpretation of the
CKR relaxation (also from [2]) is as follows. We already discussed the basic distance LP and
showed that it has a worst case integrality gap of 2(1−1/k). It is natural to consider strengthening
the LP by adding inequalities that are valid for the integer program. Consider a node u. If we
take the partition view then we note that u must belong to one of the components, which implies
that it must have a distance 0 to the terminal whose component it belongs to, and distance 1 to
the other k − 1 terminals. Thus the following inequalites are valid for the integer program:

k∑
i=1

d(usi) = k − 1 u ∈ V

We can also add another set of valid inequalities as follows. Consider distinct nodes u, v ∈ V .
Let T ⊂ [k] correspond to a subset of terminals. Then we claim that

d(uv) ≥
∑
i∈T

[d(usi)− d(vsi)]

is a valid constraint. We leave it as an exercise to check this inequality’s validity when the distances
are induced by partitions. Note that there are an exponential number of inequalities of the second
type since we have to write it for each edge uv and each T ⊂ [k]. It is possible to separate over these



inequalities in polynomial time (see [2] or think about it). Interestingly, if we add the preceding
two sets of valid inequalities to the basic distance LP we get the CKR relaxation!

Interpretation via Lovász-extension of submodular functions: Recall that the objective
function that came out naturally from the allocation variables x(u, i) was the following.

min
∑
uv∈E

cuv
1

2

k∑
i=1

|x(u, i)− x(v, i)|

We had to add additional variables to model this objective as a linear function. However, one can
observe that the function

∑
uv∈E cuv

1
2

∑k
i=1 |x(u, i) − x(v, i)| is convex in the variables (in fact it

is a piece-wise linear convex function). Thus, we can model our problem as a convex optimization
problem with linear constraints. Why is the objective convex? Is there a more general phenomenon
going on here? Indeed, that is the case. We can cast MultiwayCut as a special case of the following
more general problem. Let f : 2V → R+ be a submodular function and let {s1, s2, . . . , sk} ⊆ V .
In SubMP the goal is to partition V into V1, V2, . . . , Vk such that si ∈ Vi for 1 ≤ i ≤ k, and
to minimize

∑
i f(Vi). Note that MultiwayCut is the special case of SubMP where f is the

cut function of a graph G = (V,E). In fact the cut function is not only submodular but also
symmetric, and hence MultiwayCut is a special case of SymSubMP (Symmetric Submodular
Multiway Partition) which is obtained by restricting f to be a symmetric submodular function.
It is natural to write a relaxation for SubMP via the same allocation variables x(u, i) as we did
for MultiwayCut. The main difficulty is with the objective function f . How do we deal with a
generic submodular function that is only available as a value oracle? It turns out that there are
useful ways to extend a submodular set function f over a discrete ground set V to a continuous
function g over the entire real cube [0, 1]|V |. Lovász described a particular extension f̂ , named after
him, that turns out to be convex and useful in the sense that it can be evaluated at any point in the
real cube efficiently given f as a value oracle. One can thus write a convex relaxation for SubMP
(and hence also SymSubMP) via the Lovász-extension. When specialized to MultiwayCut this
relaxation turns out to be the same as the CKR relaxation! We refer the reader to [3] for more
details.

2 Rounding Algorithm and Analysis

In this section we show a rounding algorithm that gives a 1.5 approximation for MultiwayCut.
As we already mentioned better ratios are known. The algorithm and analysis here is an adaptation
of the algorithm and analysis from [3] for the SymSubMP problem. The original algorithm and
analysis from [2] can be be found in the approximation text books.

The informal description is as follows. It picks a random θ ∈ [0, 1) and for each terminal si we
consider Ai to be ball of radius (1− θ) around si. We observe that Ai = {v | x(u, i) ≥ θ} because

d(siv) =
1

2

k∑
j=1

|x(si, j)− x(u, j)| = 1− x(u, i).

Note that the sets A1, A2, . . . , Ak can overlap. We say that v is unallocated if v ∈ V \ (∪iAi).
Since we are seeking a partition we need to fix the overalapping sets. We do this via an uncrossing



operation. If Ai ∩ Aj 6= ∅ we replace them with either Ai − Aj , Aj or Ai, Aj − Ai. We will argue
that this does not increase the cost. This way of understanding the algorithm is based on [3]. The
algorithm from [2] avoids the overlap by picking a random permutation of the terminals, and Ai

is defined to set of all vertices in the ball of radius (1 − θ) around si that have not already been
allocated to a terminal that came earlier in the permutation. The random permutation is implicity
using the fact that sets can be uncrossed without increasing the cost.

