
Fall 2013, CS 583: Approximation Algorithms

Homework 3
Due: 10/21/2013

Instructions and Policy: Each student should write up their own solutions independently.
You need to indicate the names of the people you discussed a problem with; ideally you should
discuss with no more than two other people.

Solve as many problems as you can. I expect at least four.

Please write clearly and concisely - clarity and brevity will be rewarded. Refer to known
facts as necessary. Your job is to convince me that you know the solution, as quickly as
possible.

Problem 1 Let G = (V,A) be a directed graph with arc weights c : A → R+. Define the
density of a directed cycle C as

∑
a∈C c(a)/|V (C)| where V (C) is set of vertices in C.

1. A cycle with the minimum density is called a minimum mean cycle and such a cycle
can be computed in polynomial time. How?

Hint 1: Given density λ, give a polynomial-time algorithm to test if G contains a cycle
of density < λ. Now use binary search.

Hint 2: There is a polynomial time algorithm to detect if a graph has a negative cycle
(a cycle with sum of arc lengths negative).

2. Consider the following algorithm for ATSP. Given G (with c satisfying asymmetric
triangle inequality), compute a minimum mean cycle C. Pick an arbitrary vertex v
from C and recurse on the graph G′ = G[V − C ∪ {v}]. A solution to the problem
on G can be computed by patching C with a tour in the graph G′. Prove that the
approximation ratio for this heuristic is at most 2Hn where Hn = 1 + 1/2 + . . .+ 1/n
is the nth harmonic number.

Problem 2 For Metric-TSP consider the nearest neighbour heuristic discussed in class.
Prove that the heuristic yields an O(log n) approximation. (Hint: use the basic idea in the
online greedy algorithm for the Steiner tree problem from Lecture 1 (Spring 2011)). Extra
Credit: Give an example to show that there is no constant c such that the heuristic is a
c-approximation algorithm.

Problem 3 Recall the congestion minimization problem in directed graphs that we dis-
cussed in lecture. We discussed a variant in which the path chosen for each pair (si, ti)
has to have at most h edges where h is a given parameter. We discussed a path-based LP
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relaxation with an exponential number of variables but a polynomial number of constraints
and how the dual of the LP can be solved via the ellipsoid method. In this problem we will
consider writing a polynomial-sized primal formulation via flow variables and how it suffices
to solve a slightly relaxed problem.

• Write an LP relaxation using flow variables f(e, i) where f(e, i) is the flow for pair
(si, ti) on edge e (assume the input graph is directed). To enforce the constraint that
the number of edges used in a path for (si, ti) is at most h write a a total cost constraint
on the flow for each pair.

• Let λ be the optimum congestion for the relaxation above. Use flow-decomposition
and Markov’s inequality to show that a feasible solution to the above LP can be used
to obtain a feasible and polynomial-sized solution for the path-based formulation such
that the length of each path is at most 2h and congestion of the solution is at most
2λ. More generally, argue that for any fixed ε > 0, the paths can be chosen to be of
length at most (1 + ε)h with the congestion value at most (1 + ε)λ/ε.

Problem 4 Consider the set cover problem and the randomized rounding that we discussed
in class. Here we consider a small variant. Recall the LP relaxation. There is a variable xj
for each set Sj in the given instance and the constraints ensure that

∑
j:i∈Sj

xj ≥ 1 for each
element i ∈ U .

Given a feasible solution x̄ define a new solution ȳ where yj = min{1, (2 lnn)xi}. We
then independently pick each Sj with probability yj. The chosen sets may not form a set
cover in that some elements may not be covered. To obtain a feasible set cover we do the
following: for each uncovered element i we simply pick the cheapest set that contains it and
add it to the solution. Clearly, the algorithm outputs a feasible set cover. Prove that the
expected cost of the set cover output by this algorithm is O(lnn)

∑
j cjxj. In other words

this gives, with high probability, a randomized O(lnn) approximation for set cover.

Hint: Use Chernoff bounds to bound the probability that an element is not covered in
the first step, and that the solution satisifies the given bound with high probability.

Problem 5 Recall that in the Generalized Steiner Network Problem (also called Survivable
Network Design Problem), the input is an undirected graph G = (V,E) with edge costs
c : E → R+, and a requirement ruv for every (unordered) pair of vertices u, v ∈ V (G);
the goal is to find a minimum-cost set of edges E ′ such that for each u, v, there are ruv
edge-disjoint paths between u and v in E ′.

In class, we saw a cut-based Linear Program for this problem with an exponential number
of constraints. Give a polynomial-sized flow-based LP formulation. (Though the input graph
is undirected, you will need to create an appropriate directed graph for your LP.)

Problem 6 Problem 7.3 from Shmoys-Williamson book.
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Problem 7 Problem 7.5 from Shmoys-Williamson book.

Problem 8 Problem 9.2 from Shmoys-Williamson book. However, there is a slight typo in
the data given for the problem. Assume, that for all facilities, the opening cost is 2. The
distances cij remain as given in the problem.
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