Lecture 9 Minmax Theorem and Lemke-Howson

CS 580

Instructor: Ruta Mehta

Agenda

- Two-player Games, NE (recall)
- Zero-sum games Minmax Theorem \square LP-duality ■ Two-player Games, NE (recall)

■ Zero-sum games

□ Minmax Theorem

□ LP-duality

■ Lemke-Howson Algorithm

■ Class PPAD ■ Two-player Games, NE (reca

■ Zero-sum games

□ Minmax Theorem

□ LP-duality

■ Lemke-Howson Algorithm

■ Class PPAD
-
-

Our focus: Two-player games

 \blacksquare For Alice, i^{th} strategy gives

 \blacksquare For Alice, i^{th} strategy gives

■ Alice's expected payoff is

NE: No unilateral deviation is beneficial $x^T A y \geq z^T A y$, $\forall z \in \Delta_m$ $x^T B y \ge x^T B z$, $\forall z \in \Delta_n$

Nash Eq. Characterization

 \blacksquare x achieves max payoff iff $x^T A y \geq (A y)_i$, $\forall i$ $\forall k, \quad x_k > 0 \Rightarrow k \in \text{argmax} (Ay)_i$

Complementarity

$$
P\left|\begin{array}{l}\forall i,(Ay)_i\leq \pi_A\\y\in\Delta_n\end{array}\right.
$$

$$
Q\left[\n\begin{array}{c}\n\forall j, \left(x^T B\right)_j \leq \pi_B \\
x \in \Delta_m\n\end{array}\n\right]
$$

$(y, \pi_A) \in P$, $(x, \pi_B) \in Q$

2-Nash

$$
\max: x^T (A + B)y - (\pi_A + \pi_B)
$$

s.t. $(y, \pi_A) \in P, (x, \pi_B) \in Q$

Zero-sum Games Zero-sum Games
Von Neuman's maxmin theorem (1928) = LP-duality

$$
P\begin{bmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{bmatrix} \qquad Q\begin{bmatrix} \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m \end{bmatrix}
$$

$(y,\pi_A) \in P$, $(x,\pi_B) \in Q$

 2 -Nash \rightarrow linear programming **Theorem.** If (A, B) is zero-sum, i.e., $A + B = 0$, then

$$
\max: x^T (A + B)y - (\pi_A + \pi_B)
$$

s.t. $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$

$$
P\begin{bmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{bmatrix} \qquad Q\begin{bmatrix} \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m \end{bmatrix}
$$

$(y, \pi_A) \in P$, $(x, \pi_B) \in Q$

 2 -Nash \rightarrow linear programming **Theorem.** If (A, B) is zero-sum, i.e., $A + B = 0$, then

$$
\max: -(\pi_A + \pi_B)
$$

s.t. $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$

Theorem. [von Neumann 28] (max-min = min-max) Game (A,A):
\nWrt A, [Alice is a maximizer and Bob minimizer. Then,
\nmax min x^TA^W = min max x^TAy & the max-min is NE.
\n
$$
x^2 e
$$
 appear $x \sin n \alpha^T A$ $h\nu$
\n $x^2 e$ appear $x \sin n \alpha^T A$ $h\nu$
\n $x^2 e$ appear $x \sin n \alpha^T A$ $h\nu$
\n $x^T e$ $x^T A$ $h\nu$
\n $h\nu$ <

(1)
$$
\frac{1}{x}
$$
 and
$$
\frac{1}{x}
$$
 and
$$
\frac{1}{x}
$$
 is a point of $x^2 + y^2 = \frac{1}{x}$ and $y^2 = \frac{1}{x}$

\n(0)
$$
\frac{1}{x}
$$
 is a point of x and y .

\n(1)
$$
\frac{1}{x}
$$
 is a point of x .

\n(2)
$$
\frac{1}{x}
$$
 is a point of x .

\n(3)
$$
\frac{1}{x}
$$
 is a point of x .

\n(4)
$$
\frac{1}{x}
$$
 is a point of x .

\n(5)
$$
\frac{1}{x}
$$
 is a point of x .

\n(6)
$$
\frac{1}{x}
$$
 is a point of x .

\n(7)
$$
\frac{1}{x}
$$
 is a point of x .

\n(8)
$$
\frac{1}{x}
$$
 is a point of x .

\n(9)
$$
\frac{1}{x}
$$
 is a point of x .

\n(1)
$$
\frac{1}{x}
$$
 is a point of x .

\n(2)
$$
\frac{1}{x}
$$
 is a point of x .

