Lecture 9 Minmax Theorem and Lemke-Howson

CS 580

Instructor: Ruta Mehta

Agenda

- Two-player Games, NE (recall)
- Zero-sum games
 Minmax Theorem
 LP-duality
- Lemke-Howson Algorithm
- Class PPAD

Our focus: Two-player games

 $A_{m \times n}$

 $B_{m \times n}$

■ For Alice, *i*th strategy gives

For Alice, *i*th strategy gives

Alice's expected payoff is

NE: No unilateral deviation is beneficial $x^{T}Ay \ge z^{T}Ay, \quad \forall z \in \Delta_{m}$ $x^{T}By \ge x^{T}Bz, \quad \forall z \in \Delta_{n}$

Nash Eq. Characterization

• x achieves max payoff iff $x^{T}Ay \ge (Ay)_{i}, \quad \forall i$ \equiv $\forall k, \quad x_{k} > 0 \Rightarrow k \in \operatorname{argmax}_{i} (Ay)_{i}$

Complementarity

NE iff Complementarity $\forall i \leq m, \quad x_i > 0 \Rightarrow (Ay)_i = \pi_A$ $\forall j \leq n, \quad y_j > 0 \Rightarrow (x^T B)_j = \pi_B$

$$P \quad \begin{array}{l} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{array}$$

$$Q \quad \begin{array}{c} \forall j, \left(x^T B\right)_j \leq \pi_B \\ x \in \Delta_m \end{array}$$

$(y,\pi_A) \in P, \qquad (x,\pi_B) \in Q$

2-Nash

max:
$$x^T(A + B)y - (\pi_A + \pi_B)$$

s.t. $(y, \pi_A) \in P, (x, \pi_B) \in Q$

Zero-sum Games Von Neuman's maxmin theorem (1928) = LP-duality

$(y,\pi_A) \in P, \qquad (x,\pi_B) \in Q$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

max:
$$x^T(A + B)y - (\pi_A + \pi_B)$$

s.t. $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$

$(y,\pi_A) \in P, \qquad (x,\pi_B) \in Q$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

$$\max: -(\pi_A + \pi_B)$$

s.t. $(y, \pi_A) \in P$, $(x, \pi_B) \in Q$

Theorem. [von Neumann'28] (max-min = min-max) Game (A, A).
$$\rightarrow A$$

Wrt A, Alice is a maximizer and Bob minimizer. Then,
max min $x^T A y \equiv min \max x^T A y$ & the max-min is NE.
 $x = y = y = x$
 $x = x^T A y = min \max x^T A y$ & the max-min is NE.
 $x = y = y = x$
 $x = x^T A y = min x^T A y$
 $y = Cangosin = x^T A y = min x^T A y = min x^T A y = min x^T A y$
 $y = min x^T A y = min x^T A y = x^T A y = max x^T A y = min x^T A y$
Let (\vec{x}, \vec{y}) be a NE.
 (\vec{x}, \vec{y}) be a NE.
 (\vec{x}, \vec{y}) be a NE.
 $(\vec{x}, \vec{y}) = min x^T A y = min x^T$

Computation in general?

NE existence via fixed-point theorem.

Computation? (in Econ)

Special cases: Dantzig'51, Lemke-Howson'64, Elzen-Talman'88, Govindan-Wilson'03, ...

Scarf'67: Approximate fixed-point.
 Numerical instability
 Not efficient!

Lemke-Howson (1964) (also a motivation for class PPAD)

Follows a path on a polytope

Basic Polytope Properties

Linear inequalities: (dimension=2)

Basic Polytope Properties

- Given $A_{m \times d}$, $b_{m \times 1}$: $(Ax)_i \leq b_i$, $\forall i$ □ In d dimension
- At a vertex (0-dim), d equalities
- On an edge (1-dim), d-1 equalities
- 1-skeleton \rightarrow vertices + edges \rightarrow graph

u, *v* share d-1 equalities. These also hold on connecting edge

Finding NE in game (A, B)

NE iff Complementarity $\forall i \leq m, \quad x_i > 0 \Rightarrow (Ay)_i = \pi_A$ $\forall j \leq n, \quad y_j > 0 \Rightarrow (x^T B)_j = \pi_B$

NE iff Complementarity

$$\forall i \leq m, \quad x_i = 0 \text{ or } (Ay)_i = \pi_A$$

 $\forall j \leq n, \quad y_j = 0 \text{ or } (x^T B)_j = \pi_B$

Finding NE in game (A, B)

• Define $L(x) = \{i \mid label/color i is present at x\}$

Fully-labeled/panchromatic set of points

$$S = \{x \mid L(x) = \{1, \dots, d\}\}.$$

 \Box Vertices.

 $\Box \mathbf{0} \in S. x \in S \setminus \{\mathbf{0}\} \text{ iff } x \text{ is a solution} \rightarrow \text{new goal!}$

 $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color *i* present

- Define $L(x) = \{i | label/color i is present at x\}$
- *Fully-labeled* set $S = \{x | L(x) = \{1, ..., d\}\}$. □ Vertices. □ $0 \in S. x \in S \setminus \{0\}$ iff x is a solution \rightarrow new goal!
- *1-almost* fully-labeled set, $S_1 = \{x | L(x) \supseteq \{2, ..., d\}\}$. □ $S \subset S_1$. Vertices + edge.

