Spring 2018, CS 583: Approximation Algorithms

Homework 1

Due: 02/08/2018

Instructions and Policy: Each student should write up their own solutions independently.
You need to indicate the names of the people you discussed a problem with; ideally you
should discuss with no more than two other people. You may be able to find solutions to
the problems in various papers and books but it would defeat the purpose of learning if copy
them. You should cite all sources that you use.

Read through all the problems and think about them and how they relate to what we covered
in the lectures. Solve as many problems as you can. Please submit your solutions to at least
4 problems.

Please write clearly and concisely - clarity and brevity will be rewarded. Refer to known
facts as necessary. Your job is to convince me that you know the solution, as quickly as
possible.

Problem 1 The Greedy algorithm for Max-k-Coverage and Set Cover can be implemented
even if the sets in the set system are implicitly defined as long as we have the following
oracle: given a subset U’ C U of the remaining uncovered elements from U, return the set
in the set system that covers the maximum number of elements from U’. Some times we
only have an approzrimate oracle. Suppose we only have an a-approximate oracle for some
a < 1 which outputs a set from the set system that has at least a times the number of
elements covered by the best set. Show that with an a-approximate oracle Greedy gives a
(1 — e~*)-approximation. Note that this better than the easier bound of a(1 — 1/e).

Problem 2 We saw a randomized rounding algorithm for Set Cover that converts a frac-
tional solution x to the LP relaxation to a feasible solution. The analysis was not so clean
because we need to worry both about the cost as well as the feasibility. In this problem
we will analyze a small variant that has several advantages. It also highlights the idea of
alteration in probabilistic algorithms and analysis. In the following we will use A to denote
the cardinality of the largest set and k to be the maximum frequency of any element.

The algorithm takes a fractional solution z* and rounds in two steps. In the first step
for each set j the algorithm picks S; independently with probability min{1, a:z:;f} for some
parameter o > 1 that we will pick later. Let J; be the indices of sets chosen in this step. Let
R be the set of elements that are uncovered by .J;. For each element i € R, the algorithm
picks the cheapest set j; (ties broken arbitarily) that covers ¢ and includes it Jo. Note that
the second step is deterministic conditioned on Ji, and in the worst case we may pick n sets



in this second step. The algorithm outputs J = J; U J,, and by construction J is a feasible
set cover. It remains to bound the expected cost of J.

e Suppose « is chosen to be In A. Obtain an upper bound on Pr[i € R].

e For i € [1..n], let j; be the index of the cheapest set that covers element i, and let
W = Zie[n} wj,. Prove that W < A -3 ; wjz; for any feasible fractional solution z. In
particular W < A-OPT}p.

e Combine the preceding two to show that the expected cost of the set cover J is atmost
(1 + In A)OPTLP

Extra Credit: By choosing o = k(1 — Rt ), show that the expected cost is at most
(1+(k—1)(1—67%))'0PTLP. Prove that this bound is always at most § = min{k, 14+In A},
and is in fact a constant factor smaller than £ when £ =1+ InA.

Problem 3 Problem 13.4 from Vazirani book.
Problem 4 Problem 1.4 from Shmoys-Williamson book.
Problem 5 Problem 3.6 from Williamson-Shmoys book.

Problem 6 The multiple knapsack problem (MKP) is the following. Like in the standard
knapsack problem the input consists of n items, each of which has a profit p;, and a size s;.
However, we are now given m knapsacks with capacities By, Bs, ..., By.

e Describe a pseudo-polynomial time exact algorithm for the problem when k£ = 2.

e Prove that even for £k = 2 and unit profits the problem is NP-Hard. Also prove that
there is no FPTAS for the same setting. (Hint: use a reduction from the Partition
problem.)

Problem 7 Consider the MKP problem as in the previous problem. Consider a Greedy
algorithm that picks each knapsack in turn and packs it using a a-approximate algorithm
for the single knapsack problem over the remaining items.

e Prove that if all knapsacks have the same capacity then you obtain a (1 — e ®)-
approximation by showing that the Greedy algorithm can be interpreted as solving
a Max-k-Cover problem on an implicit set system.

e Extra Credit: Assume a = 1. Show that the Greedy algorithm gives a 1/2-
approximation even if the capacities are non-uniform and the order of the knapsacks
is chosen arbitrarily.



