
Spring 2018, CS 583: Approximation Algorithms

Homework 6

Due: 05/04/2018

Instructions and Policy: Each student should write up their own solutions independently.
You need to indicate the names of the people you discussed a problem with; ideally you
should discuss with no more than two other people. You may be able to find solutions to
the problems in various papers and books but it would defeat the purpose of learning if copy
them. You should cite all sources that you use.

Read through all the problems and think about them and how they relate to what we covered
in the lectures. Solve as many problems as you can. Please submit your solutions to at least
4 problems.

Please write clearly and concisely - clarity and brevity will be rewarded. Refer to known
facts as necessary. Your job is to convince me that you know the solution, as quickly as
possible.

Problem 1 In the Node-weighted Multiway Cut problem we are given an undirected node-
weighted graph G = (V,E), k terminal nodes S = {s1, s2, . . . , sk}. Node v has a non-negative
weight cv. The goal is to remove a minimum weight subset of nodes V ′ ⊂ V such that G−V ′

has no path from si to sj, 1 ≤ i < j ≤ k. Assume for simplicity that terminals cannot be
removed (they have infinite weight) and that they form an independent set (so that there
is a feasible solution). Consider the following LP relaxation where there is a variable xv for
each v ∈ V \ S indicating whether to remove v. Let Pu,v denote the set of all paths from u
to v in G.

min
∑
v∈V

cvxv∑
v∈p

xv ≥ 1 p ∈ Psi,sj , i 6= j

xv ≥ 0 v ∈ V

Let x̄ be a feasible solution to the LP. Define Bx̄(s, r) where s ∈ V and r is a real number
to be the set of all nodes v such that there is a path P from s to v such that (

∑
u∈P x̄u) < r.

Consider the following rounding algorithm. First remove all nodes v such that x̄v ≥ 1/3.
Second, pick a θ uniformly at random from (0, 1/3) and for each si remove all nodes that
are adjacent to B(si, θ) but not in B(si, θ). Prove that for any θ the removed nodes form a
multiway cut and that the expected weight of the nodes removed is at most 3

∑
v cvxv.
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Note that this problem admits a 2-approximation via a reduction to the Directed Multi-
way Cut problem that we saw in lecture. The problem is designed to make you work with
θ-rounding for cut problems and node-weighted problems.

Problem 2 A hypergraph G = (V, E) consists of nodes V and hyperedges E . Each hyperedge
e ∈ E is a subset of V . The rank of a hypergraph G is defined as the maximum size of any
of its edges, that is, r = maxe∈E |e|. Graphs are hypergraph with rank 2. In Hypergraph-
Multiway-Cut the input is a hypergraph G, weights on the hyperedges w : E → R+ and k
terminals {s1, . . . , sk}. The goal is to remove the minimum weight set of hyperedges from G
such that for any i 6= j si and sj are disconnected (I assume you will be able to generalize
the notion of connected from graphs to hypergraphs in the natural fashion).

• Consider the natural generalization of the Isolating-Cut heuristic that we saw for Graph
Multiway-Cut. Show that it is a r(1 − 1/k)-approximation algorithm where r is the
rank of the hypergraph. Also demonstrate that your analysis is tight in the worst case.

• Show that Hypergraph Multiway-Cut can be reduced to the Node-weighted Multiway
Cut problem in an approximation preserving fashion. And deduce a 2-approximation.

• You can also reduce Node-weighted Multiway Cut to Hypergraph Multiway Cut. Do
you see how? No need to write up this part.

Problem 3 Consider the feedback edge set problem (FES). The input is an edge-weighted
undirected graph G = (V,E) and the goal is to remove a minimum-weight set E ′ ⊂ E such
that G − E ′ has no cycles. Note that FES can be solved in polynomial-time by taking the
complement of a maximum-weight spanning tree. Nevertheless we will consider an analysis
based on the following natural LP. There is a variable xe for each e ∈ E that indicates
whether to remove e.

min
∑
e∈E

cexe∑
e∈C

xe ≥ 1 for each cycle C

xe ≥ 0 e ∈ E

• Assuming the existence of a constant degree graphs whose girth is Ω(log n) (the degree
is bigger than 2 otherwise the cycle is an easy example) prove that the integrality gap
of this LP is Ω(log n). The girth of a graph is the length of its shortest cycle.