Lemke-Howson follows a path in S_1

Structure of *S*₁ (Paths and Cycles)

 $\forall i, x_i \ge 0, \quad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$ $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

Vertex v ∈ S₁ \ S. Then L(v) = {2, ..., d}
□ For each i ∈ {2, ..., d}, x_i = 0 or (Mx)_i = 1
□ Unique k ∈ {2, ..., d} s.t. x_k = 0 and (Mx)_k = 1
□ k is duplicate

Both edges are in S_1 Any other? No!

Claim 1. deg(v) = 2 if $v \in S_1 \setminus S$

Starting vertex

 $\forall i, x_i \ge 0, \quad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$ $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

■ Vertex $v \in S(\subset S_1)$. Then $L(v) = \{1, ..., d\}$ □ No duplicate label.

• Can only leave label 1 to remain in S_1

Lemke-Howson: Follow path starting at **0**

■ Vertex $v \in S(\subset S_1)$. Then $L(v) = \{1, ..., d\}$ □ No duplicate label

Thumb rule: Relax the one that is tight on the previous edge.

1. Leave label 1

- 2. If Label 1 found
 - Then done.
- 3. Else leave
 - duplicate label.
- 4. Go to 2.

Recall

 $\forall i, x_i \ge 0, \qquad (Mx)_i \le 1 \rightarrow \text{ d-dim } P \\ x_i = 0 \text{ or } (Mx)_i = 1 \rightarrow \text{ Label/color } i$

Vertex v ∈ S₁ \ S. Then L(v) = {2, ..., d}
□ For each i ∈ {2, ..., d}, x_i = 0 or (Mx)_i = 1
□ Unique k ∈ {2, ..., d} s.t. x_k = 0 and (Mx)_k = 1
□ k is duplicate

Both edges are in S_1 Any other? No!

Claim 1. deg(v) = 2 if $v \in S_1 \setminus S$

Recall

 $\forall i, x_i \geq 0, \quad (Mx)_i \leq 1 \rightarrow \text{d-dim } P$ $x_i = 0$ or $(Mx)_i = 1 \longrightarrow$ Label/color i • Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, \dots, d\}$ Claim 1. deg(v) = 2 if $v \in S_1 \setminus S$ $x_k = 0$ $(Mx)_{k} = 1$ $(M_{\mathcal{X}})_{k} \nabla I$ $x_{k} \equiv 0$ $x_1 = 0$ • Vertex $v \in S(\subset S_1)$. Then $L(v) = \{1, \dots, d\}$ □ No duplicate label. Claim 2. $\deg(v) = 1$ if $v \in S$

S₁: Structure

 $\forall i, x_i \ge 0, \quad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$ $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ □ Unique duplicate label

S₁: Structure

 $\forall i, x_i \ge 0, \quad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$ $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

■ Vertex $v \in S_1 \setminus S$. Then $L(v) = \{2, ..., d\}$ □ Unique duplicate label

S_1 : Set of paths and cycles

 $\forall i, x_i \ge 0, \quad (Mx)_i \le 1 \longrightarrow \text{d-dim } P$ $x_i = 0 \text{ or } (Mx)_i = 1 \longrightarrow \text{Label/color } i$

■ Vertex $v \in S(\subset S_1)$. Then $L(v) = \{1, ..., d\}$ □ No duplicate label

S_1 : Set of paths and cycles

S_1 : Set of paths and cycles

Goal: Find any other end-point Defn of PPAD!

What if solution always exists, like Nash Eq.?

Computation? (in CS)

Megiddo and Papadimitriou'91 : Nash is NP-hard \Rightarrow NP=Co-NP

NP-hardness is ruled out!

Complexity Classes

2-Nash is PPAD-complete! [DGP'06, CDT'06]

Papadimitriou'94

PPAD Polynomial Parity Argument for Directed graph

Brute-force Algorithm?

$$P \quad \begin{array}{c} \forall i, (Ay)_i \leq \pi_A \\ y \in \Delta_n \end{array}$$

$$Q \quad \forall j, \left(\mathbf{x}^T B \right)_j \le \pi_B$$
$$\mathbf{x} \in \Delta_m$$

Let (x, y) be a NE. Suppose we know supp(x) and supp(y). Now can we find a NE?

Can we do better than "brute-force"?

Not so far. And may be never! It is one of the hardest problems in PPAD.

What about special cases/approximation?

Rank(A) or rank(B) is constant

O(1)-approximate NE: quasi-polynomial time algorithm

Constant rank games: rank(A+B) is a constant
 FPTAS

$$(y, \pi_A, x, \pi_B) \in P \times Q$$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash \rightarrow linear programming

max:
$$-(\pi_A + \pi_B)$$

s.t. $(y, \pi_A, x, \pi_B) \in P \times Q$

Rank of a game: rank(A+B) Zero-sum \equiv Rank-0 games

 $(y, \pi_A, x, \pi_B) \in P \times Q$

Theorem. If (A, B) is zero-sum, i.e., A + B = 0, then 2-Nash → linear programming
Rank of a game: rank(A+B)
Poly-time approximation for constant rank games
[KT'03].
Poly-time exact for rank-1 games [AGMS'11].
Exact for rank > 2 is PPAD-hard [M'13].

Open Problems

• Status of PPAD.

□ Is constant factor approximation of 2-Nash PPAD-hard?

Not risk neutral? → Prospect Theory
 □ Expected utility ≡ risk neutral