\n(3)
$$
\frac{1}{x}
$$
 is a point of x .

\n(4)
$$
\frac{1}{x}
$$
 is a point of x .

\n(5)
$$
\frac{1}{x}
$$
 is a point of x .

\n(6)
$$
\frac{1}{x}
$$
 is a point of x .

\n(7)
$$
\frac{1}{x}
$$
 is a point of x .

\n(8)
$$
\frac{1}{x}
$$
 is a point of x .

\n(9)
$$
\frac{1}{x}
$$
 is a point of x .

\n(1)
$$
\frac{1}{x}
$$
 is a point of x .

\n(2)
$$
\frac{1}{x}
$$
 is a point of x .

\n(3)
$$
\frac{1}{x}
$$

Computation in general?

NE existence via fixed-point theorem.

Computation? (in Econ)

■ Special cases: Dantzig'51, Lemke-Howson'64, Elzen-Talman'88, Govindan-Wilson'03, …

Scarf'⁶⁷: Approximate fixed-point. \Box Numerical instability □ Not efficient!

 \blacksquare ... \blacksquare ... \blacksquare

Lemke-Howson (1964)
so a motivation for class PPAD) Lemke-Howson (1964)
(also a motivation for class PPAD)

Follows a path on a polytope

Basic Polytope Properties

Linear inequalities: (dimension=2)

Basic Polytope Properties

- Given $A_{m \times d}$, $b_{m \times 1}$: $(Ax)_i \leq b_i$, $\forall i$ \Box In d dimension
- \blacksquare At a vertex (0-dim), d equalities
- On an edge (1-dim), d-1 equalities
- \blacksquare 1-skeleton \rightarrow vertices + edges \rightarrow graph

 u, v share d-1 equalities.
These also hold on connecting edge

Finding NE in game (A, B)

$$
\forall i \le m, \quad x_i = 0 \text{ or } (Ay)_i = \pi_A
$$

$$
\forall j \le n, \quad y_j = 0 \text{ or } (x^T B)_j = \pi_B
$$

Finding NE in game (A, B)

Find $x \neq 0$ s.t. $\forall i \le d, x_i \ge 0, \qquad (Mx)_i \le 1 \implies d$ -dim polytope P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color *i* is present $x_1 = 0$ or $(Mx)_1 = 1$ $x_4 = 0$ or $(Mx)_4 = 1$ $\ddot{}$ $x_2 = 0$ or $(Mx)_2 = 1$ $x_d = 0$ or $(Mx)_d = 1$ $x_3 = 0$ or $(Mx)_3 = 1$

D Define $L(x) = \{i \mid label/color\ i \text{ is present at } x\}$

 \blacksquare Fully-labeled/panchromatic set of points

$$
S = \{x \mid L(x) = \{1, ..., d\}\}.
$$

□ Vertices.

 \Box **0** \in *S*. $x \in S \setminus \{0\}$ if f x is a solution \rightarrow **new goal!**

 $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color *i* present

- Define $L(x) = \{i | \text{label}/\text{color } i \text{ is present at } x\}$
- Fully-labeled set $S = \{x | L(x) = \{1, ..., d\}\}.$ □ Vertices. \Box 0 \in S. $x \in S \setminus \{0\}$ if f x is a solution \rightarrow **new goal!**
- \blacksquare 1-almost fully-labeled set, $S_1 = \{x \mid L(x) \supseteq \{2, ..., d\}\}.$ $S \subset S_1$. Vertices + edge.

Lemke-Howson follows a path in S_1

Structure of S_1 (Paths and Cycles) $\forall i, x_i \geq 0$, $(Mx)_i \leq 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ \Box For each $i \in \{2, ..., d\}, x_i = 0$ or $(Mx)_i = 1$ \Box Unique $k \in \{2, ..., d\}$ s.t. $x_k = 0$ and $(Mx)_k = 1$ \Box k is duplicate

Both edges are in S_1 Any other? No!

Claim 1. $deg(v) = 2$ if $v \in S_1 \setminus S$

Starting vertex

 $\forall i, x_i \ge 0$, $(Mx)_i \le 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

■ Vertex $v \in S$ ($\subset S_1$). Then $L(v) = \{1, ..., d\}$ \Box No duplicate label.

• Can only leave label 1 to remain in S_1

Lemke-Howson: Follow path starting at θ

Vertex $v \in S \subset S_1$. Then $L(v) = \{1, ..., d\}$ \Box No duplicate label

Thumb rule: Relax the one that is tight on the previous edge.

