Fall 2021, CS 583: Approximation Algorithms

Homework 2

Due: 09/30/2021 in Gradescope

Instructions and Policy: Each student should write up their own solutions independently.
You need to indicate the names of the people you discussed a problem with; ideally you
should discuss with no more than two other people. You may be able to find solutions to
the problems in various papers and books but it would defeat the purpose of learning if copy
them. You should cite all sources that you use and write in your own words.

Read through all the problems and think about them and how they relate to what we covered
in the lectures. Solve as many problems as you can. Please submit solutions to at least four
problems. Some problems are closely related so it may benefit you to solve them together
or view them as parts of an extended problem.

Please write clearly and concisely - clarity and brevity will be rewarded. Refer to known
facts as necessary.

Problem 1 Read the definition of inductively k-independent graphs in the lecture notes.

e Prove that the Greedy algorithm that considers the vertices in the inductive k-independent
order gives a %—approximation for the maximum independent set problem.

e Extra Credit: Obtain an Q(;)-approximation for the weighted case.

Problem 2 Consider unweighted interval scheduling problem where we are given a collec-
tion of open intervals on the line and the goal is to find a maximum cardinality subset of non-
overlapping intervals. There is a simple greedy algorithm that gives an optimum solution.
Consider the algorithm that orders the requests in increasing order of length and greedily
selects them while maintaining feasibility. Show that this algorithm is a 1/2-approximation
using the technique of dual-fitting. Write an LP and find a feasible dual to the LP and relate
the solution output by the greedy algorithm to the dual value.

Problem 3 In the uniform-capacity Resource/Bandwidth Allocation Problem, the input is
a path P = {vy,vq,...v,}, where v; is adjacent to v;;1; an integer capacity ¢; and a set of
demand requests R = {Ry,..., R, }. Each request R, consists of a pair of vertices v;,v;,
and an integer demand dj,; this is to be interpreted as a request for dj units of capacity from
v; to v;. Note that there can be multiple requests between the same pair of nodes. The
goal is to find a largest subset of requests, R, that can be satisfied simultaneously; that is,



the total demand of satisfied requests going through any edge v;, v; 11 should not exceed the
capacity c.

Note that when the path P is a single edge, this problem is equivalent to KNAPSACK.

Consider the weighted version, where each request Ry, also has a profit/weight p,, and
the goal is to find a maximum-profit set of requests that can be satisfied simulataneously.
(Note that an optimal solution may have overlapping requests since the demands are now
varying.) Write a Linear Program for this problem, and show that the LP has constant
integrality gap.

Problem 4 We saw an Q(1/logn)-algorithm for Rectangle Independent Set. Use this algo-
rithm as a black box and generalized the approach to obtain an Q(1/ log? n)-approximation
algorithm for the problem of finding the maximum independent set problem in the intersec-
tion graph of a given set of axis-aligned boxes in three dimensions. More generally, if you
have an a-approximation algorithm for rectangle independent set, show that you can obtain
an (a/ logn)-approximation for boxes in three dimensions.

Problem 5 In this problem we discuss packing integer programs (PIPs) and the notion of
width. A packing integer program (PIP) is an integer program of the form max{wz | Az <
b,z € {0,1}"} where w is a 1 X n non-negative vector and A is a m X n matrix with entries
in [0,1] and b is a vector such that b; > 1 for 1 < i < m. One way to view this is as an m-
dimensional knapsack problem: we want to pack the most profitable subset of m-dimensional
vectors (corresponding to the columns) into an m-dimensional vector b. When m = 1 we
obtain Knapsack. We observed that, in Knapsack, if all items are “small” when compared
to the knapsack capacity then Greedy performs well; in fact if s; < eB then Greedy yields a
(1 — €)-approximation. What is the analogue of this in the more general setting? Suppose
each column A, is k-sparse which means that only %k entries in any column are non-zero.
And suppose b; > cln(eﬁ for some sufficiently large but fixed constant c¢; note that we are
assuming that each entry of A is in [0, 1]. Prove that the LP relaxation can be used to obtain
a (1 — e)-approximation. You need Chernoff bounds for this problem.

Problem 6 In this problem, we solve MAXIMUM INDEPENDENT SET (MIS) in another
family of graphs, the intersection graphs of disks in the Euclidean plane: Given a set of
disks in the plane, construct a graph by creating a vertex for each disk, and connecting two
vertices by an edge if the corresponding disks intersect. Give a PTAS for MIS problem in
these graphs, assuming all disks have unit radius.

Note: There is a PTAS for the problem, even if the disks are allowed to have different sizes.
For more information about geometric approximation see Sariel Har-Peled’s book and also
Chapter 11 in Vazirani book and Chapter 10 in Shmoys-Williamson book.

Problem 7 Related machine scheduling. We saw in lecture the problem of scheduling n jobs
with processing times py, ps, ..., p, on m machines My, M,, ..., M,,. For identical machines



greedy list scheduling that orders the jobs in non-increasing sizes has an approximation ratio
of 4/3; any list guarantees an approximation ratio of 2.. Now consider the problem where the
machines are not identical but related. Machine M; has a speed s;. Job J; with processing
time p; takes p;/s; time to complete on machine M. Describe a constant factor greedy
approximation algorithm to minimize makespan in this more general setting.

Problem 8 In the Generalized Assigment problem, you are given n jobs, and m ma-
chines/bins. For each job ¢ and machine j, there is a size s;; that job ¢ occupies on machine
J. (Note that the s;;’s may be completely unrelated to each other.) A feasible assignment is
one in which each jobs is assigned to some machine.

The makespan of an assignment is the maximum, over all machines i, of the total size
(on 7) of jobs assigned to it. Give a PTAS for the problem of minimizing makespan when
the number of machines m is a constant. Use the following scheme.

e Guess all the “big” items and their assignments.

e Write an Linear Program for assigning the residual “small” items and show how to
round it appropriately.

Extra Credit: Consider a profit maximizing variant. Instead of a jobs we think of items
and instead of machines we think of bins. Each item 7 has size s;; in bin j. Placing 7 in bin
J vields a profit p;; and each bin j has a capacity ¢;. We want to assign items to bins to
maximize the profit of the assignment while not exceeding the capacity of any bin. Obtain
a PTAS for this problem when m is a fixed constant.



