
CS 580RM: Algorithmic Game Theory, Fall 2023

HW 1 (due on Friday, Sept 15th at 11:59pm CST)

Instructions:

1. We will grade this assignment out of a total of 40 points.

2. You can work on any homework in groups of (≤) two. Submit only one assignment per
group. First submit your solutions on Gradescope and you can add your group member after
submission.

3. If you discuss a problem with another group then write the names of the other group’s
members at the beginning of the answer for that problem.

4. Please type your solutions if possible in Latex or doc whichever is suitable, and submit on
Gradescope.

5. Even if you are not able to solve a problem completely, do submit whatever you have. Partial
proofs, high-level ideas, examples, and so on.

6. Except where otherwise noted, you may refer to lecture slides/notes. You cannot refer to
textbooks, handouts, or research papers that have not been listed. If you do use any approved
sources, make sure you cite them appropriately, and make sure to write in your own
words.

7. No late assignments will be accepted.

8. By AGT book we mean the following book: Algorithmic Game Theory (edited) by Nisan,
Roughgarden, Tardos and Vazirani. Its free online version is available at Prof. Vijay V.
Vazirani’s webpage.

1. Consider a market M with n agents and m divisible goods, where supply of good j is qj
and the valuation of agent i is defined by a monotonically non-decreasing concave function
Vi : Rm

+ → R+. A competitive equilibrium with equal income (CEEI) of such a market is
a pair (X, p) where p is a price vector (p1, . . . , pm), pj is the price-per-unit of good j and
X = (X1, . . . , Xn) is an allocation of goods to agents s.t.,

• Optimal Bundle. For each agent i, Xi ∈ argmaxY≥0:
∑

j pjYj≤1Vi(Y ).

• Demand equals Supply. For each good j,
∑

i∈[n]Xij ≤ qj , and whenever pj > 0 we
have

∑
i∈[n]Xij = qj .

(a) (5 points) Show that it is without loss of generality to assume that qj = 1 for all goods j,
that is, to assume that the supply of every good is one. Formally, come up with another
market M′ = ([n], [m], (q′j)j∈[m], (V

′
i )i∈[n]) such that q′j = 1, ∀j ∈ [m], and show that a

CEEI of M′ can be mapped to a CEEI of M.
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(b) (5 points) Show that when the DPSV algorithm is executed to compute a CEEI of such
a market, Event 2 of the algorithm can always be computed in polynomial time. That
is, the value of α for which a new MBB edge appears between some agent i ∈ AD and
some good j ∈ GF , and the pair (i, j), can be computed in polynomial time. Here, α is
the constant by which the prices of the goods in GD are scaled in one iteration of the
algorithm. Set AD consists of agents with MBB edges to goods in GD before α starts
increasing, and GF is the set of goods with demand = supply, meaning if the market
consisted only of the subset (AF , GF ), then the prices of goods in GF and their allocation
to AF satisfy the requirements of a CEEI. (See Lecture 3 slides for further details)

2. (Indivisibles: Short Questions)

(a) (2 points) Give an example with general monotone valuations where an EF1 allocation
is not Prop1.

(b) (3 points) Give an example with additive valuations where the round robin algorithm
achieves better social welfare (

∑
i Vi(Ai)) than the envy-cycle-elimination algorithm un-

der certain choices.

(c) (2 points) Give an example with additive valuations where an EF1+PO allocation is not
EFX.

(d) (2 points) For additive valuation functions, we showed MMSi ≤ vi(M)
n for all agents i.

Give an example with submodular valuation functions where this is not true, and in fact
MMSi = vi(M) for all agents i.

(e) (1 point) Prove that if an α-MMS allocation exists for an instance, then an α-MMS+PO
allocation also exists.

3. (Algorithm Design)

(a) (5 points) Consider an instance with additive valuations where items are identically
ordered. That is, there exists an ordering of items g1, g2, . . . , gm such that for each agent
i,

vig1 ≥ vig2 ≥ · · · ≥ vigm .

Show that the envy-cycle elimination algorithm gives an EFX allocation when the items
are considered in a particular order.

(b) (5 points) In this question, we will develop an efficient algorithm to compute a Prop1+PO
allocation. We want to find a Prop1+PO allocation of m indivisible items, among
n agents, each with an additive valuation function, namely vi(S) =

∑
j∈S vij for any

S ⊆ [m].

Consider the corresponding market with the same set of agents and items, but now
the items are assumed to be divisible. Agent i’s valuation function is extended to be
defined for fractional allocations as follows: for allocation Xi = (Xi1, . . . , Xim) to agent
i her value is vi(Xi) =

∑
j∈[m] vijXij . Let prices p = (p1, . . . , pm) and allocation X =

(X1, . . . , Xn) be a CEEI of this market. We know that X is both PO and proportional.
However, it is a fractional allocation and, therefore, has to be rounded to get a feasible
allocation of the original problem with indivisible items.
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Assume that the allocation graph is acyclic (this is wlog). That is, the bipartite graph
G = ([n]∪ [m], E) between agents and items with edge set E = {(i, j) | Xij > 0} has no
cycles. Thus it is a set of trees, i.e., G = ∪d

k=1Tk.

Rounding. For each tree Tk, pick any agent a ∈ Tk and think of Tk as rooted at a. Now,
for each agent node i in Tk, all of its children are item nodes. We round the fractional
allocation so every agent i ∈ Tk gets all its children in her bundle. Let the resulting
integral allocation be Ai for agent i.

• Show that (A1, . . . , An) together with prices p = (p1, . . . , pm) is a CE of the above
market where the agents’ budgets are different than one. By the first welfare theo-
rem, this implies that this allocation is PO.

• Show that (A1, . . . , An) is Prop1.
[Hint: Note that, vi(Xi) ≥ Vi([m])/n, and {j | Xij > 0} ⊆ Ai. At most, how many
items does an agent lose from her fractional allocation as we round it? That is, what
is an upper bound on |{j | Xij > 0} \Ai|?

4. (MMS)

(a) (3 points) Construct an instance with general monotone valuations, such that there does
not exist an α-MMS allocation for any α > 0.

(b) (7 points) For the case with additive valuation functions, where vi(M) = n for all agents
i, show that when vij ≤ ϵ for all agents i and goods j, an EF1+(1− ϵ)-MMS allocation
exists and can be computed in polynomial time.

5. (Bonus)

(a) Prove that when agents have binary additive valuation functions (that is, vij ∈ {0, 1}
for all

(i, j)

), then an EF1+PO allocation can be found in polynomial time.

(b) For an α ∈ [0, 1], an α-EFX allocation is defined as: for all pairs of agents i, j, and every
good g ∈ Aj , we have vi(Ai) ≥ αvi(Aj\{g}). Prove that when the valuation functions
of the agents are subadditive, 1

2 -EFX ⇒ α-MMS for α = 1/(cn), for some constant c,
where n is the number of agents.

(c) Prove that, for additive valuations over indivisible goods, an allocation that maximizes
the Nash welfare, namely argmax(A1,...,An)Πi∈[n]Vi(Ai), is also EF1+PO.

(d) For the assignment, valuations, also known as OXS valuations, show that computing the
MMS value of an agent is strongly NP-hard.
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