- ${1, ..., d}$
1. Leave label 1
2. If Label 1 found ${1, ..., d}$

1. Leave label 1

2. If Label 1 found

• Then done. 1. Leave label 1
2. If Label 1 found
• Then done.
3. Else leave
duplicate label. 1. Leave label 1

2. If Label 1 found

• Then done.

3. Else leave

duplicate label.

4. Go to 2.
	- Then done.
- - duplicate label.
-

Recall

 $\forall i, x_i \geq 0$, $(Mx)_i \leq 1 \rightarrow \text{d-dim } P$ $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ \Box For each $i \in \{2, ..., d\}, x_i = 0$ or $(Mx)_i = 1$ \Box Unique $k \in \{2, ..., d\}$ s.t. $x_k = 0$ and $(Mx)_k = 1$ $\Box k$ is duplicate

Both edges are in S_1 Any other? No!

Claim 1. $deg(v) = 2$ if $v \in S_1 \setminus S$

Recall

 $\forall i, x_i \geq 0$, $(Mx)_i \leq 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ *Claim 1.* $deg(v) = 2$ if $v \in S_1 \setminus S$ $x_k = 0$ $(Mx)_k = 1$ $k - 1$
 $\left(\frac{M_x}{k}\right)_{k \leq 1}$ $x_1 = 0$ ■ Vertex $v \in S$ ($\subset S_1$). Then $L(v) = \{1, ..., d\}$ \square No duplicate label.

Claim 2. $deg(v) = 1$ if $v \in S$

S_1 : Structure

 $\forall i, x_i \ge 0$, $(Mx)_i \le 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ \Box Unique duplicate label

S_1 : Structure

 $\forall i, x_i \ge 0$, $(Mx)_i \le 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ \Box Unique duplicate label

S_1 : Set of paths and cycles

- $\forall i, x_i \ge 0$, $(Mx)_i \le 1 \rightarrow d$ -dim P $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i
- Vertex $v \in S$ ($\subset S_1$). Then $L(v) = \{1, ..., d\}$ \Box No duplicate label

S_1 : Set of paths and cycles

S_1 : Set of paths and cycles

What if solution always exists, like Nash Eq.?

Computation? (in CS)

Megiddo and Papadimitriou'91 : Nash is NP-hard \Rightarrow NP=Co-NP

NP-hardness is ruled out!

Complexity Classes

2-Nash is PPAD-complete! [DGP'06, CDT'06]

Papadimitriou'94

PPAD Polynomial Parity Argument for Directed graph

Brute-force Algorithm?

$$
P\begin{bmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{bmatrix} \qquad Q\begin{bmatrix} \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m \end{bmatrix}
$$

Let (x, y) be a NE. Suppose we know supp (x) and supp (y) . Now can we find a NE?

 $x \in \Delta_m$

Can we do better than "brute-force"?

Not so far. And may be never! It is one of the hardest problems in PPAD.

What about special cases/approximation?

Rank(A) or rank(B) is constant

\blacksquare O(1)-approximate NE: quasi-polynomial time algorithm

Constant rank games: rank(A+B) is a constant FPTAS

$$
P\begin{bmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{bmatrix} \qquad Q\begin{bmatrix} \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m \end{bmatrix}
$$

$$
(y, \pi_A, x, \pi_B) \in P \times Q
$$

 2 -Nash \rightarrow linear programming **Theorem.** If (A, B) is zero-sum, i.e., $A + B = 0$, then

$$
\max: -(\pi_A + \pi_B)
$$

s.t. $(y, \pi_A, x, \pi_B) \in P \times Q$

Rank of a game: rank(A+B) $Zero$ -sum \equiv Rank-0 games

$$
P\begin{bmatrix} \forall i, (Ay)_i \le \pi_A \\ y \in \Delta_n \end{bmatrix} \qquad Q\begin{bmatrix} \forall j, (x^T B)_j \le \pi_B \\ x \in \Delta_m \end{bmatrix}
$$

 $(y, \pi_A, x, \pi_B) \in P \times Q$

max: runn 2 -Nash \rightarrow linear programming s.t. (y, π) **Theorem.** If (A, B) is zero-sum, i.e., $A + B = 0$, then Rank of a game: rank(A+B) Poly-time approximation for constant rank games [KT'03]. Poly-time exact for rank-1 games [AGMS'11]. Exact for rank > 2 is PPAD-hard [M'13].

Open Problems

Status of PPAD.

 \square Is constant factor approximation of 2-Nash PPAD-hard?

 \blacksquare Not risk neutral? \rightarrow Prospect Theory \Box Expected utility \equiv risk neutral