
Spring 2016, CS 583: Approximation Algorithms

Homework 6
Due: 5/9/2016

Instructions and Policy: Each student should write up their own solutions independently.
You need to indicate the names of the people you discussed a problem with; ideally you should
discuss with no more than two other people.

Read through all the problems and think about them and how they relate to what we covered
in the lectures. Solve as many problems as you can. Please submit your solutions to at least
2 problems.

Please write clearly and concisely - clarity and brevity will be rewarded. Refer to known
facts as necessary. Your job is to convince me that you know the solution, as quickly as
possible.

Problem 1 Given an n × n matrix A, a principal submatrix of A is a square submatrix
obtained by picking a set of indices S ⊆ {1, 2, . . . , n}, and discarding the rows and columns
of A indexed by S. For instance, the principal submatrix of A corresponding to S = {1, 4, 5}
is the (n−3)× (n−3) matrix obtained from A by discarding rows 1, 4, 5 and columns 1, 4, 5.

Prove that all the principal submatrices of a positive semidefinite matrix are also positive
semidefinite. (Which characterization of positive semidefinite matrices can you use?) Con-
clude that if a matrix A is positive semidefinite, the determinant of any principal submatrix
of A is nonnegative.

(Note: The converse is also true, though you do not have to prove it: If the determinants
of all principal submatrices of a real symmetric matrix A are nonnegative, A is positive
semidefinite.)

Problem 2 Consider MAX-CUT with the additional constraint that specified pairs of ver-
tices be on the same/opposite sides of the cut. Formally, we are given two sets of pairs
of vertices, S1 and S2. The pairs in S1 need to be separated, and those in S2 need to
be on the same side of the cut sought. Under these constraints, the problem is to find a
maximum-weight cut.

1. Give an efficient algorithm to check if there is a feasible solution.

2. Assuming there is a feasible solution, give a strict quadratic program and vector pro-
gram relaxation for this problem. Show how the algorithm for MAX-CUT we saw in
class can be adapted to this problem while maintaining the same approximation ratio.

Problem 3 Problem 6.6 from the Williamson-Shmoys book. SDP for directed cut.
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Problem 4 In this problem you will consider the node-weighted Steiner tree problem. The
input consists of an undirected graph G = (V,E) and a subset S ⊆ V of terminals. Each
node v has a non-negative weight w(v). The goal is to find a minimum weight subset of
nodes S ′ such that the subgraph induced on those nodes G[S ′] connects all terminals. One
can equivalently phrase it as finding a tree T in G that contains all the terminals with the
goal of minimizing the weight of the nodes in T . It is useful to assume that the terminals
have zero weight since they have to be included anyway.

• Show that an α(|S|)-approximation for the above problem implies an α(n)-approximation
for the set cover problem on n elements.

• Derive an O(log |S|)-approximation as follows. A spider is a tree in which at most one
node has degree more than 2. For example a path is a spider. If a spider is not a path
then let v be the node with degree strictly more than 2. Then the spider consists of
paths P1, . . . , Pk that are node-disjoint except at v. Given a spider let its density be
the ratio of the weight of its nodes to the number of terminals it contains.

– Let T ∗ be a tree that contains the terminals. Then show that there is a spider in
T ∗ of density at most w(T ∗)/|S|.

– Show how one can compute a minimum density spider in polynomial time.

– Combine the above two to derive the O(log n)-approximation.
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