The analysis hingest on understanding the expected cost of δ(Ai), i ∈ [k] and the expected cost
of δ(U). The algorithm is formally described in the box.

RoundCKR(G,S):

Let x̄ be an optimum solution to the CKR relaxation on G with terminals S
Pick θ uniformly at random from [0, 1)
For i = 1 to k let Ai = {v | x(v, i) ≥ θ}
Let U = V \ (∪ki=1Ai) be the unallocated nodes
// Uncross the sets A1, A2, . . . , Ak so that they are disjoint
While there exist i 6= j such that Ai ∩Aj 6= ∅ do

If c(δ(Ai)) + c(δ(Aj −Ai)) ≤ c(δ(Ai)) + c(δ(Aj))) then
Aj = Aj −Ai

Else
Ai = Ai −Aj

endWhile
Output the partition A1 ∪ U,A2, . . . , Ak

Let OPT be the cost of the CKR relaxation. For the sake of the analysis we let A1, A2, . . . , Ak

denote the random sets obtained in the first randomized step of the algorithm, and let A′
1, . . . , A

′
k

denote the sets after the uncrossing step. We make some basic observations that are easy to verify.
They show that the final partition is indeed a valid solution to the problem.

• For each i, si ∈ Ai, and si ∈ A′
i.

• ∪iAi = ∪iA′
i.

• The uncrossing step terminates in O(k2) iterations. Why?

The cost analysis is based on the following facts that we will prove.

• The expected cost of 1
2

∑k
i=1 c(δ(Ai)) is at most OPT. That is

E[
1

2

k∑
i=1

c(δ(Ai))] ≤ OPT.

• The expected cost of 1
2c(δ(U)) is at most OPT/2, that is,

E[c(δ(U))] ≤ OPT/2.

• The uncrossing steps do not increase the cost. That is,
∑

i c(δ(A
′
i)) ≤

∑
i c(δ(Ai)). This is a

deterministic statement for any sets A1, . . . , Ak.



Exercise: Argue, assuming the above properties, that the expected cost of the final partition is at
most 1.5OPT.

We now prove the desired properties. The analysis will be on an edge by edge basis. Since the
objective function is separable over the edges we can use linearity of expectation for the overall
bounds. Recall that zuv,i = |x(u, i)− x(v, i)| and let zuv =

∑
i zuv,i be the `1 distance between xu

and xv. Note that the objective function has a

Lemma 1 Pr[uv ∈ δ(Ai)] = zuv,i.

Proof: It is easy to see that uv ∈ δ(Ai) iff θ is in the interval [min{x(u, i), x(v, i)},max{x(u, i), x(v, i)}]
which happens with probability |x(u, i)− x(v, i)|. 2

The preceding lemma easily shows, via linearity of expectation, that E[c(δ(Ai))] =
∑

uv cuvzuv,i
and establishes the first property.

We now show that uncrossing can be done without increasing the cost. Here we rely on sub-
modularity and symmetry of the cut function.

Lemma 2 Let f : 2V → R be a symmetric submodular function. For any two sets A,B ⊂ V we
have f(A) + f(B) ≥ f(A−B) + f(B) or f(A) + f(B) ≥ f(A) + f(B −A).

Proof: Submodularity and symmetry implies posi-modularity for f . For any A,B

f(A) + f(B) ≥ f(A−B) + f(B −A).

Hence
2f(A) + 2f(B) ≥ [f(A) + f(B −A)] + [f(A−B) + f(B)].

This implies the desired claim. 2

Exercise: Using the preceding lemma argue that
∑

i c(δ(A
′
i)) ≤

∑
i c(δ(Ai)).

Now we consider the probability that uv ∈ δ(U). For this purpose, for each node v, we let αv

denote the quantity maxi x(v, i).

Lemma 3 Pr[uv ∈ δ(U)] = |αu − αv|.

Proof: Note that v ∈ U iff θ > αv; if θ ≤ αv v will belong to some Ai. Thus uv ∈ δ(U) only if
exactly one of u, v is in U . This happens only if θ is in the interval [min{αu, αv},max{αu, αv}].
The lemma follows since θ is chosen uniformly from [0, 1]. 2

Now, all that remains is the following technical lemma, which is not quite intuitive at first
glance but whose proof is not difficult. We leave it as an exercise to the reader.

Lemma 4 |αu − αv| ≤ 1
2

∑
i |x(u, i)− x(v, i)|.

From Lemma 3, and linearity of expectation, we obtain

E[c(δ(U))] ≤ 1

2

∑
uv∈E

cuvzuv

and hence
1

2
E[c(δ(U))] ≤ 1

2
OPT

as desired.
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