• We saw an upper bound of O(log n) via the primal-dual technique. See Section 7.2 in
Williamson-Shmoys book for the more general Feedback Vertex Set problem. Here we
will see a proof via a reduction to the Multicut analysis. Given a feasible solution x̄ for
the LP for FES, we first remove all edges e with x̄e > 1/3 and then define a Multicut
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instance where each a pair of vertices uv is to be separated of dx̄(uv) ≥ 1/3; that is,
the distance from u to v according to edge-lenghts given by x̄ is at least 1/3. Define
a feasible fractional solution for this Multicut instance on G by appropriately scaling
up x̄ and use the Multicut analysis to give an O(log n) upper bound on the integrality
gap of the LP.

• Extra Credit: Use the above ideas to obtain an O(log n)-approximation for the Subset
Feedback Edgeset problem. Here we are given edge-weighted graph G = (V,E) and a
subset of terminals S = {s1, . . . , sk} and the goal is to remove a minimum-weight set
of edges E ′ such that G− E ′ has no cycle containing a terminal.

Problem 4 In the k-MST problem you are given an undirected edge-weighted graph G =
(V,E) with edge weights c : E → R+ and an integer k. The goal is to find a tree T = (VT , ET )
in G of smallest edge weight (

∑
e∈ET

c(e)) such that |VT | ≥ k. Show that if there is an α-
approximation for k-MST then there is an α-approximation for the Steiner tree problem.
Recall that in the Steiner tree problem, the input is an edge-weighted graph G = (V,E) and
a set of terminals S ⊆ V ; the goal is to find a tree T of minimum edge-weight that connects
(contains) all the terminals S.

Problem 5 Here we consider the rooted k-Steiner problem which is related to the previous
problem. The input consists of an edge-weighted undirected graph G = (V,E), a specified
root vertex r and a set S ⊂ V of terminals. The goal is to find a min-cost tree (VT , ET ),
a sub-graph of G, such that r ∈ VT and |S ∩ VT | ≥ k. Obtain a randomized O(log n)
approximation via probabilistic embedding into tree metrics.

There is a 2-approximation for this problem but it is rather involved.

Problem 6 Prove that any ring metric isometrically embeds into `1.

Problem 7 Given a graph G = (V,E) with edge-weights c : E → R+, you wish to partition
G into G1 = G[V1], G2 = G[V2], G3 = G[V3] such that b|V |/3c ≤ |Vi| ≤ d|V |/3e for 1 ≤ i ≤ 3,
and the cost of the edges between the partitions is minimized. Using an α-approximation
for the sparsest cut problem, give a pseudo-approximation for this problem where you par-
tition the graph into 3 pieces G[V ′

1 ], G[V ′
2 ], G[V ′

3 ] such that |V |/c2 ≤ |V ′
i | ≤ |V |/c1 for some

constants 1 < c1 < c2 and the cost of the edges between the partitions is O(α)opt. What
constants c1, c2 can you guarantee? Note that c1 and c2 should be constants, independent of
the graph size. (Hint: this problem is similar to the one on partitioning into two pieces that
is in Vazirani’s book on applications of sparsest cut (Section 21.6.3).)

Problem 8 Consider MAX-CUT with the additional constraint that specified pairs of ver-
tices be on the same/opposite sides of the cut. Formally, we are given two sets of pairs
of vertices, S1 and S2. The pairs in S1 need to be separated, and those in S2 need to
be on the same side of the cut sought. Under these constraints, the problem is to find a
maximum-weight cut.
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1. Give an efficient algorithm to check if there is a feasible solution.

2. Assuming there is a feasible solution, give a strict quadratic program and vector pro-
gram relaxation for this problem. Show how the algorithm for MAX-CUT we saw in
class can be adapted to this problem while maintaining the same approximation ratio.

Problem 9 Problem 6.6 from the Williamson-Shmoys book. SDP for directed cut.
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